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Abstract: The partitioning of available energy into surface sensible and latent heat fluxes impacts 
the accuracy of simulated near surface temperature and humidity in numerical weather prediction 
models. This case study evaluates the performance of the Weather Research and Forecasting (WRF) 
model on the simulation of surface heat fluxes using field observations collected from a surface flux 
tower in Oregon, USA. Further, WRF-modeled heat flux sensitivities to North American Mesoscale 
(NAM) and North American Regional Reanalysis (NARR) large-scale input forcing datasets; U.S. 
Geological Survey (USGS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) land 
use datasets; Pleim-Xiu (PX) and Noah land surface models (LSM); Yonsei University (YSU) and 
Mellor-Yamada-Janjic (MYJ) planetary boundary layer (PBL) schemes using the Noah LSM; and 
Asymmetric Convective Model version 2 (ACM2) PBL scheme using PX LSM are investigated. The 
errors for simulating 2-m temperature, 2-m humidity, and 10-m wind speed were reduced on 
average when using NAM compared with NARR. Simulated friction velocity had a positive bias on 
average, with the YSU PBL scheme producing the largest overestimation in the innermost domain 
(0.5 km horizontal grid resolution). The simulated surface sensible heat flux had a similar temporal 
behavior as the observations but with a larger magnitude. The PX LSM produced lower and more 
reliable sensible heat fluxes compared with the Noah LSM. However, Noah latent heat fluxes were 
improved with a lower RMSE compared to PX, when NARR forcing data was used. Overall, these 
results suggest that there is not one WRF configuration that performs best for all the simulated 
variables (surface heat fluxes and meteorological variables) and situations (day and night). 

Keywords: surface heat fluxes; numerical weather prediction; land surface models; planetary 
boundary layer schemes; atmospheric boundary layer 

 

1. Introduction 

Surface fluxes serve as sinks or sources of energy, moisture, momentum, and atmospheric 
pollutants and significantly impact the formation and evolution of clouds, precipitation, and air 
pollution. Surface fluxes are crucial parameters for simulating convective mixing, boundary layer 
growth, and atmospheric transport [1]. The significance of land surface interactions with the 
atmosphere has been increasingly emphasized and investigated during numerical weather 
prediction (NWP) model (e.g., Weather Research and Forecasting (WRF) model) developments  
[2–5]. NWP models are subject to uncertainties in surface interaction parameterization, and 
parameter choice has significant effects on NWP outputs. For example, land surface model (LSM) 
selection was found to have large impacts on WRF simulation results during cold air pool events, 
since non-realistic representation of low-level jets could lead to errors in simulated temperature and 
humidity [6]. 



Atmosphere 2017, 8, 197  2 of 23 

 

Reanalysis datasets, including the North American Mesoscale (NAM) and North American 
Regional Reanalysis (NARR) datasets, are widely used in initializing and providing boundary 
conditions for NWP simulations. It is essential to use the most suitable reanalysis dataset to drive 
finer resolution simulations using NWP models. In one study, WRF simulations using NAM 
simulated more realistic heat deficit, defined as the amount of energy needed to mix the layer from 
the valley floor to ridge top dry adiabatically [7], than simulations using NARR [8]. Different 
reanalysis datasets also have different soil moisture values [9], which impact the simulated 
land-atmosphere interactions in NWP models. However, comparative studies between NAM and 
NARR in simulating surface turbulent fluxes using NWP models have not been conducted. 

Land surface characteristics influence atmospheric circulations and should be well-represented 
in NWP models. Updated land-use classifications aim to improve simulated surface heat fluxes and 
surface meteorology parameters [10]. Field experiments by LeMone, et al. [11] revealed that the 
horizontal distribution of surface heat fluxes was highly dependent on land-use category, with the 
maximum (minimum) sensible (latent) heat flux existing over areas of sporadic vegetation. In 
addition to surface heat fluxes, surface absorption of solar energy can be effected by the variation of 
vegetation cover. Therefore, it is of interest and importance to study the impacts of different land use 
datasets on NWP model performance. 

