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Abstract: In this paper, a matrix-free posterior ensemble Kalman filter implementation based on a
modified Cholesky decomposition is proposed. The method works as follows: the precision matrix
of the background error distribution is estimated based on a modified Cholesky decomposition.
The resulting estimator can be expressed in terms of Cholesky factors which can be updated based on
a series of rank-one matrices in order to approximate the precision matrix of the analysis distribution.
By using this matrix, the posterior ensemble can be built by either sampling from the posterior
distribution or using synthetic observations. Furthermore, the computational effort of the proposed
method is linear with regard to the model dimension and the number of observed components from
the model domain. Experimental tests are performed making use of the Lorenz-96 model. The results
reveal that, the accuracy of the proposed implementation in terms of root-mean-square-error is similar,
and in some cases better, to that of a well-known ensemble Kalman filter (EnKF) implementation:
the local ensemble transform Kalman filter. In addition, the results are comparable to those obtained
by the EnKF with large ensemble sizes.
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1. Introduction

Data Assimilation is the process by which imperfect numerical forecasts and sparse observational
networks are fused in order to estimate the state x∗ ∈ Rn×1 of a system [1] which (approximately)
evolves according to some model operator,

x∗p =Mtp−1→tp

(
x∗p−1

)
, for 1 ≤ p ≤ M , (1)

where, for instance, M : Rn×1 → Rn×1 is a numerical model which mimics the ocean and/or the
atmosphere dynamics, n is the number of model components, M is the number of observations (which
form the assimilation window), and p denotes time index at time tp. Sequential and smoothing
methods are commonly utilized in order to perform the estimation process [2–4]. In the context of
sequential data assimilation, a forecast state xb ∈ Rn×1 is adjusted according to a real observation
y ∈ Rm×1, where m is the number of observed components from the numerical grid. When Gaussian
assumptions are done over background and observational errors, background (forecast) errors can be
characterized by,

x ∼ N
(

xb, B
)

, (2)
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while observational errors are described by,

y ∼ N (H (x) , R) , (3)

where B ∈ Rn×n is the unknown background error covariance matrix, H : Rn×1 → Rm×1 is the
observation operator, and R ∈ Rm×m stands for the data error covariance matrix. By using Bayes rule,
the prior (2) and the likelihood (3) distributions can be harnessed in order to estimate the posterior
error distribution,

P (x|y) ∝ exp (−J (x)) , (4)

where

J (x) =
1
2
·
∥∥∥x− xb

∥∥∥2

B−1
+

1
2
· ‖y−H (x)‖2

R−1 , (5)

is well-known as the three dimensional variational cost function. The posterior mode of the
distribution (4) can be computed via the minimizer of the cost function (5),

xa = arg min
x

J (x) , (6)

where xa ∈ Rn×1 is well-known as the analysis state. The solution of the optimization problem (6) can
be computed as follows,

xa = xb + A ·HT · R−1 ·
[
y−H

(
xb
)]
∈ Rn×1 , (7a)

where H′(x) ≈ HT ∈ Rn×m is a linearized observation operator (with the linearization performed
about the background state) and the analysis covariance matrix reads,

A =
[
B−1 + HT · R−1 ·H

]−1
∈ Rn×n . (7b)

Typically, the moments of the prior distribution can be estimated based on an ensemble of
model realizations [5]. However, since ensemble members come at high computational costs owing
to current operational data assimilation settings (i.e., numerical grid resolutions), ensemble sizes
are bounded by the hundreds while their underlying error distributions range in the order of
billions [6]. Consequently, sampling errors can impact the quality of the analysis state [7]. In practice,
localization methods can be utilized in order to mitigate the impact of sampling errors during the
assimilation steps [8]. For instance, in the EnKF implementation based on a modified Cholesky
decomposition (EnKF-MC) [9,10], the covariance matrix estimator proposed by Bickel and Levina
in [11] and the conditional independence of model components regarding their spatial distances are
exploited in order to estimate a sparse precision matrix of the background distribution, to reduce the
computational cost of the analysis step, and to mitigate the impact of spurious correlations during the
assimilation of observations. Given the relation between A and B−1 in (7b) and by using the Bickel and
Levina estimator, we think that a sparse precision matrix of the analysis distribution can be estimated
without the needing of actually computing (7b), and therefore, the assimilation of observations can be
efficiently performed.

