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Abstract: Recently, we published two papers in this journal. One of the papers dealt with the action
of the radiation fields generated by a traveling-wave element and the other dealt with the momentum
transferred by the same radiation fields and their connection to the time energy uncertainty principle.
The traveling-wave element is defined as a conductor through which a current pulse propagates
with the speed of light in free space from one end of the conductor to the other without attenuation.
The goal of this letter is to combine the information provided in these two papers together and make
conclusive statements concerning the connection between the energy dissipated by the radiation fields,
the time energy uncertainty principle and the elementary charge. As we will show here, the results
presented in these two papers, when combined together, show that the time energy uncertainty
principle can be applied to the classical radiation emitted by a traveling-wave element and it results in
the prediction that the smallest charge associated with the current that can be detected using radiated
energy as a vehicle is on the order of the elementary charge. Based on the results, an expression for
the fine structure constant is obtained. This is the first time that an order of magnitude estimation of
the elementary charge based on electromagnetic radiation fields is obtained. Even though the results
obtained in this paper have to be considered as order of magnitude estimations, a strict interpretation
of the derived equations shows that the fine structure constant or the elementary charge may change
as the size or the age of the universe increases.

Keywords: traveling-wave element; radiation fields; momentum; action; elementary charge; time
energy uncertainty principle; fine structure constant; age of the universe

1. Introduction

In Smith [1], a traveling-wave element is defined as follows: it is a thin wire of length l through
which a current pulse travels with the speed of light in free space from one end to the other without
attenuation. When the current pulse reaches the end of the wire, it is absorbed at the termination
without reflection. The traveling-wave element, though with a reduced speed of current propagation,
had been utilized by lightning researchers for some time as a vehicle to extract lightning current
characteristics from the measured radiation fields [2]. It had also been utilized to study the effect of
the speed of propagation of the current pulse on the radiation fields. For example, when the speed
of propagation of the current pulse is less than the speed of light, the electric field generated by the
traveling-wave element consists of three terms, namely electrostatic, induction and radiation. As the
speed of the current pulse approaches the speed of light, the three terms merge into each other, making
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the total electric field pure radiation [3,4]. Furthermore, the electric fields of the traveling-wave element
reduce to dipole fields when the time variations of the current are much longer than the travel time of
the current from one end to the other [5]. Indeed, the traveling-wave element is a device that could be
used to study features of electromagnetic radiation under different conditions.

In two recent publications, Cooray and Cooray [6,7] (referred to as Paper 1 and Paper 2 from
here on) described the features of the radiation field generated by a traveling-wave element including
the action and the momentum transported by this field. Another goal of the study was to investigate
the features of radiation fields when the charge associated with the current pulse is reduced to its lower
limit, namely the elementary charge. In Paper 1 it was shown that the condition ∆U × τ ≥ h/4π leads
to the fact that q ≥ e where ∆U is the uncertainty in the radiated energy, τ is the effective duration
of the emission of radiation, q is the charge associated with the current pulse in the traveling-wave
element, h is the Plank constant and e is the elementary charge. The mathematical condition given
above is known in the literature as the time energy uncertainty principle. In Paper 2, by studying
the momentum of the radiation, it was shown that the condition ∆U × τ ≥ h/4π is indeed satisfied
by the emitted radiation. The results presented in Paper 1 were based purely on the numerical
solution of cumbersome equations for the energy and action pertinent to the radiation fields. However,
in Paper 2 these equations were reduced to simple analytical expressions that can be manipulated
rather conveniently. The goal of this Letter is to utilize these simple expressions together with the
ideas presented in Paper 1 to make a conclusion concerning the connection between the time energy
uncertainty principle and the elementary charge.

This Letter is constructed as follows. First, the equations which were derived in Paper 1
and Paper 2 on the energy and action transported by the radiation fields are presented. Second,
these equations are utilized to show how the action associated with radiation fields varies as a function
of the charge associated with the current and its possible limits. Third, the expression for the action is
combined with the theory outlined in Paper 2 to derive an expression for the minimum charge that
could be detected by the electromagnetic radiation fields. This section is followed by a discussion
and conclusions.

