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Abstract: Chinese cities are experiencing severe air pollution in particular, with extremely high
PM2.5 levels observed in cold seasons. Accurate forecasting of occurrence of such air pollution
events in advance can help the community to take action to abate emissions and would ultimately
benefit the citizens. To improve the PM2.5 air quality model forecasts in China, we proposed a
bias-correction framework that utilized the historic relationship between the model biases and
forecasted and observational variables to post-process the current forecasts. The framework consists
of four components: (1) a feature selector that chooses the variables that are informative to model
forecast bias based on historic data; (2) a classifier trained to efficiently determine the forecast analogs
(clusters) based on clustering analysis, such as the distance-based method and the classification
tree, etc.; (3) an error estimator, such as the Kalman filter, to predict model forecast errors at monitoring
sites based on forecast analogs; and (4) a spatial interpolator to estimate the bias correction over
the entire modeling domain. One or more methods were tested for each step. We applied five
combinations of these methods to PM2.5 forecasts in 2014–2016 over China from the operational AiMa
air quality forecasting system using the Community Multiscale Air Quality (CMAQ) model. All
five methods were able to improve forecast performance in terms of normalized mean error (NME)
and root mean square error (RMSE), though to a relatively limited degree due to the rapid changing
of emission rates in China. Among the five methods, the CART-LM-KF-AN (a Classification And
Regression Trees-Linear Model-Kalman Filter-Analog combination) method appears to have the best
overall performance for varied lead times. While the details of our study are specific to the forecast
system, the bias-correction framework is likely applicable to the other air quality model forecast
as well.
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1. Introduction

The fine particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is the
dominant air pollutant in most Chinese cities in recent years. In 2016, the nationwide annual
mean-observed PM2.5 concentration was 47 µg/m3, which exceeded 35 µg/m3, the level II national
ambient air quality standards (NAQQS) of China (GB3095-2012), by more than 34%. The pollution
levels are much higher in densely populated regions [1]. For example, in the Beijing-Tianjin-Hebei
(BTH) area the average annual mean of PM2.5 concentration was 71 µg/m3 in 2016, twice of the
standard, which would cause severe adverse health effects [2,3]. It is critical to provide the public and
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administrative agencies air pollution alerts in advance, to help citizens take timely protective actions
(e.g., wearing masks, staying indoors), and to help governments control emissions through dynamic
management actions [4,5].

Empirical models and deterministic models are the two major approaches to forecast air quality in
the near future. The empirical approaches usually employ statistical models that relate predictor and
explanatory variables [6,7]. These methods can be easily implemented as long as there are sufficient
observations available for training the statistical model. However, they have difficulty in forecasting
air pollution in longer-term and larger-scales, and have no means to predict pollutant compositions or
to provide emission controlling implications [8,9]. The deterministic approaches overcome the above
inabilities of statistical models by adopting chemical transport models (CTMs), e.g., the Community
Multi-scale Air Quality- model (CMAQ) [10], and especially, can produce forecasts in a much longer
lead time, with comparable accuracy, to meet the requirements of the dynamic management practice.
CTMs start with a detailed emissions inventory and forecasted meteorological fields, and solve a
series of mathematical equations in space and time to simulate air pollutants’ fates with the evolution
of physical and chemical processes in the atmosphere. Regional air quality forecasting systems that
are based upon CTMs have been widely established in the world to provide operational air quality
forecasts in real-time [11–14]. However, there could be significant prediction errors in these forecasts
due to emission inventory uncertainties, meteorology forecast uncertainties, and the missing physical
and chemical mechanisms in the CTMs [15].