This paper is organized as follows: in Section 2, efficient implementations of the EnKF which
account for localization are discussed, Section 3 presents a matrix-free posterior ensemble Kalman filter
implementation based on a modified Cholesky decomposition; in Section 4, experimental tests are
performed making use of the Lorenz-96 model in order to assess the accuracy of the proposed method,
and finally, Section 5 states the conclusions of this research.
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2. Preliminaries

2.1. The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is a sequential Monte-Carlo method for parameter and
state estimation in highly non-linear models [12]. The popularity of the EnKF owes to his simple
formulation and relatively ease implementation [13]. In the EnKF context, an ensemble of model
realizations is utilized,

Xb =
[
xb[1], xb[2], . . . , xb[N]

]
∈ Rn×N , (8a)

in order to estimate the moments of the background error distribution (2) via the empirical moments
of the ensemble,

xb ≈ xb =
1
N
·

N

∑
e=1

xb[e] ∈ Rn×1 , (8b)

and,

B ≈ Pb =
1

N − 1
· ∆X · ∆XT ∈ Rn×n , (8c)

where N is the number of ensemble members, xb[e] ∈ Rn×1 denotes the e-th ensemble member,
for 1 ≤ e ≤ N, xb is the ensemble mean, Pb is the ensemble covariance matrix, and

∆X = Xb − xb · 1T ∈ Rn×N , (8d)

is the matrix of member deviations with 1 being a vector of consistent dimension whose components
are all ones. When an observation y becomes available, the analysis ensemble can be computed
as follows,

Xa = Xb + Pa · ∆Y ∈ Rn×N , (9a)

where the scaled matrix of innovations on the perturbed observations ∆Y reads,

∆Y = HT · R−1 ·
[
y · 1T + R1/2 · E−H · Xb

]
∈ Rn×N , (9b)

the columns of matrix E ∈ Rm×N are samples from a multivariate standard Normal distribution, and

Pa =

[[
Pb
]−1

+ HT · R−1 ·H
]−1
∈ Rn×n , (9c)

is the analysis ensemble covariance matrix.

2.2. Localization Methods

As we mentioned before, the ensemble size is much lower than the model resolution (N � n) and
as a consequence, Pb is rank-deficient which implies that, the precision matrix (9c) can not be computed.
In practice, localization methods are commonly utilized in order to artificially increase the rank of
Pb and to mitigate the impact of spurious correlations during the analysis steps [14]. In general,
we can think in two different flavours of localization: covariance matrix localization [15,16], and spatial
localization [17].
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In the context of covariance matrix localization, a decorrelation matrix Λ̂ ∈ Rn×n is typically
utilized in order to dissipate spurious correlations between distant model components,

P̂b = Λ̂ ◦ Pb ∈ Rn×n , (10)

where ◦ denotes component-wise multiplication, P̂b is a localized covariance matrix, and the
components of the localization matrix Λ̂, for instance, reads,

{
Λ̂
}

i,j
= exp

(
−1

2
· d (i, j)2

r2

)
, for 1 ≤ i, j ≤ n ,

where r is the localization radius, and d (i, j) stands for the spatial distance between components i
and j.

In spatial localization schemes, each model component is surrounded by a local box of radius r
and all the information contained within such box is utilized in order to perform a local assimilation
step [18]. All local analysis components are then mapped back to the global domain from where a
global analysis state is estimated. Some examples of spatial localization are shown in Figure 1 for a
two dimensional domain. In general, radius sizes can vary among different model components.

(a) r = 1 (b) r = 2 (c) r = 3

Figure 1. Local domains for different radii of influence r. The red dot is the model component to
be assimilated, the red square denotes components within the scope of r, and components outside the
region are unused during the local assimilation process.

It is important to note that, the use of covariance matrix localization or spatial localization during
the assimilation of observations should rely, mainly, on computational aspects [19].