2. Analysis

2.1. Traveling-Wave Element

Expressions for the radiation fields generated by a traveling-wave element and various features
associated with those radiation fields are presented in Paper 1 and Paper 2. In these studies, the current
waveform associated with the traveling-wave element is represented by a Gaussian current pulse.
In the sections to follow, a description of this current waveform and expressions for the energy and
action associated with the radiation fields of the traveling-wave element are presented. It is important
to mention here that the expressions to be given for the radiation fields of a traveling-wave element
are valid when the effective wavelength associated with the time variation of the radiation emission is
much longer than the radius of the wire. Moreover, since they are radiation fields, the distance from
the center of the element to the point of observation, R, has to be much larger than the length of the
traveling-wave element [6,7]. Observe that similar constraints are applied when deriving expressions
for the electromagnetic fields generated by dipoles.

2.2. Current Waveform Associated with the Traveling-Wave Element

In Paper 1 and Paper 2, the current associated with the traveling-wave element is assumed to be
a Gaussian current pulse. It is represented mathematically by

i(t) = i0 exp
(
− t2

2σ2

)
(1)
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In the above equation, i0 is a constant and σ is the Gaussian RMS (Root Mean Square) width.
The total charge associated with this current pulse is given by

q = i0
∞w

−∞

e−t2/2σ2
dt (2)

After performing the integration, we find q = i0σ
√

2π. Observe that one can construct current
waveforms of different durations (i.e., having different values of σ) but having the same charge by
appropriately adjusting the product i0σ. In other words, the current waveform can be described
mathematically as

i(t) =
q

σ
√

2π
exp

(
− t2

2σ2

)
(3)

The current waveform given in Equation (3) is associated always with charge q irrespective of the
value of the parameter σ.

2.3. The Effective Duration of the Radiation Emission

As shown in Paper 1, the power emitted by the traveling-wave element has a temporal shape
corresponding to the square of the current waveform. Thus, the temporal variation of the power
emission by the radiation fields of the traveling-wave element has the form

W(t) ∼ e−t2/σ2
(4)

The effective duration τ of the energy emission (or power) is defined as the Full Width at Half
Maximum (FWHM) of the power curve as given in Equation (4). Since the FWHM of the power curve
is about 1.5 σ, one can write

τ = 1.5σ (5)

Thus, one can change the effective duration of the energy emission by changing the value of
σ of the current waveform. In order to make the analysis valid for current waveforms of different
durations, and hence for different FWHM values of the power curve, a parameter β is defined in
Paper 1 as follows:

τ = βl/c (6)

In the above equation, l is the length of the traveling-wave element and c is the speed of light.
According to this definition, β is equal to the ratio of the effective duration of the energy emission to
the time necessary for the current pulse to propagate across the length of the traveling-wave element.

2.4. The Energy Dissipated by the Traveling-Wave Element

In Paper 2 it was shown that the condition ∆U × τ ≥ h/4π is valid for the emitted radiation
only when β << 1. They also showed that the cumbersome expression for the energy dissipation,
which had to be solved numerically, reduces to a simple expression when β ≤ 10−6. That simple
expression will be utilized here. The expression for the total energy dissipated by the traveling-wave
element when β ≤ 10−6 is given by (this can be obtained by performing the integral in Equation (27)
of Paper 2)

U =
q2

4π3/2ε0cσ
ln

1
β

(7)

In the above equation, ε0 is the permittivity of the vacuum. Note that the energy emitted by the
radiation is both a function of charge and σ.
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2.5. The Action of the Radiation Fields of the Traveling-Wave Element

The action of the radiation field for β ≤ 10−6 is given in Paper 2 by

A = τ ×U =
τq2

4π3/2ε0cσ
ln

1
β

(8)

Substituting for τ from Equation (5), we obtain

A =
3q2

8π3/2ε0c
ln

1
β

(9)

Note that even though the energy emitted by the traveling-wave element depends directly on
both the charge and σ, the action depends only on the charge. Note also that the behavior of action is
different to the behavior of energy as 1/β increases. This difference is due to the fact that the energy is
directly proportional to 1/σ (which indeed is related to β through Equations (5) and (6)).