One way to improve the deterministic model forecasting performance is to utilize the statistical
methods-based, post-processing techniques to adjust the current forecasts. Fundamentally, these
post-processing techniques are bias correction techniques that utilize the deterministic model’s historic
errors to correct the current model forecasts (from now on, the word “model” exclusively refers
to the deterministic model). The simplest bias correction technique is the moving mean method,
which directly applies the averaged forecast bias of the previous time period to the current model
forecast [16]. The Kalman filter has also been used to derive future bias from model’s historical
performance [17–20]. A more advanced bias correction technique is the analog method which first
clusters the historic forecasts into resembling analogs, and then derives future bias from the historic
analog members [16,21,22]. The analog method considers the distinction of performance levels between
different analogs, which might be related to the variations of pollution levels (which are due to various
air masses and emission events). The analog method can be further combined with the Kalman filter
and other methods to determine the ensemble bias within the same group of analog members [16].
These bias correction techniques have been demonstrated to decrease model forecast errors in weather
forecasts [23,24], and O3 [11,25–27] and PM2.5 forecasts [28,29]. It is noteworthy that the previous bias
correction studies on PM2.5 forecasts were all conducted for areas with much cleaner air than in China
(e.g., US, UK, Italy, and Portugal) [22,30,31], with their annual mean PM2.5 concentrations around
10 µg/m3 or below, and with relatively small day-to-day variations. Also, most of these bias correction
studies were conducted for 1–2 day lead time model forecasts.

In this study, we propose a bias-correction framework that explores and utilizes the relationships
between model biases and predictor variables to improve nationwide PM2.5 model forecasts in China.
Within the same framework, we tested and compared five bias-correction techniques to post-process
the 1-day, 3-day, and 5-day lead-time model forecasts from a nationwide air quality forecasting system
in China that has been in operation for over three years. The purpose of the study is to test the
existing bias-correction techniques in China, which includes very heavily polluted areas with very
large variations in PM2.5 concentration. For example, the PM2.5 concentration in Beijing can vary from
over 250 µg/m3 to below 20 µg/m3 within a couple of days. We utilized the framework to test the
Classification and Regression Trees (CART) method to determine analogs with better distinctions. The
study was also aimed to test the effectiveness of the bias-correction techniques for longer lead-time
forecasts, such as the 3-day and 5-day in advance, which can better support the dynamic air quality
management practice.
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2. Experiments

2.1. PM2.5 Model Forecasts

The daily PM2.5 model forecasts from 2014 to 2016 were obtained from an operational air quality
forecasting system (Available online: www.aimayubao.com) built upon the CMAQ model (version
5.0.2), along with the Weather Research and Forecasting Model (WRF, version 3.4.1) [32] and an
emissions processing component. The emissions inventory used (called AiMa inventory) was compiled
and projected from various inventories and information sources and was further adjusted by utilizing
inverse modeling techniques. The CMAQ modeling is configured with the saprc07tc gas chemistry
mechanism and the aero6 aerosol module. The WRF simulation is driven by NCEP’s GFS 0.5-degree
global weather forecast products. The forecasting system produces 144 h forecasts (called AiMa
forecasts) at each cycle that covers 5 days local time. The operation of the forecasting system started on
4 February 2014. The model grids have a spatial resolution of 12 km covering the entirety of China.
The configurations of the forecasting system have not been changed since operation, ensuring the
consistency of the forecasting error distribution. The daily forecasts for the lead times of 1, 3, and 5
days were used in this study. The relative longer forecasting lead time (compared to 1–2 days lead
time in previous studies [16,22]) would enable us to evaluate whether the post-correction method is
useful for dynamic management practices [33], which usually requires about a 3–5 day lead time to
take actions.

2.2. PM2.5 Observations

The air quality observational data from the Chinese air quality monitoring network was obtained
from the official real-time air quality monitoring publishing platform [34]. The monitoring network had
945 monitors in operation in 2014 and expanded to 1496 monitors in 2015. The network measured PM2.5

concentrations with the widely used TEOM (Tapered Element Oscillating Microbalance) instruments.
The 24 hourly observations within a day from 0:00 through 24:00 (Beijing local time) were averaged to
calculate daily mean PM2.5 concentrations. In case that two or more monitors are within the same grid
cell, the averages of the observations from these monitors are used. To distinguish from the original
observational data from monitors, we refer to this dataset as observations at “avg-monitors”. As a
result, the 945 monitors operational since 2014 were assigned to 545 different grid cells and all the 1496
monitors operational since 2015 were assigned to 840 grid cells (Figure 1a). Figure 1b illustrates the
spatial patterns of the observed PM2.5 pollution levels in China in year 2016.