The following three physics subcomponents are used to model surface fluxes and turbulence 
quantities in NWP models: surface layer schemes, land surface models (LSMs), and planetary 
boundary layer (PBL) schemes. The surface layer schemes, coupled with the PBL schemes and LSMs, 
calculate the friction velocity and the exchange coefficient, which determines surface heat and 
moisture fluxes in the LSMs. The boundary conditions for the PBL scheme are derived from the 
LSMs. Note that specific LSMs and surface layer schemes are tied to specific PBL schemes in the 
NWP models. During WRF development, both the Noah LSM [12] and Pleim-Xiu (PX) LSM [13] 
were implemented in the WRF model to represent the land-atmosphere exchange processes. The 
Noah LSM has been widely applied in climate models [14] and can be coupled with the both the 
Yonsei University (YSU) [15] and Mellor-Yamada-Janjic (MYJ) [16] PBL schemes. The PX LSM, 
associated with the PX surface layer scheme and Asymmetric Convective Model of version 2 
(ACM2) PBL scheme, is commonly used with the Community Multiscale Air Quality (CMAQ) 
model, a chemical-transport model (CTM) [17]. The indirect soil temperature and moisture nudging 
scheme in PX LSM was implemented to improve the simulated near surface meteorological variables 
[18,19]. 

Previous studies have focused on evaluating and comparing LSM performances in simulating 
meteorological fields [17,20,21]. Miao, et al. [20] found large variability in simulated near-surface air 
temperature between Noah and PX LSMs when modeling urban heat islands. Studies on the 
inter-comparison of PBL schemes have also been conducted using NWP models [22–25], where 
non-local PBL schemes were found suitable for unstable conditions, and local turbulent kinetic 
energy (TKE) closure PBL schemes performed best under stable conditions. The PBL 
parameterizations, representing the kinematic and thermodynamic profiles in the lower 
troposphere, also impact the simulation of surface winds and temperature, low-level jets, and 
turbulence [26,27]. 

Note that even if the near surface meteorological fields are reasonably simulated, the modeled 
surface fluxes may not be well simulated [28]. This is, in part, due to the inability of the NWP 
turbulence parameterizations to capture the sub-grid scale turbulence in the atmosphere when using 
fine resolution, less than 1km horizontal grid spacing. This also poses a challenge when comparing 
measurements to the simulation results, where the measurement footprint varies with atmospheric 
stability and may quantify fluxes representative of an area with heterogeneous terrain and land 
cover. Extensive evaluation of WRF modeled surface heat fluxes over several different regions, using 
available observational turbulence data, contributes to improvements of understanding the 
limitations of modeling the land-atmosphere exchange in NWP models. The present study utilizes 
surface turbulent fluxes from field observations over rolling terrain for model evaluation and 
sensitivity testing of land surface processes in WRF simulations in non-flat, heterogeneous terrain. 
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The main objectives of this study are twofold. The first objective is to analyze the WRF uncertainties 
in simulating surface meteorological parameters and turbulent fluxes with fine grid resolutions by 
comparison with field observations. The second objective is to examine the sensitivity of the 
modeled surface fluxes to land-use datasets, large-scale input forcing data, LSMs, and PBL schemes. 
This evaluation is helpful for researchers that use the WRF model to simulate land-atmosphere 
interactions. Considering the costs of observations and field campaigns and that turbulent fluxes are 
not routine measurements, the data from the seven-day observation is valuable for investigating 
differences in model results. Additionally, it is becoming more common with computing advances 
to see higher resolution (i.e., less than 1–4 km horizontal grid spacing) mesoscale model simulations, 
where the sub-grid scale turbulence models were not designed for those resolutions. Since WRF 
simulations at high resolutions are time-consuming, case studies are a practical way to evaluate the 
model performance and investigate limitations in the model physics. 

2. Materials and Methods 

2.1. Observations 

The turbulence observation data (friction velocity, sensible heat flux, latent heat flux) used to 
evaluate model performance were collected in Echo, Oregon, USA (45°42′ N,119°24′ W), located in 
the Columbia Basin approximately 20 km south of the Columbia River in eastern Oregon. The region 
is characterized by rolling terrain downwind of the Cascade Range, and the surface flux tower was 
in farmland with several wind turbines (the surface flux tower was located upwind of turbines). 
Turbulence data were collected from 1500 LST 22 September to 0800 LST 28 September 2014. The 
surface below the flux tower was covered with dry shrubs (rangeland). The flux tower site had 
partly cloudy conditions from 22 to 25 September and was dominated by clear-sky conditions from 
26 September 2014 onward. There were light showers at approximately 1400 LST 25 September 2014. 