One can see from the expression given in Equation (9) that the action increases with increasing
1/β. So the upper limit of the value of the action corresponding to a given charge is decided by the
largest value of 1/β that can be achieved in nature. In order to study this further, let us investigate
more closely the physical meaning of the parameter β which is defined by Equation (6). As pointed
out in Paper 2, the effective frequency, νe f f , is given by

νe f f = 1/τ (10)

Recall that τ is the effective duration of the energy emission. With τ = 1.5σ, νe f f is at about 1%
spectral amplitude of the power spectrum. The above equation shows that β can be expressed as
a function of this effective frequency as

β = c/(νe f f l) (11)

If λe f f is the wavelength associated with this frequency, Equation (11) can also be written as

β = λe f f /l (12)

Using this expression for β in Equation (9), we obtain

A =
3q2

8π3/2ε0c
ln

l
λe f f

(13)

As we mentioned at the beginning of Section 2, the expressions for the electromagnetic fields,
and hence the expressions for energy and action, are valid when λe f f � a and R� l, where a is the
radius of the conductor and R is the distance to the point of observation or the radius of the sphere
over which the Poynting vector is integrated to obtain the energy. In order to satisfy these constraints,
let us set λe f f = ka and l = R/k with k ≈ 10. Thus, the upper bound of the action, denoted by Aub,
for a given length of the conductor and charge q is given by

Aub ≤
3q2

8π3/2ε0c
ln

l
ka

(14)

Note that we have replaced λe f f by ka because this is the ultimate lower bound for the effective
wavelength. This equation shows that for a given charge, the absolute maximum value of the action is
decided by the smallest radii and the longest length of the conductor that can be achieved in nature.
The maximum radius of the sphere that can be realized in nature is equal to the radius of the universe,
which is denoted here by lu. That is, the maximum value of R is equal to the radius of the universe
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and, therefore, the maximum value of l that can be plugged into the equation is lu/k. The smallest
radius of the conductor that can be realized in nature is the size of an atom. The size of an atom is
given approximately by the Bohr radius a0. Thus, the absolute maximum action, denoted by Amax,
that can be achieved in nature for a given charge satisfies the relation

Amax ≤
3q2

8π3/2ε0c
ln

lu
k2a0

(15)

If we substitute lu = 4.4 × 1026 m and a0 = 5.3 x 10−11 m we obtain lu/a0 = 0.83 × 1037, and for
the elementary charge (i.e., q = e) we obtain (Amax)e ≈ h/4π where h is the Planck constant. This fact,
namely that the action associated with the electromagnetic fields approaches h/4π when the charge in
the current is equal to the elementary charge, is pointed out in Paper 1. The differences in the results
presented here and in Paper 1 are due to the fact that the definition of τ was different in Paper 1,
i.e., τ = 4σ (full-width of the current) instead of τ = 1.5σ (half-width of the energy emission) used here.
The correct definition that should be used for τ became apparent from the research work presented in
Paper 2. This difference made the action for a given charge and 1/β larger by a factor 8/3 in Paper 1
in comparison to the results presented here. Moreover, since the equations were solved numerically,
the results presented in Paper 1 could not be extended for extremely high values of 1/β.

The interesting point here is that the action corresponding to q = e reduces to h/4π when the
extreme values of l and a are plugged into the equations. Observe that the above results are based
on pure classical electrodynamics. One can question whether the results are unique for dipole-like
structures represented by the traveling-wave element or whether the results obtained are general.
In order to answer this question, we analyzed the radiation fields generated by a bi-conical antenna,
another unit that is being used to study radiation fields both theoretically and practically [8], using
the same approach. Interestingly, similar results can be obtained when the length of the bi-conical
antenna reaches lu and when the maximum radius of the antenna is about a0 (i.e., tan α ≈ a0/lu where
α is the half-cone angle of the antenna). Let us now consider the possible physical interpretation of
these results.

3. Physical Interpretation and Discussion

In Paper 2 it was shown that the electromagnetic fields generated by the traveling-wave element
satisfy the inequality

τ × ∆U ≥ h/4π (16)

In the above equation, ∆U is the uncertainty associated with the energy measurement. The next
question is: what is the uncertainty in the energy measurement? We follow the argument introduced in
Paper 1 as follows. The parameter that can introduce uncertainty into the energy measurement is the
uncertainty in the charge associated with the current. Assume that the charge comes in elementary units
of, say, qmin. When the charge associated with the current pulse approaches this limit, the uncertainty
in the measurement of energy becomes comparable to the energy itself. Thus, the minimum uncertainty
associated with the energy measurement is given by

(∆U)min =
q2

min
4π3/2ε0cσ

ln
1
β

(17)