Atmosphere 2017, 8, 147  3 of 15 

 

2. Experiments 

2.1. PM2.5 Model Forecasts 

The daily PM2.5 model forecasts from 2014 to 2016 were obtained from an operational air quality 

forecasting system (Available online: www.aimayubao.com) built upon the CMAQ model (version 

5.0.2), along with the Weather Research and Forecasting Model (WRF, version 3.4.1) [32] and an 

emissions processing component. The emissions inventory used (called AiMa inventory) was 

compiled and projected from various inventories and information sources and was further adjusted 

by utilizing inverse modeling techniques. The CMAQ modeling is configured with the saprc07tc gas 

chemistry mechanism and the aero6 aerosol module. The WRF simulation is driven by NCEP’s GFS 

0.5-degree global weather forecast products. The forecasting system produces 144 h forecasts (called 

AiMa forecasts) at each cycle that covers 5 days local time. The operation of the forecasting system 

started on 4 February 2014. The model grids have a spatial resolution of 12 km covering the entirety 

of China. The configurations of the forecasting system have not been changed since operation, 

ensuring the consistency of the forecasting error distribution. The daily forecasts for the lead times of 

1, 3, and 5 days were used in this study. The relative longer forecasting lead time (compared to 1–2 

days lead time in previous studies[16,22]) would enable us to evaluate whether the post-correction 

method is useful for dynamic management practices [33], which usually requires about a 3–5 day 

lead time to take actions. 

2.2. PM2.5 Observations 

The air quality observational data from the Chinese air quality monitoring network was 

obtained from the official real-time air quality monitoring publishing platform [34]. The monitoring 

network had 945 monitors in operation in 2014 and expanded to 1496 monitors in 2015. The network 

measured PM2.5 concentrations with the widely used TEOM (Tapered Element Oscillating 

Microbalance) instruments. The 24 hourly observations within a day from 0:00 through 24:00 

(Beijing local time) were averaged to calculate daily mean PM2.5 concentrations. In case that two or 

more monitors are within the same grid cell, the averages of the observations from these monitors 

are used. To distinguish from the original observational data from monitors, we refer to this dataset 

as observations at “avg-monitors”. As a result, the 945 monitors operational since 2014 were 

assigned to 545 different grid cells and all the 1496 monitors operational since 2015 were assigned to 

840 grid cells (Figure 1a). Figure 1b illustrates the spatial patterns of the observed PM2.5 pollution 

levels in China in year 2016. 

 

Figure 1. (a) Avg-monitors used in this study. The monitors located in the same grid cell have been 

averaged to derive avg-monitors. The blue dots denote the monitors operational since 2014. The red 

and green dots both denote monitors operational since 2015, but the red dots represent monitors that 

are used for evaluating the “final product”. (b) Annual mean PM2.5 concentrations observed at  

avg-monitors in 2016. 

Figure 1. (a) Avg-monitors used in this study. The monitors located in the same grid cell have been
averaged to derive avg-monitors. The blue dots denote the monitors operational since 2014. The
red and green dots both denote monitors operational since 2015, but the red dots represent monitors
that are used for evaluating the “final product”. (b) Annual mean PM2.5 concentrations observed at
avg-monitors in 2016.
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2.3. Bias-Correction Framework

To improve forecast performance, we propose a bias-correction framework as a post-processing
procedure for model forecasts. The framework utilizes historic data to establish relationships between
the model forecast biases and a variety of model-simulated or observed variables, and then uses these
relationships to correct the current forecast. The framework is conducted in four steps: (1) feature
selection; (2) forecast analog determination; (3) local correction estimation; and (4) correction spread.
Figure 2 illustrates the framework and the methods we tested in each step.
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Figure 2. Bias-correction framework with its four steps and the four method combinations that are
tested in this study. The fifth method tested is the 7-day Moving Average (7-Day-MA) method, which
can be regarded as a special case within the framework but is not explicitly shown here.