2.3. Efficient EnKF Implementations: Accounting for Localization

An efficient EnKF implementation in the context of spatial localization is the local
ensemble transform Kalman filter (LETKF) which belongs to the family of deterministic EnKF
formulations [20–23]. This method has been sucesfully tested in operational data assimilation centres
for weather forecast [24]. In the LETKF, the mode of the analysis distribution is estimated in the
ensemble space as follows,

xa = xb + ∆X ·wa ∈ Rn×1 , (11a)

where wa = P̃a · [H · ∆X]T ·
[
y−H

(
xb
)]
∈ RN×1, and P̃a ∈ RN×N is a projection of the analysis

covariance matrix (9c) onto such space wherein the ensemble covariance matrix (8c) is well-conditioned.
The analysis ensemble is then built about the estimated state (11a) as follows,

Xa = xa · 1T +
√

N − 1 · ∆X · P̃a1/2 ∈ Rn×N . (11b)
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The assimilation step (11) is applied to each model component for a given radius of influence r
from where the global analysis state is obtained. Hence, since the most expensive computation during
the assimilation step of LETKF is the inversion of P̃a, the computational effort of the LETKF reads,

O
(

ϕ · n · N3
)

,

where ϕ denotes the local box sizes.
Another efficient EnKF implementation which makes use of covariance matrix localization is

the EnKF based on a modified Cholesky decomposition (EnKF-MC) [25]. In this context, given a
radius of influence r, uncorrelated errors are assumed between the component i and the model
components P(i, r), for 1 ≤ i ≤ n, where P(i, r) stands for the predecessors of component i whose
spatial distances do not exceed r. For a component i, the predecessors P(i, r) depend on some ordering
of grid components, for instance, Figure 2 shows an example for a two dimensional domain when
r = 1, i = 6, and grid components are labelled by using column-major format. In the EnKF-MC,
the resulting estimator B̂−1 can be obtained in terms of Cholesky factors by using the Bickel and Levina
estimator,

B−1 ≈ B̂−1 = LT ·D−1 · L ∈ Rn×n , (12a)

where L ∈ Rn×n is a lower triangular matrix,

{L}i,j =


−βi,j , j ∈ P(i, r)

1 , i = j

0 , otherwise

, (12b)

whose non-zero sub-diagonal elements are obtained by fitting models of the form,

xT
[i] = ∑

j∈P(i, r)
βi,j · xT

[j] + γi ∈ RN×1 , 1 ≤ i ≤ n , (12c)

xT
[i] ∈ RN×1 denotes the i-th row (model component) of the ensemble (8a), and the components of

vector γi ∈ RN×1 are samples from a zero-mean Normal distribution with unknown variance σ2.
Likewise, D ∈ Rn×n is a diagonal matrix whose diagonal elements read,

{D}i,i = v̂ar

xT
[i] − ∑

j∈P(i, r)
βi,j · xT

[j]

−1

≈ var (γi)
−1 =

1
σ2 > 0 , with {D}1,1 = v̂ar

(
xT
[1]

)−1
, (12d)

where var(•) and v̂ar(•) denote the actual and the empirical variances, respectively.

(a) (b)

Figure 2. Local model components (local box) and local predecessors for the model component 6 when
r = 1. Column-major ordering is utilized to label the model components. (a) In blue, local box for the
model component 6 when r = 1. (b) In blue, predecessors of the model component 6 for r = 1.
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By using the precision matrix (12a), the analysis covariance matrix (7b) can be estimated as follows,

Â =
[
B̂−1 + HT · R−1 ·H

]−1
∈ Rn×n . (12e)

Thusly, the posterior ensemble is given by,

Xa = Xb + Â · ∆Y ∈ Rn×N . (12f)

Notice, since the number of predecessors for each model component depends on r, the resulting
factor (12b) can be sparse, this implies huge savings in terms of memory usage under current
operational data assimilation settings wherein n can be very large. Besides, B̂−1 can be represented in
terms of his Cholesky factors and therefore, efficient manners to compute the ensemble (12f) can be
derived. Since the number of predecessors is some multiple of the local box sizes, the computational
effort of the analysis step in the EnKF-MC can be expressed as follows,

O
(

ϕ2 ·m · n + ϕ2 · n
)

,

which is linear with regard to n and m. Note that, the EnKF-MC and the LETKF provide similar
computational costs.

We think that, by updating the Cholesky factors of (12e) it is possible to obtain an estimate
of the precision matrix A−1 in terms of sparse Cholesky factors which can be exploited during the
assimilation step (12f) in order to avoid the explicit solution of the linear system,[

B̂−1 + HT · R−1 ·H
]
· Z = ∆Y ,

and yet, to derive another efficient implementation of the assimilation cycle. The next section presents
an EnKF implementation based on this general idea.

3. A Posterior Ensemble Kalman Filter Based On Modified Cholesky Decomposition

Before we start the derivation of our filter implementation, we assume that, the observational
operator is nearly linear and/or it can be easily applied [26], the data error covariance matrix possesses
a simple structure and/or it can be easily decomposed [27], and that observational networks are
sparse [28].

