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Abstract: The positive matrix factorization (PMF) model is widely used for source apportionment of
volatile organic compounds (VOCs). The question about how to select the proper number of factors,
however, is rarely studied. In this study, an integrated method to determine the most appropriate
number of sources was developed and its application was demonstrated by case study in Wuhan.
The concentrations of 103 ambient volatile organic compounds (VOCs) were measured intensively
using online gas chromatography/mass spectrometry (GC/MS) during spring 2014 in an urban
residential area of Wuhan, China. During the measurement period, the average temperature was
approximately 25 ◦C with very little domestic heating and cooling. The concentrations of the most
abundant VOCs (ethane, ethylene, propane, acetylene, n-butane, benzene, and toluene) in Wuhan
were comparable to other studies in urban areas in China and other countries. The newly developed
integrated method to determine the most appropriate number of sources is in combination of a
fixed minimum threshold value for the correlation coefficient, the average weighted correlation
coefficient of each species, and the normalized minimum error. Seven sources were identified by
using the integrated method, and they were vehicular emissions (45.4%), industrial emissions (22.5%),
combustion of coal (14.7%), liquefied petroleum gas (LPG) (9.7%), industrial solvents (4.4%), and
pesticides (3.3%) and refrigerants. The orientations of emission sources have been characterized
taking into account the frequency of wind directions and contributions of sources in each wind
direction for the measurement period. It has been concluded that the vehicle exhaust contribution is
greater than 40% distributed in all directions, whereas industrial emissions are mainly attributed to
the west southwest and south southwest.

Keywords: PMF; factor number selection; volatile organic compounds; source apportionment;
central China

1. Introduction

Volatile Organic Compounds (VOCs) play a significant role in local, regional, and global air
pollution. VOCs are harmful to humans, ecosystems, and the atmosphere because of their role in the
formation of ozone and peroxy-acetyl nitrate (PAN) [1–4]. Exposure to VOCs is associated with acute
toxic symptoms and the risk of mutagenicity and carcinogenicity [5,6]. With rapid economic growth
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and urbanization, megacities and city clusters in China are suffering from severe photochemical
pollution [7]. Concern about VOC concentrations in China caused the central government to start
controlling VOCs, during the 12th five-year period (2011–2015), in key regions as well as the launch of
VOCs monitoring programs and pilot projects [8]. There are extensive offline and online observations
performed to investigate the current ambient status of VOCs in main populated cluster areas of
China like the North China Plain [9–11], Yangtze Delta [12], and Pearl River Delta [13,14]. Reliable
source identification is the premise of effective VOCs control measures. Bottom-up emission inventory
summarizing the products of activity data and emission factors for all known individual sources
and the up-bottom receptor model (RM) are widely used for source identification [15–17]. Studies
have been conducted to obtain more accurate and reliable VOCs source profiles for on-road vehicle
emissions [18,19] and industries [20,21]. However, large and inherent uncertainties exist in current
emission inventories owing to inaccurate and incomplete information of emission sources, including
source profiles, emission factors, and source activities [22]. The lack of complete emission profiles
makes PMF the most used method to identify VOCs source [8,23–27]. The PMF model uses a statistical
approach for quantifying the contribution of sources to samples; PMF only uses time serials of ambient
VOC concentration as input [28] without any source profiles used in the chemical mass balance (CMB)
model [29]. The PMF model provides statistical indicators including the Q-value, residual distribution,
and coefficient of determination for the selection of factor number. However, the selection of an
appropriate number of factors mostly depends on the experience of the authors to give possible
explanations for sources [30]. The number of factors varies from study to study [31,32], and even
different numbers of factors were chosen in the same monitoring region: number of factors selected for
the Yangtze River Delta was five by Zhang et al. [8] and six by Zhu et al. [27].

Our study presents an integrated method for selection of factor number using PMF model,
and takes the online VOCs measurement in Wuhan as a case study. Wuhan, the capital of Hubei
province, is the biggest city in central China, which is suffering from air pollution due to rapid
economic growth [33]. Fine particles (PM2.5) are the main pollutant in Wuhan [34]. Reduction of
emissions to match national air quality standards is critical for this region. Lyu et al. [32] conducted
online monitoring of VOCs in Wuhan and identified six sources for total VOCs contribution, namely,
vehicular exhausts, coal burning, liquefied petroleum gas (LPG) usage, the petrochemical industry,
solvent usage in dry cleaning/degreasing, and solvent usage in coating/paints. This study also
showed VOCs limited the O3 formation and the most efficient O3 abatement could be achieved by
reducing VOCs from vehicle exhausts [35]. The present study optimizes the selection procedure of
factor number in PMF model, using Wuhan as a case study, in order to understand the types of VOCs
sources and their contribution to the status of air quality.