2.3.1. Feature Selection

In the “feature selection” step, we choose a group of variables containing information about model
biases from a pool of modeled or observed variables. By eliminating non-informative variables, we
can improve the predictability of model biases by analogs. In this study, data from 545 avg-monitors
(blue dots in Figure 1) in 2014 and 2015 are used as historic data for selecting informative variables, or
features, at each of these avg-monitors. Only the variables that are selected in this step will be used in
the following “analog determination” step.

Here, we consider in total 19 candidate variables. Five of them are observation variables (i.e.,
the mean observed concentrations of the five criteria air pollutants, CO, NO2, O3, PM2.5, and SO2)
on the day prior to the forecasting cycle, and the rest of the candidate variables are model output,
including model forecasted concentrations of the five criteria air pollutants, forecasted daily mean
PM2.5 composition concentrations (SO4, NO3, NH4, EC and OC), and four meteorological variables
(i.e., wind speed, temperature, planetary boundary layer heights, and relative humidity). We tested
two methods for feature selection: (1) a linear regression model (denoted as LM); and (2) the random
forest algorithm (denoted as RF). The LM method constructed a linear regression model with the PM2.5

forecast biases being the explained variable and the candidate variables being the explanatory variables.
Those explanatory variables with p-value < 0.05 [35,36] were retained as informative variables for
analog determination. With the RF method [37], the variables with large importance indicators are
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selected as informative variables. We implemented these feature selection algorithm with the R
software (the lm function for LM and the Boruta function for RF) [38].

Figure 3 shows the number counts of the avg-monitors that selected each candidate variable by
the LM and RF algorithms. On average, the LM algorithm selected about six informative variables
for each avg-monitors. In contrast, the RF algorithm selected about 15 on average. This difference
is likely an indication that RF is less effective than LM at distinguishing the information content
among variables. As we will find out later in our analysis (Table 1), a method involving LM (e.g., the
CART-LM-KF-AN method, see definition in Figure 2) often outperformed a method involving RF (e.g.,
CART-RF-KF-AN). This comparison highlights the importance of a proper feature selection procedure.
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Table 1. Performance statistics, R2, NME, and RMSE (in ug/m3) after the “local correction
estimation” step.

Lead Time Metrics Raw 7-Day-MA DIST-AN DIST-KF-
AN

CART-RF-
KF-AN

CART-LM-
KF-AN

1 day
R2 0.46 0.45 0.46 0.48 0.48 0.49

NME 0.49 0.39 0.40 0.40 0.45 0.41
RMSE 32.2 27.0 27.0 27.2 29.7 27.5

3 day
R2 0.38 0.35 0.33 0.37 0.38 0.39

NME 0.50 0.43 0.46 0.45 0.44 0.43
RMSE 31.4 27.8 29.0 28.0 28.2 27.5

5 day
R2 0.34 0.31 0.28 0.31 0.33 0.34

NME 0.51 0.46 0.49 0.47 0.46 0.45
RMSE 32.4 29.1 30.3 28.8 29.5 28.7

Among the 19 variables, PM2.5 observations on the initial day of the forecast cycle (I.PM2.5) and
CMAQ PM2.5 forecast (F.PM2.5) were the top two most selected variables for the 1-day lead time,
indicating that they contain the most information about the short-term model forecast errors. As
expected, the I.PM2.5 is less informative for longer lead times, resulting in a decrease in selection
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counts by the LM algorithm for the 3 and 5 day lead times (Figure 3). For all lead times in question,
model-forecast air pollutant variables, such as F.PM2.5, OC, and F.CO, and meteorological variables,
such as RH, were also frequently selected by the LM algorithm at many avg-monitors. The forecasted
OC and F.CO were frequently selected, likely because they are indicative of model biases in emissions
and transport.