3.1. General Formulation of the Filter

To be concise, we want to obtain an estimate of the precision matrix for (12e) of the form,

Â−1 = B̂−1 + HT · R−1 ·H = LT ·D · L + HT · R−1 ·H = L̂T · D̂ · L̂ ∈ Rn×n , (13)

where L̂ ∈ Rn×n is a sparse lower triangular matrix whose diagonal elements are all ones and D̂ ∈ Rn×n

is a diagonal matrix. In this manner, we can approximate the posterior mode of the error distribution,

xa = xb +
[
B̂−1 + HT · R−1 ·H

]−1
· ∆y = xb + ∆xa , (14)

via the solution of a lower and an upper triangular system of equations,

L̂T · D̂ · L̂ · ∆xa = ∆y ∈ Rn×1 ,
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which can be solved by using forward and backward substitutions, where ∆y = HT · R−1 ·[
y−H

(
xb
)]
∈ Rn×1 is the scaled innovation vector on the observations. Note that, by using

xa and Â, an estimate of the posterior error distribution can be proposed as follows:

x ∼ N
(

xa, Â
)

, (15)

and therefore, the posterior ensemble (the analysis ensemble members) can be approximated by either

1. drawing samples from the Normal distribution (15),

Xa = xa · 1T
N + Â1/2 · E = xa · 1T

N + Va , (16)

where Va ∈ Rn×N is given by the solution of an upper triangular system of equations,

Â−1/2 ·Va = L̂T · D̂1/2 ·Va = E ∈ Rn×N ,

and the columns of E ∈ Rn×N are samples from a multivariate standard Normal distribution, or
2. using the synthetic data (9b),

Xa = xb · 1T
N + Â · ∆Y = xb · 1T

N + V̂a , (17)

where V̂a ∈ Rn×N is given by the solution of the next linear system of equations,

L̂T · D̂ · L̂ · V̂a = ∆Y .

Note that, the use of xb instead of xb[i] in Equation (17) does not change the statistical moments of
the posterior ensemble, consider, for instance, the e-th column xa[e] of matrix Xa, for 1 ≤ e ≤ N,

E
(

xa[e]
)

= E
(

xb + Â · ∆y[e]
)
= E

(
xb
)
+E

(
Â · ∆y[e]

)
= E

(
1
N
·

N

∑
e=1

xb[e]

)
+E

(
Â · ∆y[e]

)
=

1
N
·

N

∑
e=1

E
(

xb[e]
)
+E

(
Â · ∆y[e]

)
=

1
N
·

N

∑
e=1

xb +E
(

Â · ∆y[e]
)
= xb +E

(
Â · ∆y[e]

)
= E

(
xb[e]

)
+E

(
Â · ∆y[e]

)
= E

(
xb[e] + Â · ∆y[e]

)
,

where ∆y[e] ∈ Rn×1 is the e-th column of matrix ∆Y.
The approximation (16) is named the posterior ensemble Kalman filter (P-EnKF) since the analysis

ensemble is built based on samples from the posterior distribution (15) while the approximation (17) is
called the synthetic posterior ensemble Kalman filter (P-EnKF-S) since synthetic data is utilized in order to
compute the analysis increments as is commonly done in stochastic EnKF formulations. Details about
the computations of L̂ and D̂ are discussed next.

3.2. Computing the Cholesky Factors of the Precision Analysis Covariance

By letting Z = HT ·R−1/2 ∈ Rn×m in (13), the precision analysis covariance matrix can be written
as follows,

Â−1 = B̂−1 + Z · ZT = LT ·D · L + Z · ZT = LT ·D · L +
m

∑
j=1
·z[j] ·

[
z[j]
]T

, (18)
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where z[j] ∈ Rn×1 is the j-th column of matrix Z ∈ Rn×m, for 1 ≤ j ≤ m. Consider the sequence
of matrices,

Â(0) =
[
L(0)

]T
·D(0) ·

[
L(0)

]
= LT ·D · L = B̂−1 ,

Â(1) = Â(0) + z[1] ·
[
z[1]
]T

=
[
L(1)

]T
·D(1) ·

[
L(1)

]
,

Â(2) = Â(1) + z[2] ·
[
z[2]
]T

=
[
L(2)

]T
·D(2) ·

[
L(2)

]
,

...