2. Experimental

2.1. Measurement Site and Instrumentations

Wuhan city, situated in the Eastern part of the Jianghan Plain and at the intersection of the
Yangtze and Hanjiang Rivers, is the largest metropolis in central China with an area of about 8500 km2

and a population of approximately 10.2 million [34]. The economic growth of Wuhan in recent
years is dramatic. In 2017, Wuhan’s gross domestic product amounted to 1340 billion yuan, ranking
eighth in the country, where automobile, electronic information, equipment manufacturing, food and
tobacco, and energy and environmental protection are the pillar industries with economic product
over one-hundred-billion Yuan (RMB). The number of vehicles in Wuhan exceeded 1,000,000 in 2010,
and increased by 399,500, 414,000, and 362,000 vehicles from 2015 to 2017 respectively, and reached
2,830,000 vehicles in 2018 [36].

A typical subtropical humid monsoon climate occurs in this region with habitual climate
characteristics of a hot summer and cold-humid winter. The measurement site is located at the
super monitoring station of Wuhan (30◦36′ N, 114◦17′ E), in a typical residential area in the urban area
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(Figure 1). The measurement period was from 10 May to 31 May 2014. Given the springtime period,
the average temperature was 25 ◦C within the range of 17 to 34 ◦C, so that there are very few usages of
domestic heating and cooling with air conditioning compared to winter and summer. The average
wind speed was 1.3 m/s, with north/northwest as the prevailing wind direction. Low wind speeds
occurred for 24% of the recorded hours of the measurement period.

The environmental monitoring center (EMC) of Wuhan municipality has started an investigation
of VOC emission inventory. However, quantitative emission inventory data is currently lacking and
only the number of companies active in different industrial sectors and located in the 13 districts of
Wuhan is available. This piece of information can only provide an idea of the spatial distribution of
industrial sources related to VOC emission. As reported in Table 1, 562 companies have been registered,
mostly for packaging and printing (165), automotive (92), and equipment and furniture manufacturing
(68). The districts of Huangpi, Dongxihu, and Jingkai (numbered 1, 2, and 4 in the right graph of
Figure 1, respectively) are located north, northwest, and southwest of the monitoring site, respectively,
and have the largest numbers of companies. However, a rather high number of companies are also
located in the districts of Jianghan and Hanyang (numbered 8 and 10 in Figure 1), much closer to the
monitoring site.

VOC concentrations in ambient air have been measured by the online monitor TH-PKU 300B [37],
which obtained continuous and more intensive concentrations compared to passive samplers [38].
The capture and concentration of all kinds of VOC in air is elucidated by an ultra-low temperature
(−160 ◦C) air tube capture and concentration technology. Sampling was performed under 10 min/h,
using a metal tube with a 1µm filter. Gas chromatography/mass spectrometry (GC/MS) analysis was
performed using Agilent 7820 and Agilent 5975 devices. The flame ionization detector (FID) was used,
and the columns were PLOT and DB-624 for MS. The temperature increased from 35 ◦C to 180 ◦C at a
rate of 6 ◦C/min. The calibration of sampling flow rate, mass spectrometer tuning, blank experiment,
and instrument calibration was conducted regularly to validate the data quality acquired by the
TH-PKU 300B system. The measurement was operated by specialists from Wuhan EMC. The main
calibration methods were internal standard and external standard. The internal standard at 4 ppb for
each hour was inserted into the sample and analyzed together with the samples. The external standard
at 4 ppb was tested once a day for all 103 species. The detection limit of 97% of the species was less
than 0.05 ppb, and the detection limit of 70% of the species was less than 0.01 ppb. The measurement
accuracy of 80% of the species was less than 10%, and the measurement accuracy of 45% of the species
was less than 5%. The precision of 80% of the species was within ±20%, and of 60% of the species was
within ±10%. Overall, 57 non-methane hydrocarbons (NMHCs), 33 halocarbons, and 13 carbonyls
have been analyzed at one hour time resolution (Table 2).
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Figure 1. Location of Wuhan (left panel) and monitoring station in the Wuhan district map (middle
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Table 1. Volatile organic compounds (VOCs) source categories and number of companies for different districts of Wuhan.