2.3.2. Analog Determination

In the “analog determination” step, we search for a “forecast analog”, an ensemble of previous
model forecasts that are similar to the current forecast to be corrected [16,21]. The bias information in
the forecast analog is then used to estimate the correction to be applied in the current forecast in the
following “local correction estimation” step. The similarity between current and historic forecasts is
measured in terms of the informative variables we selected in the “feature selection” step, using two
different methods: (1) Euclidean distance between two forecasts in the feature space (denoted as DIST)
and (2) classification predicted by the CART algorithm [39] (denoted as CART). The CART algorithm
generates a decision tree which minimizes the total deviations within the branches of the tree. The
algorithm is widely used in remote sensing image processing for land cover classification [40,41],
ecology modeling [42,43] and pattern recognition studies [44]. We implemented the CART calculation
with the rpart() function in the R software [38].

2.3.3. Local Correction Estimation

In the “local correction estimation” step, we estimated the forecast bias at individual avg-monitors
based on the “forecast analog” determined in the previous “analog determination” step.

A straightforward way to estimate the bias is the Distance-based Analog (DIST-AN) method,
which takes an inverse distance weighted average of the biases in the forecast analog.

PMcp,T+k = PMp,T+k − δT+k = PMp,T+k −
∑M

m=1
PMp,tm−PMo,tm

dtm ,T+k

∑M
m=1

1
dtm ,T+k

(1)

where the PMcp,T+k and PMp,T+k, respectively, refer to the corrected and raw model forecasts of
the PM2.5 concentrations. δT+k refers to the correction, which is calculated by the inverse distance
weighted mean forecast biases of the M analogs.

In addition to the inverse distance weighted average, the Kalman filter (KF), known for its easy
implementation, fast convergence speed, and effectiveness at eliminating data noises, is also tested in
this study to estimate forecast errors. The Kalman filter works on an ordered set of inputs. Previous
studies have used the input dataset ordered by time [26,45]. In this study, we implemented the Kalman
filter on a set of analogs ordered by distances. The Kalman filter used a dynamic weighting method to
fuse the observations and estimations at time t, as shown in the equation below:

x̂t+1|t = x̂t|t−1 + Kt

(
yt − x̂t|t−1

)
(2)

where the x̂t+1|t refers to the estimation of forecast error at the time t+1 using the information at time
t. The x̂t|t−1 denotes the forecast error estimation at the time t. The yt refers to the observed forecast
error at time t. The weighting factor Kt was called Kalman gain, which was calculated through the
optimization of estimation and observation noises. The detailed approach for Kt estimation can be
found in Delle Monache, Nipen, Liu, Roux, and Stull [23]. Depending on the methods used in the
“analog determination” step, the Kalman filter is applied in the Distance-based Kalman Filtering
Analog (DIST-KF-AN) method, the CART linear model Kalman Filtering Analog (CART-LM-KF-AN)
method, and the CART random forest Kalman Filtering Analog (CART-RF-KF-AN) method.

Additionally, we also tested the 7-day Moving Average (7-Day-MA). With this method, the
correction is computed as the average of the forecast biases in a 7-day window prior to the forecasting
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cycle. This method is chosen for its fast computation and easy implementation. The 7-day window
length has also been used in previous studies on model post-correction [16,23]. The 7-Day-MA method
can be regarded as a special case of the analog method, in which the 7 days prior to the forecasting
cycle are the forecast analog and each day is weighted equally.

2.3.4. Correction Spread

After the “local correction estimation” is done, we further spread the estimated corrections at
avg-monitors to the entire domain including model grids containing no monitors. The corrections
were then applied to the original gridded model forecast to obtain bias-corrected forecasts over the
whole China domain. In this study, we used ordinary Kriging [46] to spatially interpolate the biases
from monitors to the entire domain.

2.4. Evaluation

Following the post-process framework, we tested five combinations of methods (Figure 2). For
example, the CART-LM-KF-AN method uses the LM method for “feature selection”, the CART method
for “analog determination”, and the KF method for “local correction estimation”. Readers can refer
to Figure 2 for an illustration of how varied methods for each step are combined. To evaluate the
performance in varied steps of the procedure, we reported separately the performance statistics for
the “local correction estimation” and “correction spread” steps. The reported performance statistics
include the coefficient of determination (R2), the normalized mean error (NME), and the root mean
square error (RMSE) [16].