Since the minimum possible uncertainty for a given value of 1/β is given by Equation (17), one can
safely write Equation (16) as

τq2
min

4π3/2ε0cσ
ln

1
β
≥ h

4π
(18)
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Substituting for τ from Equation (5), we obtain

3q2
min

8π3/2ε0c
ln

1
β
≥ h

4π
(19)

From this, an expression for the minimum detectable charge can be obtained and it is given by

q2
min ≥

h
4π

8π3/2ε0c
3 ln 1

β

(20)

One can see from this expression that the minimum detectable charge qmin depends on the value
of 1/β and it decreases with increasing 1/β. Since the upper bound of this parameter is equal to
lu/k2a0, we can write

q2
min ≥

h
4π

8π3/2ε0c
3 ln lu

k2a0

(21)

Thus, the smallest detectable charge associated with the current in the traveling-wave element is
given by

qmin ≈ ±

√
2ε0
√

π

3
hc

ln (lu/k2a0)
(22)

If we substitute lu = 4.4 × 1026 m, a0 = 5.3 × 10−11 m and k = 10, we obtain

qmin ≈ ± 1.6× 10−19C (23)

This shows that the smallest detectable charge is almost equal to the elementary charge. Note that
the conditions used to derive this value are ideal but not practical. Under conditions related to practical
lengths and practical radii of conductors, the minimum detectable charge is much larger than the
elementary charge.

It is important to mention here that, due to the difference in the definition of τ, the charge
estimated in Paper 1 differs from the above by a factor of

√
8/3. However, even with this difference,

the estimated minimum charge is still on the order of the elementary charge. Another important
point pertinent to the analysis presented in this paper is the following. As mentioned previously,
the equations for the radiation fields used here are valid when the effective wavelength of the radiation
is much greater than the radius of the conductor. Of course, one can derive equations for the radiation
fields which are valid when the effective wavelength is less than the radius of the conductor. However,
due to phase differences at the point of observation associated with the radiation emanating from
different locations on the cross-section of the wire, the net energy emitted for a given charge would
be less in this case than when the wavelength is much larger than the cross-section of the wire where
the radiation fields coming from different locations on the cross-section of the wire are in phase at the
point of observation. Thus, the case studied here is the one that gives rise to the largest energy (and the
largest action) and the smallest detectable charge.

In the calculations presented in this paper we have considered ideal conditions by assuming
that the radiating system can be represented by a traveling-wave element. In reality, the current will
attenuate and disperse as it travels along a conductor and the radiation resistance and other dissipation
losses will make the speed of propagation less than the speed of light [1]. As mentioned in Paper 1,
these effects will reduce the energy dissipation for a given current signature and the effect of this is
to decrease the magnitude of the radiated energy and hence to increase the value of the minimum
charge estimated. Thus, the minimum charge estimated in this paper can be considered as the absolute
minimum that can be obtained under either ideal or real conditions.

Another point that one has to discuss concerning the analysis presented in this paper is the
following: Since we are considering atomic dimensions and electromagnetic waves with comparable
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wavelengths, the question arises as to the possible modification of the results due to quantum effects.
Observe that the minimum wavelength that is being considered in the paper is in the range of X-rays.
As far as the radiation from accelerating charges is concerned, the relativistic Larmor formula, which
is derived from classical electromagnetic theory [1], predicts correctly the radiation produced by
acceleration charges (synchrotron radiation) in the X-ray region. Thus, there is no reason to doubt
the validity of Maxwell’s equations and their solutions pertinent to accelerating charges at these
frequencies. Having said that, even if we have decreased the wavelength to the upper limit of radio
frequencies (i.e., 3000 GHz) in Equation (22) (i.e., replace ka with the wavelength corresponding to
3000 GHz), the minimum charge that we will obtain will still be on the order of the elementary charge
i.e., 1.2e. Actually, the main problem is that when we reduce the charge associated with the current
pulse to the elementary charge, we will not be able to neglect the grainy nature (or quantum nature)
of the electromagnetic radiation. This is the case because at high frequencies, the radiation may
consist of only a few photons and the actual structure of the energy dissipation may not adhere to
the smooth energy distribution predicted by the classical electrodynamics. In this situation, a single
experiment may not produce either the correct energy or the energy distribution in space as predicted
by Maxwell’s equations. In this case, the results obtained here have to be interpreted as resulting
from the average of a large number of identical experiments conducted with identical traveling-wave
elements. This indeed is the correspondence principle of Bohr [9]. As the number of experiments
approaches infinity, the average of the results reduces to the predictions based on classical equations.
A somewhat similar situation exists in the double slit experiment. If the experiment is conducted with
a single photon, one will find only a dot on the interference screen. However, if the same identical
experiment is repeated n times with identical photons, the interference pattern predicted by the
classical electrodynamics appears on the screen as n becomes very large.