Â(m) = Â(m−1) + z[m] ·
[
z[m]

]T
=
[
L(m)

]T
·D(m) ·

[
L(m)

]
= L̂T · D̂ · L̂ = Â−1 ,

where L(0) ∈ Rn×n and D(0) ∈ Rn×n are the Cholesky factors of B̂−1, note that, at any intermediate
step j, for 1 ≤ j ≤ m, we have,

Â(j) =
[
L(j−1)

]T
·D(j−1) ·

[
L(j−1)

]
+ z[j] ·

[
z[j]
]T

=
[
L(j−1)

]T
·
[

D(j−1) + p(j) ·
[
p(j)

]T
]
·
[
L(j−1)

]
,

(19)

where
[
L(j−1)

]T
· p(j) = z[j] ∈ Rn×1. By computing the Cholesky decomposition of,

D(j−1) + p(j) ·
[
p(j)

]T
=
[
L̃(j−1)

]T
·D(j) ·

[
L̃(j−1)

]
, (20)

from Equation (19), Â(j) can be written as follows,

Â(j) =
[
L̃(j−1) · L(j−1)

]T
·D(j) ·

[
L̃(j−1) · L(j−1)

]
=
[
L(j)

]T
·D(j) ·

[
L(j)

]
,

where L(j) = L̃(j−1) · L(j−1) ∈ Rn×n. In Equation (20), the components of the factors L̃(j−1) and D̃(j)

can be easily computed from the elements of D(j−1) and p(j) based on the Dolittle’s method for matrix
factorization, it is enough to note that,{[

L̃(j−1)
]T
·D(j) ·

[
L̃(j−1)

]}
i,k

= δi,k ·
{

D(j−1)
}

i,i
+
{

p(j)
}

i
·
{

p(j)
}

k
,

from which, the next equations are then obtained,{
D(j)

}
n,n

=
[{

p(j)
}

n

]2
+
{

D(j−1)
}

n,n
, (21a)

{
L̃(j−1)

}
i,k

=
1{

D(j)
}

i,i

·

{p(j)
}

i
·
{

p(j)
}

k
− ∑

q∈P(i, r)

{
D(j)

}
q,q
·
{

L̃(j−1)
}

q,i
·
{

L̃(j−1)
}

q,k

 , (21b)

and {
D(j)

}
i,i
=
[{

p(j)
}

i

]2
+
{

D(j−1)
}

i,i
− ∑

q∈P(i, r)

{
D(j)

}
q,q
·
[{

L̃(j−1)
}

q,i

]2
, (21c)

for n− 1 ≥ i ≥ 1 and k ∈ P(i, r), where δi,j is the Kronecker delta function, and the diagonal elements
of L̃(j−1) are all ones. In Algorithm 1 the updating process for a column z[j] is detailed while the
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computations of factors L̂ and D̂ for Â−1 are shown in Algorithm 2. We also report an estimate of the
number of multiplications performed at each step of the proposed algorithms. ϕ denotes the maximum
number of predecessors across all model components. Typically, it will be a function of the radius of
influence r with ϕ� n. Note that, since the index k is constrained to the predecessors of component i,
the structure of L(j−1) is replicated in L̃(j−1) and therefore, the structure of L(j−1) is preserved in L(j).
Consequently, the sparsity pattern of L̂ equals that of L.

Algorithm 1 Rank-one update for the factors L(j−1) and D(j−1).

1: function UPD_CHOLESKY_FACTORS(L(j−1), D(j−1), z[j]) . COST

2: Compute p(j) from
[
L(j−1)

]T
· p(j) = z[j]. . O (ϕ · n)

3: Compute
{

D(j)
}

n,n
via Equation (21a). . O (1)

4: for i = n− 1→ 1 do . n− 1 times lines 5–9, O
(

ϕ2 · n
)

5: Set
{

L̃(j−1)
}

i,i
← 1. . O (1)

6: for k ∈ P(i, r) do . ϕ times line 7, O
(

ϕ2)
7: Compute

{
L̃(j−1)

}
i,k

according to (21b). . O (ϕ)

8: end for

9: Compute
{

D(j)
}

i,i
via Equation (21c). . O (ϕ)

10: end for

11: Set L(j) ← L̃(j−1) · L(j−1). . O
(

ϕ2 · n
)

12: return L(j), D(j)

13: end function

Algorithm 2 Computing the factors L̂ and D̂ of Â−1 = L̂T · D̂ · L̂.