The observation and model outputs from 4 February 2014 to 31 December 2015 are used as historic
data, with which we selected informative variables and searched for forecast analogs. In the “local
correction estimation” step, we used the model output for 2016 to estimate the bias-corrected forecasts
at the 545 individual avg-monitors. We then used the corresponding 2016 observations to evaluate
the performance after the “local correction estimation” step. Note that not all avg-monitors were
used in the “local correction estimation”. After the “correction spread” step, we then used the data
from the remaining 211 avg-monitors to evaluate the performance of the “final product” at locations
without observations. The 211 avg-monitors were so selected that they were adequately apart from
each other and from the 545 avg-monitors that were used in the “local correction estimation”. These
211 avg-monitors are marked as red dots in Figure 1. The performance evaluation was conducted
separately for 1-day, 3-day, and 5-day lead forecasts.

3. Results

3.1. Performance in Estimating Local Corrections

Although up to the “local correction estimation” step we only computed the local corrections
at locations with observations, these local corrections were crucial for the performance of the final
product. Therefore, in this study, we applied five different methods (Figure 2) and evaluated them
at avg-monitors. Figure 4 presents the performance of the raw PM2.5 model forecasts in predicting
observations at avg-monitors in 2016. The annual mean biases of model forecasts in 2016 were generally
negative in the southern and northwestern part of China, while they were positive (mostly 0–10 µg/m3)
in the middle part of China, regardless of the forecast lead-times. According to the distributions of
statistical metrics of R2 and NME, the raw model forecast performed much better in North China and
East China than in other regions, while it performed much worse in West China. Spatial patterns
with geographical divisions in biases and other performance statistical metrics, i.e., R2, NME, and
RMSE here, indicate potential non-uniform uncertainties in the emission rates estimation among
regions and varied prediction errors in meteorological forecast fields over different terrains. We do
observe a significant degradation in the performance of predicting meteorological variables at the
surface in regions with complex terrains (results not shown). However, as the lead-time increases, the
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performance of the raw PM2.5 model forecasts only degrade slightly (Figure 4 and Table 1), implying
that the error does not grow much in predicting meteorology during the forecasting period of 144 h.
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Figure 4. Performance of the raw PM2.5 model forecasts in predicting observations at avg-monitors in
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and RMSE for the 1-day lead-time.

Table 1 summarizes the performance statistics of each method for different lead times and Table 2
summarizes the percentage changes of the performance statistics with respect to the raw model
forecasts. Compared with the raw model forecasts, all the bias-correction methods are able to decrease
the NME and the RMSE at all the three lead times. The reductions in the NME are 7.4–19.3%, 7.3–14.4%,
and 4.5–12.2%, and the reductions in RMSE are 7.8–16.1%, 7.5–12.5%, and 6.3–11.3% for 1-day, 3-day,
and 5-day lead times, respectively, showing that these post-processing techniques are effective to
improve the PM2.5 forecast at locations with observations. Figure 5 shows that all methods can
improve NME and RMSE at the majority of avg-monitors. For example, the CART-LM-KF-AN method
decreases NME and RMSE at about 70% to 80% avg-monitors for all three lead times.

Table 2. Percentage changes (%) of the performance statistics with respect to original model forecast by
the five methods in the “correction estimation” step.