Industrial Sectors
District (District Number in Figure 1)

Total
Huangpi
(1)

Dongxihu
(2)

Caidian
(3)

Jingkai
(Hannan) (4)

Jiangxia
(5)

Hongshan
(6)

Jiang’an
(7)

Jianghan
(8)

Qiaokou
(9)

Hanyang
(10)

Wuchang
(11)

Qingshan
(12)

Xinzhou
(13)

Automotive 2 1 10 1 20 16 10 14 10 92

Food and beverage 2 2 1 1 3 10

Pharmaceutical 1 6 5 3 26

Electric and electronics 1 1 5 1 3 23

Waste/wastewater
treatment plants 3 4 1 5 3 4 1 4 2 1 5 40

Chemical and plastic 3 6 7 11 1 1 2 2 3 44

Oil industry 2 1 1 3 1 3 2 20

Metals and nonmetals
industry 25 1 3 3 5 1 3 2 43

Equipment and
furniture 8 5 7 9 6 2 1 3 1 10 5 68

Packaging and printing
industry 5 40 11 17 4 3 9 37 8 10 7 3 5 165

Shipping industry 6 1 1 1 1 10

Thermal power plants 2 1 2 1 7

Other sectors 1 1 3 1 2 1 3

Total 57 68 30 71 26 28 16 53 22 42 22 26 27 562

Other sectors include: Papermaking industry, cement manufacturing, textile printing and dyeing industry, fertilizer manufacturing industry, battery manufacturing, cooking industry, and
tobacco products industry.
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Table 2. VOC species analyzed by the gas chromatography–mass spectroscopy (GC–MS) system
(species considered for positive matrix factorization (PMF) analysis are in bold).

Alkanes (28) Alkenes (13) Aromatics (16)

Ethane 2,2-Dimethylbutane Ethylene Benzene
Propane 2,3-Dimethylbutane Propylene Toluene
Isobutane 2,3-Dimethylpentane Trans-2-butene Ethylbenzene
n-Butane 2,4-Dimethylpentane 1-Butene m/p-Xylene
Isopentane 2,2,4-Trimethylpentane Cis-2-butene o-Xylene
n-Pentane 2,3,4-Trimethylpentane 1,3-Butadiene Isopropylbenzene
n-Hexane Methylcyclopentane 1-Pentene n-Propylbenzene
Nonane 2-Methylpentane trans-2-Pentene m-ethyltoluene
n-Heptane 3-Methylpentane Isoprene p-ethyltoluene
n-octane Methylcyclohexane cis-2-Pentene 1,3,5-Trimethylbenzene
n-Decane 2-Methylhexane 1-Hexene o-ethyltoluene
n-Undecane 3-Methylhexane isobutylene-FID 1,2,4-Trimethylbenzene
Cyclopentane 2-Methylheptane Styrene 1,2,3-Trimethylbenzene
Cyclohexane 3-Methylheptane Alkynes (1) m-diethylbenzene

Acethylene p-diethylbenzene
Others (1)
Acetonitrile

Carbonyls (12) Halocarbons (33)

Acrolein Freon 114 Trichloroethylene
Propanal Freon 11 1,2-Dichloropropane
Acetone Freon 113 Bromodichloromethane
MTBE Freon 12 trans-1,3-Dichloropropene
Methacrolein Freon 22 Iodomethane
n-Butanal Chloromethane cis-1,3-Dichloropropene
Methylvinylketone Vinylchloride 1,1,2-Trichloroethane
Methylethylketone Bromomethane Tetrachloroethylene
2-Pentanone Chloroethane 1,2-Dibromoethane
Pentanal 1,1-Dichloroethene chlorobenzene
3-Pentanone Dichloromethane 1,3-Dichlorobenzene
Hexanal 1,1-Dichloroethane 1,4-Dichlorobenzene

cis-1,2-Dichloroethene Benzylchloride
Chloroform 1,2-Dichlorobenzene
1,1,1-Trichloroethane Bromoform
Carbontetrachloride 1,1,2,2-Tetrachloroethane
1,2-Dichloroethane

2.2. Positive Matrix Factorization

Positive matrix factorization (PMF) is a multivariate factor analysis technique used for
source identification and source apportionment of atmospheric pollutants. The PMF model is
one of the multivariate receptor models developed by the US environmental protection agency
(US-EPA). The PMF receptor model is most preferred [39] and has been widely used for source
apportionment [40,41] since it simply requires measured concentration data other than a detailed and
prior knowledge of sources.