1: function COMPUTE_ANALYSIS_FACTORS(L(0), D(0), H, R) . COST

2: Set Z← HT · R−1/2. . O (m · n)

3: for j = 1→ m do . m times line 4, O
(

ϕ2 ·m · n
)

4: Set [L(j), D(j)]← UPD_CHOLESKY_FACTORS
(

L(j−1), D(j−1), z[j]
)

. O
(

ϕ2 · n
)

5: end for

6: return L(m) as L̂, D(m) as D̂.

7: end function

3.3. Computational Cost of the Analysis Step

Once the Cholesky factors of the matrix (13) are estimated, the posterior state (14) can be computed
and the analysis ensemble (16) can be built. Putting it all together, the assimilation step of the P-EnKF
is detailed in Algorithm 3. Based on the Algorithms 1 and 2, it is clear that the computational effort of
the P-EnKF is,

O
(

ϕ2 ·m · n + ϕ2 · n
)

,
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which is linear with regard to the number of model components n and the number of observed
components from the model domain m. This computational effort obeys, mainly, to the special
structure of the Cholesky factors L(j) and L̃(j), for 1 ≤ j ≤ m, and how these structures can be exploited
in practice in order to reduce the overall computational effort of the analysis step, for instance,
the backward substitution in line 2 of Algorithm 1 can be efficiently performed as follows,{

p(j)
}

n−i+1
=
{

z[j]
}

n−i+1
− ∑

k∈P(i,r)

{
p(j)

}
k
·
{[

L(j−1)
]}

i,k
, for 1 ≤ i ≤ n ,

and therefore, the number of multiplications in this computation is bounded by O (ϕ · n) while the
matrix multiplication in line 11 can be performed as follows,{

L(j)
}

i,k
= ∑

q∈P(i,r)∩P(k,r)

{
L̃(j−1)

}
i,q
·
{

L(j−1)
}

q,k
, for 1 ≤ i ≤ n, and k ∈ P(i, r) ,

where, evidently, the maximum number of elements in P(i, r) ∩ P(k, r) is bounded by ϕ and therefore,
the total number of multiplications is bounded by O

(
ϕ2 · n

)
. Notice, since the matrices L(j) and L̃(j)

are sparse and lower triangular, their non-zero bands can be represented by one-dimensional arrays.
In this manner, for instance, the computations derived for the elements of L(j) and L̃(j) can be
performed on the elements of such vectors. Efficient matrix storage schemes are now proposed
by the literature [29,30] as well as scientific computational languages which exploit such structures
in order to speed-up matrix computations and to save memory usage [31]. From here, matrix-free
implementations of the P-EnKF can be easily derived in order to make it practical under operational
data assimilation settings.

Algorithm 3 Assimilation of observations via the posterior ensemble Kalman filter (16).

1: function ANALYSIS_P-ENKF(Xb, L, D , y, H, R) . Having, B̂−1 = LT ·D · L.

2: Set [L̂, D̂]← COMPUTE_ANALYSIS_FACTORS (L, D, H, R).

3: Compute xa according to Equation (14).

4: Compute the posterior ensemble Xa based on Equation (16).

5: return Xa.

6: end function

Readily, the computational effort of the P-EnKF-S is similar to that of the P-EnKF. We detail the
assimilation step of the P-EnKF-S in Algorithm 4.

Algorithm 4 Assimilation of observations via the posterior ensemble Kalman filter (17) .

1: function ANALYSIS_P-ENKF(Xb, L, D , y, H, R) . Having, B̂−1 = LT ·D · L.

2: Set [L̂, D̂]← COMPUTE_ANALYSIS_FACTORS (L, D, H, R).

3: Compute the posterior ensemble Xa based on Equation (17).

4: return Xa.