The calculations presented in this paper were conducted for a Gaussian current pulse, which is
a symmetrical function. Analysis done with other monopolar transient current signatures such as
exponential and rectangular shapes shows that the Gaussian predicts the smallest charge provided
that the same relative spectral amplitude is used to define νe f f for other current wave-shapes.
This information when combined together with the results presented in this paper leads to the
following generalization. In nature there exists different types of radiators that launch electromagnetic
radiation into space. However, for a given current signature and a radiator length, the traveling-wave
element is the one that generates the maximum action and hence it is associated with the smallest
detectable charge. Based on this one can conclude that the smallest detectable charge associated with
any electromagnetic radiating system in nature is on the order of the elementary charge or larger.

It is interesting to observe that a strict interpretation of Equation (22) shows that the elementary
charge may decrease as the size of the universe increases. The question of whether the fundamental
constants of nature change as the universe ages was raised by Dirac [10] in a paper where, based on
the ratios of atomic and cosmological parameters expressed in natural atomic units, he suggested
that some of the universal constants must be regarded as parameters which vary with the size or the
age of the universe. While objecting to some of the suggestions made by Dirac, Teller [11] made the
suggestion that the fine structure constant α, which is given by e2/2ε0hc, is related to the logarithm of
the age of the universe when this age is expressed in natural time units. The fine structure constant
is the parameter that defines the strength of the electromagnetic force. Let us consider the equations
we have derived in this paper. Observe that the Bohr radius is the atomic unit of distance and the
quantity l/a0 in Equation (22) is the radius of the universe expressed in natural units. The fine structure
constant as predicted by Equation (22) is given by

αd =

√
π

3
1

ln (Ru/k2)
(24)

In the above equation, αd is the fine structure constant as predicted by Equation (22) and Ru is
the radius of the universe expressed in natural units (i.e., lu/a0). Equation (24) shows that the fine
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structure constant varies as the inverse of the logarithm of the radius of the universe. Since the size
of the universe is increasing with the age of the universe, Equation (24) is in agreement with the
suggestion made by Teller [11]. If we substitute the current value of the radius of the universe into the
above equation, we obtain

1
αd
≈ 136 (25)

The value obtained above is close (within 1%) to the experimentally established value. Note that
the results obtained in this paper would not change significantly even if we had assumed that k = 1.
Even though the results obtained here are interesting, it is important to point out that the discussion on
whether the fundamental constants of nature can change with the age of the universe is still going on
in the current literature and no conclusions on this topic can be made at the present time. On the other
hand, recall that the time energy uncertainty principle will give only an order of magnitude estimation
of the smallest detectable charge. Since the size of the universe appears inside the logarithmic term,
it has to change by many orders of magnitude to make a change in the order of magnitude of the
smallest detectable charge. Finally, it is important to stress that the calculations presented in this paper
are based purely on classical electrodynamics and these results motivate a thorough analysis of the
same problem using quantum electrodynamics.

4. Conclusions

In this Letter we have gathered together the information presented in the two papers published
previously in this journal by Cooray and Cooray [6,7] and utilized it to obtain an expression for the
minimum charge that could be detected by the radiation fields generated by a traveling-wave element.
The results confirm the previous assertion made in Paper 1 that the application of the time energy
uncertainty principle to the classical electromagnetic radiation leads to the conclusion that the smallest
detectable charge in nature is the elementary charge. Based on the results, an expression for the fine
structure constant is obtained and it agrees reasonably well with the experimentally obtained value.
This is the first time that an order of magnitude estimation of the elementary charge and the fine
structure constant based on electromagnetic radiation fields is obtained. Even though the results
obtained in this paper have to be considered as order of magnitude estimations, a strict interpretation
of the derived equations shows that the fine structure constant or the elementary charge is related to
the size or the age of the universe.
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