In the PMF model, any data matrix X (n × m) can be factorized in two matrices G (n × p) and F
(p × m); the residual matrix E as described in Equation (1).

X = G · F + E or xi,j =
p

∑
k=1

gi,k · fk,i + ei,j (1)

where n and m are the number of samples and the number of species and p is the number of factors
extracted. Equation (1) explains the case of source apportionment of atmospheric pollutants, where xi,j
is the concentration of species j measured in sample i, p is the number of the factors contributing to
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the samples, gi,k the relative contribution of factor k to sample i, fk,j is the concentration of species j in
factor profile k, and ei,j is the error of the PMF model for the j species measured in sample i. The goal is
to find the gi,k, fk,j, and p values that best reproduce the observations xi,j. In the computational process
the values of gi,k and fk,j are adjusted until a minimum value of the objective function Q for a given p is
found, where Q is defined in Equation (2):

Q =
m

∑
j=1

n

∑
i=1

ei,j

s2
i,j

(2)

where si,j is the uncertainty of the concentration of species j in sample i, n is the number of samples
and m the number of species.

Different from other receptor models (i.e., chemical mass balance), the PMF solves Equation (1)
without requiring prior knowledge of the number and type of sources that contribute to the chemical
characteristics of the samples. Simply relying on two input files, sample species’ concentration data and
sample species’ uncertainty data, the PMF solves the equation for each factor p, concurrently estimating
the factor contributions (G) and the factor profiles (F). Sample species uncertainty can be derived
from actual uncertainty data of analytical determination or be estimated through an equation-based
approach from specific parameters, such as the detection limit (DL) of the measurement method [42–44].

In this study, 63 significant species of the measured 103 VOCs were selected for the PMF 5.0 model
runs (Table 2). Following the recommendations of the PMF user guide [45], the missing concentration
data in the time series of selected species have been replaced with the median values of the data
distributions, while the related value of the uncertainty was set as equal to four times the median.
The uncertainty determination was followed the description by Polissar et al. [42] and Yuan et al. [46].
Outliers (values higher than 5% of all samples) were excluded from the dataset and flagged as a missing
value. Concentrations less than or equal to the instrumental detection limit have been substituted by
half the DL and the corresponding uncertainty was set as two times the DL. The uncertainty of each
species is determined using Equation (3):

Ui,j = 0.05 · ci,j + 0.05 ·∑
i

ci,j/i (3)

where Ui,j is the uncertainty for the sample i and species j, while ci,j is the concentration of the species j
in the sample i.

Method for Selection of Factor Number

The final goal of the PMF runs is the determination of the number of factors, where factors refer
to the sources of emission, the chemical composition of each factor, and the contribution of each factor
to the sample minimizing the residuals. In general, source apportionment techniques do not recognize
a single source but rather source categories, for instance traffic exhaust, biomass burning, whose
emissions are characterized by specific markers in their chemical composition profiles.

As the PMF solution depends on the number of factors used to initialize the model run, this choice
strongly affects source apportionment analysis. Additionally, the factors resulting from PMF have to
be associated with emission sources characterized by the related chemical compositions. In general,
increasing the number of factors would decrease the error of estimated concentrations, thus the higher
the number of factors the better the explanation of observed concentration data but, at the same time,
the more difficulty for the association of each factor to a corresponding proper source. Emission
inventory data may be useful to address the choice of the number of factors. In our case, however,
quantitative estimation of VOC emissions was not available and the suggestion about the wide variety
of industrial activities potentially responsible for VOC emissions was the only available information.
Thus, in order to make the choice of the number of factors as less arbitrarily as possible, we developed a
multiple-indicator approach based on the values of three different statistical indicators for PMF model
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performance: (i) the correlation coefficients between observed and model reconstructed concentrations
for a single VOC; (ii) an overall correlation coefficient for all the VOCs considered in PMF runs; and
(iii) the normalized absolute error between observed and reconstructed concentrations for the entire
VOCs dataset.