The turbulence data were measured using fast response 3-dimensional sonic anemometers 
(CSAT-3, Campbell Scientific, Logan, UT, USA) sampling at 10 Hz. Open-path infrared gas analyzers 
(EC150, Campbell Scientific) were used to measure water vapor at 10 Hz for the calculation of latent 
heat flux. Surface fluxes were calculated using the eddy covariance (EC) method. A detailed 
description of the EC method can be found in Foken, et al. [29]. The data quality control, sonic tilt 
correction methods, and data processing steps for this experiment can be found in Osibanjo [30]. The 
Techniques Development Lab (TDL) U.S. and Canada surface hourly observations dataset (ds472.0) 
[31] was used to evaluate the model performance for 2-m temperature (T2), 2-m humidity (Q2), and 
10-m wind speed (WS10). 

2.2. Model Configurations 

WRF (version 3.7.1) was configured with four two-way nested domains using horizontal 
resolutions of 13.5, 4.5, 1.5, and 0.5 km. Domain 1 covers the western part of North America (37–53° 
N, Figure 1). Domain 2 covers the states of Oregon, Washington, and western Idaho. The spatial 
distribution of land-use category and terrain height over the second domain is shown in Figure 1. 
The innermost domain (d04) is centered around the observation site and has an area of 11,608 km2 
with a 231 × 201 grid dimension. Inner domain boundary conditions were provided from the 
adjacent outer domain. The simulated friction velocity, sensible heat flux, and latent heat flux of the 
innermost domain were compared to the flux tower observations to ensure the benefit of high 
resolution model results. The second domain was used to study the WRF performance on 
simulations of surface meteorology variables (T2, Q2, and WS10) to ensure there were enough 
weather stations included for comparison (Table 2). The second domain was also used to study the 
spatial distribution of sensible and latent heat fluxes to include the land-use effects on the turbulent 
heat fluxes. The observation site was classified as dryland, cropland, and pasture in the U.S. 
Geological Survey (USGS) dataset and cropland in the Moderate Resolution Imaging 
Spectroradiometer (MODIS) dataset, with the dominant soil category as silt loam. The model was 
initialized at 0000 UTC 21 September 2014, where the first 32 h were considered as the model 



Atmosphere 2017, 8, 197  4 of 23 

 

spin-up period and removed from subsequent analyses. Forty-five vertical terrain-following levels, 
extending to 100 hPa, were employed in all domains with increased resolution in the lowest part of 
the boundary layer (i.e., nine layers below 1 km). The middle level of the lowest model layer height 
was 10.5 m above ground. A previous study found that the WRF model simulated surface 
meteorology parameters were not sensitive to the lowest model level height in unstable conditions 
and became sensitive when the lowest model height was below 40 m during stable conditions [32]. 

 
(a) 

 
(b) 

Figure 1. (a) WRF two-way nested model domain configuration with horizontal resolutions of 13.5, 
4.5, 1.5, and 0.5 km. (b) Terrain elevation and land-use categories (MODIS) in the second domain 
(d02). The MODIS land-use dataset includes 20 categories [33]. The dominant land-use categories in 
the second domain include forests (brown), shrub lands (light brown), and urban (light blue). The 
observation site is marked by the hollow circle. 

Four-dimensional data assimilation (FDDA) was applied to wind, moisture, and temperature in 
the outer two domains in all WRF runs except for one sensitivity run [NAM-ACM2-U(No-nudge)]. 
FDDA was implemented for horizontal wind components in all layers and for temperature and 
water vapor mixing ratio at the surface and above the PBL. The National Centers for Environmental 
Prediction (NCEP) Administrative Data Processing (ADP) Global Surface Observational Weather 
Data (ds461.0) and Upper Air Observational Weather Data (ds351.0) with 6-hourly temporal 
resolution were used for FDDA. The objective analysis tool Obsgrid [34] was used to enhance the 
FDDA analysis using the observation datasets mentioned above and to provide the data 
(combination of observations and re-analysis data for air T and Q) used for the indirect soil nudging 
scheme in PX LSM [17].  