Lead Time Metrics 7-Day-MA DIST-AN DIST-KF-AN CART-RF-
KF-AN

CART-LM-
KF-AN

1 day
R2 −2.7 0.3 3.1 3.5 6.1

NME −19.3 −18.3 −17.3 −7.4 −14.7
RMSE −16.0 −16.1 −15.6 −7.8 −14.6

3 day
R2 −8.3 −13.3 −4.0 −1.5 0.7

NME −13.6 −7.3 −10.0 −12.6 −14.4
RMSE −11.6 −7.5 −10.9 −10.1 −12.5

5 day
R2 −8.9 −17.7 −7.0 −2.0 −0.3

NME −11.2 −4.5 −8.9 −10.7 −12.2
RMSE −10.0 −6.3 −11.1 −9.0 −11.3
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For most of these methods, however, R2 only increases marginally for the 1-day lead time and
even decreases slightly in the 3-day and 5-day lead times. For example, DIST-AN decreases the R2 by
17.7% for the 3-day lead time. The ineffectiveness in increasing R2 may reflect that these analog-based
methods, although good at reducing biases, do not improve the ability to capture the variability in
the data, especially for longer lead times. Among the five methods in question, the CART-LM-KF-AN
method has the largest R2 for all the three lead times, with a 6% increase in R2 for the 1-day lead and
essentially no change for the 3-day and 5-day leads from the raw model forecast.

The results also show the impact of forecasting lead times on the performance of bias-correction
techniques (Tables 1 and 2, Figure 5). In general, the enhancement in the forecast performance
decreases with the longer lead time. The decreasing effectiveness of the post-processing procedure
with lead times may partly result from the fact that the increasing uncertainties in the model forecasted
meteorology and pollutant concentrations lead to larger uncertainties in the analog determination for
the longer lead times. Among the five methods in this study, the performance of the CART-LM-KF-AN
method is most insensitive to varied lead times (NME 0.41, 0.43, 0.45, and RMSE 27.5, 27.5, 28.7 ug/m3

for 1-day, 3-day, and 5-day lead times, respectively), showing that the combination of the CART and
LM methods constitutes a more robust analog determination algorithm for the PM2.5 model forecast in
China. In contrast, the performance of the DIST-AN method (NME 0.40, 0.46, 0.49, and RMSE 27.0, 29.0,
30.3 ug/m3 for 1-day, 3-day, and 5-day lead times, respectively) and the 7-Day-MA method (NME 0.39,
0.43, 0.46 and RMSE 27.0, 27.8, 29.1 ug/m3 for 1-day, 3-day, and 5-day lead time, respectively) degrade
significantly with longer lead times. Although the performance of the CART-LM-KF-AN method is
similar to or a little worse than the 7-Day-MA and DIST-AN for the 1-day lead time, CART-LM-KF-AN
outperforms other methods for a longer lead time, which is a good property for the purpose of dynamic
air quality management.

3.2. Performance of the Final Product

After we estimated the correction for the model forecasts at each of the individual avg-monitors,
we spread the local corrections across the entire Chinese domain by spatially interpolating the local
corrections with ordinary Kriging. Figure 6 shows an example of the “final product” of a 5-day lead
forecast for 30 December 2016, using the CART-LM-KF-AN method.
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Figure 6. Bias-corrected CMAQ PM2.5 forecast over China for 30 December 2016 (5-day lead time) by
the CART-LM-KF-AN method. The dots represent observed PM2.5 levels.

By comparing the “final product” with observations at 211 avg-monitors (whose data were not
used in the “local correction estimation” step), we can evaluate the performance of the “final product”
at locations without avg-monitors. Table 3 shows that the correction estimated through the spatial
interpolation can also effectively reduce forecast errors, even at locations without PM2.5 monitors.
Depending on the methods and lead times, the fraction of avg-monitors that finds improvements in
NME and RMSE varies from 50 to 80% (Figure 7). The improvements, for most methods, are slightly
less but still comparable to those at locations with observations (Tables 1 and 3), indicating that,
compared to the forecast errors at locations with observations, the uncertainties induced by spatial
interpolation are likely insignificant. In other words, the “local correction estimation” (including
feature selection and analog determination) rather than “correction spread” is the “bottle-neck” in the
post-correction framework. Efforts to further improve the performance should be directed to improve
the estimation of local corrections.

Table 3. Performance statistics for R2, NME, and RMSE (in ug/m3) at locations without monitors after
correction spread.