The first indicator is intended to assess the PMF performance by properly reconstructing the
observed time trend of a single VOC species. Practically, we set a minimum threshold value (r2

min = 0.8)
for the correlation coefficient between observed and reconstructed concentrations and counted the
number of species (Np) with an actual coefficient (r2

act,p) greater than that for each model run.
An increasing number Np of species with r2

act,p > r2
min is expected as PMF model runs are initialized

with an increasing number or factors p.
The second indicator, instead of considering r2

act,p values for a single VOC, relies on a weighted
average correlation coefficient r2

avg,p calculated with Equation (4):

r2
avg,p = ∑

j

r2
act,p,j ·

Cavg,i

∑
j

Cavg,i

 (4)

where r2
act,p,j is the coefficient of correlation between observed and reconstructed concentrations for

species j resulting from a PMF run with p factors, Cavg,j the average concentration of the species j, and
N the number of species considered in PMF runs (N = 63 in this study). This indicator is intended to
assess overall PMF performance in reconstructing the time patterns of the entire VOC dataset, giving
larger relative importance to the most abundant species through concentration-based weight. As for
the first indicator, larger values of r2

avg,p are expected in PMF runs initialized with larger number
of factors.

The third indicator, intended to assess the accuracy in the model reconstruction of the observed
concentration values for the entire dataset, is the normalized absolute error (NAEp) calculated
according to Equation (5):

NAEp = ∑
i

∣∣∣Cobs,i − Cpred,i,p

∣∣∣
Cobs,i

(5)

where Cobs,i is the observed concentration of specie i and Cpred,i is the corresponding reconstructed
concentrations by PMF model with p factors. Contrary to the two previous indicators, NAEp is
expected to decrease as p increases because of the enhanced ability of the model in data reconstruction.

Performing different PMF simulations, initialized with increasing number of factors p (in our case
we considered p = 4, 5, 6, 7, and 8) leads to a set of p-dependent indicators (Np, r2

avg,p, and NAEp) that
account for both the time pattern reproduction and modeled concentration accuracy. The comparative
analysis of the behavior of the indicator sets in relation to the number of factors and, in particular,
a marginal improvement in data reconstruction for increasing number of factors, addresses the selection
of a proper number of factors (i.e., of sources), is acceptable both as a mathematical solution but, most
of all, is reasonable for the environmental interpretation of the results (i.e., source identification).

2.3. Results and Discussions

2.3.1. General Pattern of VOC Concentrations

The time pattern of NMHC, halocarbon, and carbonyl concentrations observed during the
monitoring period in Wuhan is presented in Figure 2.
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Figure 2. Time series of the total concentrations of NMHC, halocarbons, and carbonyls. Data is missing
from 27 to 28 May due to instrument calibration.

In general, the concentration of NMHCs is about one order of magnitude higher than the
halocarbons and carbonyls. The average concentration of NMHCs was 31 ppb. Halocarbons and
carbonyls concentrations were in the order of a few tenths of ppb but mostly below 20 ppb. The average
concentration of the halocarbons was 5.4 ppb. The average concentration of carbonyls was 4.5 ppb.
Concentrations of NMHCs, halocarbons, and carbonyls show peaks around the 16th and 25th, these are
influenced by local weather type and more pronounced than the diurnal effect (see Figure 2). During
the period of 16 to 25 May, the atmosphere was controlled by subtropical high pressure and, at local
scale there appeared strong straight air [47], thus local emissions accumulated which resulted in a
notable increase of all three groups.

The most abundant VOCs during the monitoring period were the lightest alkanes and alkenes
(ethane, propane, n-butane, and ethylene) together with acetylene and the lightest, single-ring
aromatics (benzene and toluene), which had period-averaged concentrations in the 1–5 ppb range.
Table 3 reports the comparison of these VOCs from Wuhan with literature data reported in other
works from urban areas in China or other countries. Even though the reported concentration levels
depend on several factors (i.e., monitoring season, monitoring site location, and exposure to emission
sources and analytical methods) [48], they allow for contextualization of Wuhan data, showing
substantial agreement with those from other Chinese cities. In particular, the comparison shows that
the concentration levels of benzene and toluene in Wuhan are similar to those concurrently measured
in Beijing in the same period of May 2014.



Atmosphere 2018, 9, 390 9 of 18

Table 3. The average concentrations of most abundant VOCs (in ppb) in Wuhan and comparison with other studies.