5: end function

3.4. Inflation Aspects

While localization methods reduce the impact of spurious correlations, covariance inflation
mitigates the impact of under-estimation of sample variances [32–35]. Typically, ensemble members
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are inflated prior the forecast step in order to enrich the background error information for the next
assimilation cycle and to reduce the odds of ensemble collapsing. For instance, after the assimilation
step of EnKF, the ensemble members (9a) are inflated by a factor of ρ > 1 about the analysis mean,

Xa,ρ = xa · 1T + ρ · ∆Xa ,

where ∆Xa = Xa − xa · 1T ∈ Rn×N are the innovations about the analysis mean. Thus, the (co)
variances in Pa are inflated by a factor of ρ2. This idea can be incorporated in the P-EnKF by noting that,
the estimated precision analysis covariance matrix can be inflated as follows,

ρ2 · Â⇔ 1
ρ2 · Â

−1 = L̂T ·
[

1
ρ2 · D̂

]
· L̂ ,

and therefore, the inflation can be performed before the analysis members are drawn from the
distribution (15),

Xa,ρ = xa · 1T + Ẑ ,

where Ẑ ∈ Rn×N is given by the solution of the sparse upper triangular system of equations,

L̂T ·
[

1
ρ
· D̂1/2

]
· Ẑ = E .

Recall that, the columns of matrix E are samples from a multivariate standard Normal distribution.
Note that, the use of covariance inflation does not increase the computational effort of the P-EnKF.
Similarly, inflation can be applied to the assimilation step in the P-EnKF-S formulation.

3.5. Main Differences Between the EnKF-MC, the P-EnKF, and the P-EnKF-S

In essence, the EnKF-MC, the P-EnKF, and the P-EnKF-S are stochastic filters based on a
modified Cholesky decomposition [11]. Nevertheless, the manner how they operate is quite different.
Consider again the analysis covariance matrix (13),

Â =
[
B̂−1 + HT · R−1 ·H

]−1
,

technically speaking, in the context of the EnKF-MC, the posterior ensemble is built by solving the
linear system of equations,

Â · Ẑ = ∆Y , with ∆Y = HT · R−1 ·
[
y · 1T + R1/2 · E−H · Xb

]
,

where the columns of E ∈ Rn×N follows a standard Normal distribution. Ẑ can be computed by using
the iterative Sherman Morrison formula [36] in order to avoid the direct inversion of Â while the trivial
linear system,

L̂T · D̂1/2 ·Va = E ,

is the one to solve in order to compute the analysis increments for the background members in
the P-EnKF formulation. Likewise, the linear system to solve in the P-EnKF-S case depends on the
Cholesky factors and the synthetic data (9b),

L̂T · D̂ · L̂ · V̂a = ∆Y ,
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whose solution can be obtained by using backward and forward substitutions. Yet another important
difference is that, in the P-EnKF, the computation of the posterior mode is similar to that of square root
filter formulations,

xa = xb + ∆xa , with L̂T · D̂ · L̂ · ∆xa = HT · R−1 ·
[
y−H

(
xb
)]

,

while the analysis mean,

xa =
1
N
·

N

∑
e=1

xa[e] ∈ Rn×1 ,

provides the estimator of xa in the EnKF-MC and the P-EnKF-S methods.

4. Experimental Results

In this section, we tests the proposed EnKF implementations and compare our results with those
obtained by the EnKF-MC and the LETKF implementations discussed in Section 2. We make use of
the Lorenz-96 model [37] as our surrogate model during the experiments. The Lorenz-96 model is
described by the following set of ordinary differential equations [38]:

dxj

dt
=


(x2 − xn−1) · xn − x1 + F for j = 1,(

xj+1 − xj−2
)
· xj−1 − xj + F for 2 ≤ j ≤ n− 1,

(x1 − xn−2) · xn−1 − xn + F for j = n,

(22)

where F is external force and n = 40 is the number of model components. Periodic boundary
conditions are assumed. When F = 8 units the model exhibits chaotic behavior, which makes it a
relevant surrogate problem for atmospheric dynamics [39,40]. A time unit in the Lorenz-96 represents
7 days in the atmosphere. The experimental settings are described below:

• An initial random solution is integrated over a long time period in order to obtain an initial
condition x∗−2 ∈ Rn×1 dynamically consistent with the model (22).

• A perturbed background solution x̃b
−2 is obtained at time t−2 by drawing a sample from the

Normal distribution,

x̃b
−2 ∼ N

(
x∗−2, 0.052 · I

)
,

this solution is then integrated for 10 time units (equivalent to 70 days in the atmosphere) in order
to obtain a background solution xb

−1 consistent with the numerical model.
• An initial perturbed ensemble is built about the background state by taking samples from

the distribution,

x̃b[ê]
−1 ∼ N

(
xb
−1, 0.052 · I

)
, for 1 ≤ ê ≤ N̂ ,

and in order to make them consistent with the model dynamics, the ensemble members are
propagated for 10 time units, from which the initial ensemble members xb[ê]

0 ∈ Rn×1 are obtained.