Lead Time Metrics Raw 7-Day-MA DIST-AN DIST-KF-
AN

CART-RF-
KF-AN

CART-LM-
KF-AN

1 day
R2 0.38 0.33 0.40 0.39 0.44 0.43

NME 0.48 0.47 0.42 0.46 0.42 0.41
RMSE 28.4 27.7 25.6 27.4 24.5 24.3

3 day
R2 0.34 0.29 0.33 0.34 0.33 0.33

NME 0.49 0.47 0.44 0.47 0.44 0.44
RMSE 27.7 26.8 25.3 26.6 25.8 25.6

5 day
R2 0.31 0.26 0.29 0.31 0.30 0.30

NME 0.50 0.49 0.46 0.48 0.46 0.46
RMSE 28.3 27.6 26.1 27.1 26.5 26.5
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RMSE values (c) by the five post-correction methods and for the 1, 3, and 5-day lead times by spatially
interpolating the estimated biases.

3.3. Discussion

In comparison with previous studies conducted in the U.S., our results generally show less
improvements (in terms of percentage) from the raw model forecasts. For example, Djalalova, Delle,
Monache, and Wilczak [16] used KF-AN (similar to DIST-KF-AN in this study) to post-correct hourly
CMAQ PM2.5 forecasts for the 1-day lead time and reduced the MAE values by 65% from 8.5 µg/m3 to
3 µg/m3. Kang, et al. [47] also applied the KF-AN method to daily PM2.5 forecasts and reduced RMSE
by 33% from 7.5 µg/m3 to 5 µg/m3. Previous studies have found that the KF- and AN-based methods
better perform in lower pollution level regions [28]. The differences in the performance between this
and previous studies may result from the fact that PM2.5 levels in China are much higher than in the
U.S. Consistent with previous studies, our analysis also shows that the percentage improvements by
the CART-LM-KF-AN method are generally larger in relatively cleaner regions (e.g., the Pearl River
Delta in South china, Northeast China, and other remote regions) than in heavily polluted regions (e.g.,
the North China Plain and the Yangtze River Delta in East China) (Figure 8), suggesting that there
might be important factors missing in the trained relationship between model biases and predictor
variables over polluted regions. One such factor is the fast-changing emissions in both magnitude and
distribution in regions such as the North China Plain and the Yangtze River Delta during the modeled
three years [48–50], a result of increasingly more strict emission control enforcements and/or economic
fluctuations. The significant change of emission rates in these regions between the training years
(2014–2015) and the prediction year (2016) could confound the trained bias correction relationships. In
contrast, the actual emission rates were likely to vary insignificantly in the cleaner regions over the
same time period.
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forecasts by the CART-LM-KF-AN method and raw CMAQ forecasts (Corrected forecast minus raw
forecasts) at the 545 avg-monitors for the 1, 3, and 5-day lead times. The differences in RMSE is
in µg/m3.

4. Conclusions

To improve the PM2.5 forecast, we proposed a bias-correction framework that utilized the
relationships between biases and select forecasted and observational variables. The framework consists
of four steps: feature selection, analog determination, local correction estimation, and correction
spread. We applied this bias-correction framework to PM2.5 forecasts in 2014–2016 over China from
the operational AiMa air quality forecasting system using the CMAQ model. Five methods, differing
in how to perform feature selection, analog determination, and local correction estimation, were tested
in this study, and we found all the five methods were able to improve the overall forecast performance
in terms of RMSE and NME, though to a relatively limited degree.

Based on our results, we recommend the CART-LM-KF-AN method. In most cases, the
performance of this method is better or comparable to other methods. Particularly, the method
shows consistent improvement for longer lead times (3–5 day) when other methods degrade in their
performance. This is important for dynamic air quality management, as this type of practice often
requires longer lead time.

In comparison with previous studies that were all conducted in areas outside of China, our results
generally show fewer improvements (in terms of percentage) from the raw model forecast, especially in
regions with much higher pollution levels. A major reason for this is that the fast-changing emissions
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in high pollution regions of China can confound the relationship between model biases and predictor
variables. On the other side, the correction spread is not found to be a significant source of errors at
locations without monitors. Future efforts should be directed to improve the performance in the local
correction estimation, especially to explore methods that can build relationships that better represent
the missing factors of changing emissions.
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