Wuhan Ziyang a Guangzhou b Hangzhou c Beijing d Hong Kong e London (UK) f Houston (USA) g

Ethane 5.36 17.2 5.6 3.4 4.37 2.1 7.1 12.41
Ethylene 3.94 9 6.8 3.1 1.7 4.2
Propane 4.32 5.7 10.7 1.6 2.44 2.1 2.7 16.18
Aceylene 2.91 5.6 7.3 2.6 2.17 2.8 1.33
n-Butane 2.29 1.8 5.2 0.6 1.43 1.6 2 9.22
Benzene 0.96 1.8 2.4 1.3 0.82 0.9 0.32 2.01
Toluene 1.07 0.8 7 2.5 1.33 5.7 1 5.57

a Ziyang measured from 6 December 2012 to 4 January 2013, Li et al. (2014) [48]; b Guangzhou measured from 4 October to 3 November 2004, Liu et al. (2005) [49]; c Huangzhou measured
in autumn in 1999, Guo et al. (2004) [50]; d Beijing measured in May 2014, Li et al. (2015) [10]; e Hong Kong measured in autumn 1999, Guo et al. (2006) [51]; f London measured in 2008
(whole-year), Schneidemesser et al. (2010) [52]; g Houston measured from August to September 2006, Leuchner et al. (2010) [23].
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2.4. Factor Selection for PMF Runs

Figure 3 shows the results for the sets of the three statistical indicators obtained by PMF
simulations initialized with four, five, six, seven, and eight factors, respectively.

The minimum of Np with correlation coefficients greater than the threshold (r2
min = 0.8) is N4 = 10,

which is obtained with a 4-factor simulation; the maximum number of Np is N8 =22, which is obtained
with an 8-factor simulation (Figure 3, bottom panel). As expected, Np becomes larger as p increases
but the trend is not linear. The transition from four to five factors leads to a sharp increase in Np (from
10 to 16), whereas, further increase of the number of factors results is a more regular increase of the
Np. Actually, passing from six to seven factors we have an increase of one unit for Np (18 to 19), while
going from 7 up to 8 factors Np varies from 19 to 22.

The weighted average correlation coefficient r2
avg,p ranges between 0.70 and 0.78 (Figure 4, middle

panel) with an increasing trend for Np. However, the transition from 4 to 5 factors does not imply any
significant change in the indicator (r2

avg,4 ≈ r2
avg,5), whose notable increase occurs only when shifting

from 6 (r2
avg,6 = 0.72) to 7 (r2

avg,7 = 0.76) factors. One additional factor included in PMF simulation
leads to a small increase for the indicator value (from 0.76 up to 0.78).

Contrary to the previous indicators, the NAEp shows a declining trend for increasing number of
factors (Figure 3, top panel) down from NAE4 = 3.85 to NAE8 = 2.56. However, while PMF-increased
accuracy is rather limited from four to six factors, a clear improvement is obtained when shifting from
six to seven factors, with NAEp passing from NAE6 = 3.51 to NAE7 = 2.64 (−25%); conversely, shifting
from seven up to eight factors does not involve important improvement (NAE8 = 2.56, that is only 3%
less than NAE7).

The comparative analysis of the behavior of the indicators in relation to the number of factors
supports that the 7-factor solution is mathematically reasonable. Too few factors may lead to an
underestimation of the emission in spring in the area, additionally, if there are too many factors, this
can prevent correct identification of sources, so our final choice fell on the 7-factor solution.
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2.5. Source Identification by PMF

The profiles of the factors resulting from the 7-factor solution are shown in Figure 4.
The concentration of each species is divided into each factor and indicated by a blue color, and the
percentage that each species is explained by the factor is indicated by a red square. The concentrations
corresponding to the y axis on the left are expressed in the logarithmic scale and the percentage of
species explained by the factor must be sought in the y axis on the right. The seven factors have been
identified as sources of VOCs on the basis of the resulting emission profile markers explained below.

Atmosphere 2018, 9, x FOR PEER REVIEW  11 of 18 

 

3.3. Source Identification by PMF  

The profiles of the factors resulting from the 7-factor solution are shown in Figure 4. The 
concentration of each species is divided into each factor and indicated by a blue color, and the 
percentage that each species is explained by the factor is indicated by a red square. The concentrations 
corresponding to the y axis on the left are expressed in the logarithmic scale and the percentage of 
species explained by the factor must be sought in the y axis on the right. The seven factors have been 
identified as sources of VOCs on the basis of the resulting emission profile markers explained below. 

 

Figure 4. Source profiles. The blue bars represent the concentration and red dots represent the 
percentage that each species is explained by the factor. 

The first factor is assigned to industrial use of solvents. This factor explains the presence of TEX 
(toluene 15.4%, ethylbenzene 51.6%, and xylene 40.2%) as well as C6 and C7 alkanes (cyclohexane 49%, 
methylcyclopentane 51.7%, 2-methylpentane 51.9%, and 3-methylpentane 53.3%). All these organic 
compounds are commonly used as solvents in industrial processes [32,46]. The main industrial 
sources of VOCs present in Wuhan are from the manufacture of cars, press, production of furniture, 
and production of shoes and toys. VOCs explained by this factor are mainly related to paints and use 
of adhesives in the production processes [46]. 