We create the initial pool X̂b0 of N̂ = 106 members.
• The assimilation window consists of M = 25 observations. These are taken every 3.5 days and

their error statistics are associated with the Gaussian distribution,

yk ∼ N
(

Hk · x∗k , 0.012 · I
)

, for 1 ≤ k ≤ M .
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where the number of observed components from the model space is m = 30. The components are
randomly chosen at the different assimilation steps. Thus, Hk is randomly formed at the different
assimilation cycles.

• Values of the inflation factor ρ are ranged in 1 ≤ ρ ≤ 1.1.
• We try different values for the radii of influence r, these range in 1 ≤ r ≤ 7.
• The ensemble size for the benchmarks is N = 20. These members are randomly chosen

from the pool X̂b0 for the different pairs (r, ρ) in order to form the initial ensemble Xb
0 for the

assimilation window. Evidently, Xb
0 ⊂ X̂b0.

• The assimilation steps are also performed by the EnKF with full size of X̂b0 in order to obtain a
reference solution regarding what to expect from the EnKF formulations. Note that, the ensemble
size is large enough in order to dissipate the impact of sampling errors. No inflation is needed
as well.

• The L-2 norm of the error is utilized as a measure of accuracy at the assimilation step p,

λp =

√[
x∗p − xa

p

]T
·
[
x∗p − xa

p

]
, (23)

where x∗p and xa
p are the reference and the analysis solutions, respectively.

• The Root-Mean-Square-Error (RMSE) is utilized as a measure of performance, in average, on a
given assimilation window,

ε =

√√√√ 1
M
·

M

∑
p=1

λ2
p .

In Figure 3, the results are shown in terms of L− 2 error norms and assimilation steps (p) for the
compared methods, we group the results by radius sizes. As can be seen, there are parameter values
for r and ρ in which the results proposed by the filters are comparable with those obtained by the
EnKF with a large ensemble size of N = 106. This supports the theory that, all filters can provide good
approximations of posterior states with just a few ensemble members. However, the performance of
the LETKF degrades as the radius size is increased, this can be explained as follows: in the LETKF,
local background error correlations are estimated based on a local ensemble covariance matrix,
therefore, sampling noise can easily impact the sample covariance matrix when the ensemble size is
not much larger than the number of components within the local boxes. Such cases are not evident in
the EnKF implementations based on a modified Cholesky decomposition. All these filters perform
remarkably well and in all cases, the initial error (uncertainty) is decreased. The importance of having
filters which are not so sensible to the parameters r and ρ is that, in practice, such parameters can
be hard to tune. Thus, one can prefer filter formulations whose accuracy is not highly impacted by
changes in those parameters.

We can analyze the results in terms of RMSE values as well. Those are reported in Figure 4.
Note that, as we mentioned before, the accuracy of the LETKF can be sensible to the radius size
regardless the inflation factor. After r = 3, the quality of the analysis obtained by this filter is clearly
affected by sampling errors. On the other hand, the proposed filters behave similarly to the EnKF-MC
since their background error correlations are estimated making use of the same estimator (12a).
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Figure 3. Experimental results with the Lorenz-96 model (22). The results are grouped by values of r.
inflation factors are ranged in 1 ≤ ρ ≤ 1.1 for each group.
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Figure 4. Experimental results with the Lorenz-96 model (22). The The Root-Mean-Square-Error
(RMSE) values are shown for the compared filter implementations for different values of r and ρ.
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5. Conclusions

This paper proposes a posterior ensemble Kalman filter based on a modified Cholesky
decomposition which works as follows: the precision matrix of the background error distribution
is estimated in terms of Cholesky factors via a modified Cholesky decomposition, these factors
are updated making use of a series of rank-one updates in order to estimate a precision matrix of
the posterior distribution. By using this matrix, the posterior mode of the error distribution can
be estimated. The posterior ensemble can be built by either sampling from the posterior distribution or
making use of synthetic data. Experimental tests are performed in order to assess the accuracy of the
proposed method as the inflation factor and the localization radius are varied. The numerical model
operator utilized during the experiments is the Lorenz-96 model. The results reveal that the accuracy
in terms of root-mean-square-error of the proposed methods are similar to that of the local ensemble
transform Kalman filter and even more, our results are comparable to those obtained by the EnKF with
large ensemble sizes.
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