The second factor explains mainly ethylene (58.6%) and toluene (52.0%), which are associated 
with the combustion of coal [32,46,53]. In China, coal is the dominant source of energy [54]. Coal 
combustion is also an important VOCs source [55].  

The third factor is associated with the exhaust gases of motor vehicles, identified by specific 
tracers such as ethylene, toluene, benzene, acetylene, and other aromatics and alkanes (propane, n-
butane etc.) [56]. This source, identified as vehicular emissions, explains 14.1% of ethylene, 53.7% of 
propane, and 35.4% of acetylene. These VOCs, indicated as tracers of emissions from vehicles, are 
consistent with other PMF-based studies for Los Angeles [53], Shanghai [57], Tianjin [58], Houston 
[59], and other receptor models, such as in Turkey reported by Dumanoglu et al. [25]. 

The fourth factor is characterized by the dominant presence of two specific VOCs, trans-1,3-
dichloropropane (90.8%) and 1,4-dichlorobenzene (73.7%). These two species are part of the family 
of chlorinated VOCs and are commonly used as pesticides.  

Figure 4. Source profiles. The blue bars represent the concentration and red dots represent the
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The first factor is assigned to industrial use of solvents. This factor explains the presence of TEX
(toluene 15.4%, ethylbenzene 51.6%, and xylene 40.2%) as well as C6 and C7 alkanes (cyclohexane 49%,
methylcyclopentane 51.7%, 2-methylpentane 51.9%, and 3-methylpentane 53.3%). All these organic
compounds are commonly used as solvents in industrial processes [32,46]. The main industrial sources
of VOCs present in Wuhan are from the manufacture of cars, press, production of furniture, and
production of shoes and toys. VOCs explained by this factor are mainly related to paints and use of
adhesives in the production processes [46].

The second factor explains mainly ethylene (58.6%) and toluene (52.0%), which are associated
with the combustion of coal [32,46,53]. In China, coal is the dominant source of energy [54]. Coal
combustion is also an important VOCs source [55].
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The third factor is associated with the exhaust gases of motor vehicles, identified by specific tracers
such as ethylene, toluene, benzene, acetylene, and other aromatics and alkanes (propane, n-butane
etc.) [56]. This source, identified as vehicular emissions, explains 14.1% of ethylene, 53.7% of propane,
and 35.4% of acetylene. These VOCs, indicated as tracers of emissions from vehicles, are consistent
with other PMF-based studies for Los Angeles [53], Shanghai [57], Tianjin [58], Houston [59], and other
receptor models, such as in Turkey reported by Dumanoglu et al. [25].

The fourth factor is characterized by the dominant presence of two specific VOCs,
trans-1,3-dichloropropane (90.8%) and 1,4-dichlorobenzene (73.7%). These two species are part of the
family of chlorinated VOCs and are commonly used as pesticides.

The fifth factor explains n-butane (39.4%), trans-2-butene (72.5%), and 1-butene (50.7%).
The combination of these species is typically found in the combustion gas of liquefied petroleum gas
(LPG) [59], as also reported in other works in China [46,57]. Actually, in Wuhan there are no vehicles
using LPG, but LPG is used in catering for domestic use is very popular in urban areas [32].

The sixth factor is associated with industrial emissions, because it explains the high attendance
of Freon 22 (81.0%), acrolein (77.7%), acetonitrile (70.5%), and methylvinylketone (73.3%). Freon 22
has been commonly used as a fuel, coolant, and as a versatile intermediate in the chemical industries.
Acrolein is used in manufacturing plastics and synthetic rubber, and is an important and versatile
intermediate for the chemical industry [49]. Acetonitrile is an important solvent in the chemical
industries [60], and with the increase of its wide use in the industrial sector such as pharmaceuticals,
solvents, and chromatography, the public is paying more and more attention to its environmental
presence [61]. Methylvinylketone is used as a chemical reagent.

The seventh factor is associated with the use of refrigerants as it explains the presence of Freon 11
(53.9%), the first cooling fluid of wide use, and of chloromethane (64.8%) that, in the past, has been
used widely as a coolant. Given the risks related to its contribution to climate change and ozone
depletion, its use was reduced in most countries but it is still determinable in Wuhan as a source
contributor. There could be some emission and it might not be due to the residual of its long-life time.

The contributions of the emission sources to the observed VOC concentrations were also calculated.
The primary source is vehicular emissions (45.4%), which is comparable to that in PRD (~50%) [13] and
Beijing (57.7%) [62], and was over 40% in a French urban area ten years ago [30]. Other dominating
sources are industrial emissions (22.5%) and the combustion of coal (14.7%). Other sources that
contribute less than 10% include LPG combustion (9.7%), industrial solvents (4.4%), and pesticide use
(3.3%). The contribution from the use of refrigerants is less than 0.05%, but it is worth noting because
of the high toxicity risks associated with compounds emitted by this source. Lyu et al. [32] conducted
measurement for all four seasons (February 2013 to October 2014) and found that vehicular exhausts
(27.8 ± 0.9%), coal burning (21.8 ± 0.8%) and LPG had (19.8 ± 0.9%) were the main contributors to
VOCs in Wuhan; industrial solvents and pesticide use were not reported.

The results of the source apportionment were represented using polar plots that show the
association between the contribution of the sources generated by PMF and the origin of the air
masses [63]. The results are graphically displayed in the panels of Figure 5, with computed source
contributions in color scale as a function of wind speed and wind direction on an hourly basis.
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The sources identified as being associated with the industrial use of solvents and industrial
emissions gave their largest contributions when winds blow from the north northwest and northwest
with respect to the location of data collection, with wind speeds ranging from 5 to 7 m/s (Figure 5a,f).
The source associated with the combustion of coal (Figure 5b) occurs in a confined zone of wind
directions between west southwest and south southwest and is associated with lower wind speeds.

The source identified as vehicular emissions (Figure 5c) is associated with westerly winds and
is spread around the monitoring station mainly from south to west northwest, but also up to the
north. In the area west of the monitoring site we can find a dense road system accounting for a high
mileage of the Wuhan road network, including two high-capacity ring roads. The association of the
largest contributions of this source with rather low wind speeds confirms the very local origin of the
traffic source.

Figure 5d shows that the area in which the source of pesticides has a greater contribution is
located to the northeast of the monitoring site, particularly where the wind is approximately 4 m/s.
There is the same origin as the LPG source (Figure 5e). The cooling source (Figure 5g) provides the
lowest contribution among those sources to Wuhan; it is more pronounced in west south.Atmosphere 2018, 9, x FOR PEER REVIEW  13 of 18 
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3. Conclusions

In this study, a multiple-indicator method, based on the marginal improvement in data
reconstruction for an increasing number of factors initializing PMF runs, has been developed to
select the proper number of factors. The emission sources of VOCs in the biggest city in Central China,
Wuhan, have been investigated using the positive matrix factorization (PMF) model.

This method suggested a 7-factor PMF solution; seven sources could be associated with emission
sources based on the results of VOC source profiles. The identified seven sources are vehicular
emissions (45.4%), industrial emissions (22.5%), combustion of coal (14.7%), LPG combustion
(9.7%), industrial use of solvents (4.4%), pesticides (3.3%), and use of refrigerants. The vehicular
emissions source profile shows high attendance of ethylene, toluene, benzene, acetylene and other
aromatics, and alkanes, which are typical VOCs emitted from the exhaust gases of motor vehicles.
The industrial emissions source profile shows high contribution of Freon 22, acrolein, acetonitrile, and
methylvinylketone, all typical intermediate products and process materials in the chemical industry.
The profile of the combustion of coal source is characterized by the strong presence of ethylene and
toluene, whereas butane and butene characterize the profile of the LPG combustion source, mainly
related to catering for domestic use, which is very popular in Wuhan city.

The origins of the sources identified by PMF are conducted in PolarPlot. The results indicate that
the sources identified as industrial solvents and industrial emissions dominate in the area between
the north northwest and northwest. The source associated with the combustion of coal is very limited
in the zone between west southwest and south southwest of the monitoring station. The source
associated with the vehicular emission is spread around the point contribution monitoring but with a
predominant component of the sources of pesticides and liquefied petroleum gas more associated with
winds from east of the monitoring site. These findings can be used to track the source origins for the



Atmosphere 2018, 9, 390 15 of 18

development of an emission reduction strategy in Wuhan and can implement this method in other
cities suffering from air pollution.

The new developed multiple-indicator method is independent from the type and number of
species put in PMF model. Each of the indicators provides robust values to compare, which will
minimize the influence caused by experience on source apportionment of users. The method was
developed specially for the increased demand of VOC source identification in China, but it can be
used for any kind of species source apportionment analysis by PMF model.
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