Different land-use datasets can cause solar energy absorption variations, leading to simulation 
discrepancies of meteorological conditions, including surface fluxes and PBL processes. Therefore, 
USGS and MODIS land-use datasets were used in the simulations to investigate land-use impacts on 
the WRF model performance (NAM-ACM2-U and NAM-ACM2-M). Updated land-use datasets can 
be beneficial to NWP model accuracy. USGS and MODIS were chosen because they are two 
widely-used land-use datasets in WRF (NAM-ACM2-U and NAM-ACM2-M). The USGS dataset 
was collected from 1992 to 1993. The MODIS dataset is a satellite product and represents land use in 
2004 [35]. Both rely on lookup tables for the land use information and do not offer dynamic land use 
information to model the land surface processes.  

Mesoscale climate models are sensitive to large-scale input forcing fields [36]. Hence, NAM and 
NARR datasets were used for model initial and boundary conditions and their corresponding 
simulation results were compared. Large-scale forcing datasets with higher spatial resolution are 
expected to produce more realistic meteorology variables in NWP models. NAM-ACM2-U and 
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NARR-ACM2-U were designed to test the WRF sensitivity to NAM (12 km, 6 h) and NARR (32 km, 3 
h) datasets.  

The LSMs calculate the surface fluxes in models with exchange coefficients from surface layer 
schemes, and Noah LSM and PX LSM were investigated in this study. Correspondingly, WRF was 
run with three different PBL schemes (ACM2, YSU, and MYJ), which were coupled with the proper 
LSM, to study the features of PBL physics influence on WRF results. ACM2 was coupled with the PX 
LSM and YSU and MYJ were both coupled with the Noah LSM. The PX LSM, because of the indirect 
soil temperature and moisture nudging schemes, is expected to perform better than other LSMs. The 
PX LSM soil nudging was applied in the outer two domains. NAM-ACM2-M, NAM-YSU-M, and 
NAM-MYJ-M were conducted to compare the PX LSM and the Noah LSM performances, as well as 
the PBL scheme performances (ACM2, YSU, and MYJ).  

Initially, only six model configurations were selected to examine the sensitivity of large-scale 
forcing datasets and PBL schemes. However, after analyzing the results it became clear that the 
NARR data had significant impacts on the surface flux results and therefore two additional 
simulations were added to the experiment to compare the NARR results paired with the MYJ and 
YSU PBL schemes with the ACM2 PBL results. Therefore, eight WRF scenarios in total were 
designed to conduct the sensitivity experiments, denoted as NAM-ACM2-U(No-nudge), 
NAM-ACM2-U, NARR-ACM2-U, NAM-ACM2-M, NAM-YSU-M, NAM-MYJ-M, NARR-YSU-M, 
and NARR-MYJ-M. The details for each scenario are summarized in Table 1. The common set of 
other physics options in the sensitivity experiments includes the Morrison double-moment scheme 
for microphysics [37], Rapid Radiative Transfer Model longwave radiation scheme [38], Dudhia 
shortwave radiation scheme [39], and the Kain-Fritsch scheme for cumulus parameterization [40]. 

Table 1. Summary of physics options, large-scale forcing datasets, and land-use classification 
datasets used in the WRF (version 3.7.1) sensitivity study. 

Experiment 
Input Forcing Data  

(Resolution, 
Interval) 

Land Surface 
Model 

Planetary 
Boundary Layer 

Scheme 

Surface Layer 
Scheme 

Land Surface 
INPUT Data 

NAM-ACM2-U 
(No-nudge) 

NAM (12km, 6 h) 1 Pleim-Xiu ACM2 2 
Pleim-Xiu  

Surface layer 
USGS 3 

NAM-ACM2-U NAM (12km, 6 h) Pleim-Xiu ACM2 
Pleim-Xiu  

Surface layer 
USGS 

NARR-ACM2-U NARR (32km, 3 h) 4 Pleim-Xiu ACM2 
Pleim-Xiu  

Surface layer 
USGS 

NAM-ACM2-M NAM (12 km, 6 h) Pleim-Xiu ACM2 
Pleim-Xiu  

Surface layer 
MODIS 5 

NAM-YSU-M NAM (12 km, 6 h) Noah YSU 6 
Revised MM5 

Similarity 
MODIS 

NAM-MYJ-M NAM (12 km, 6 h) Noah MYJ 7 Eta similarity MODIS 

NARR-YSU-M NARR (32 km, 3 h) Noah YSU 
Revised MM5 

Similarity 
MODIS 

NARR-MYJ-M NARR (32 km, 3 h) Noah MYJ Eta similarity MODIS 
1 North American Mesoscale dataset; 2 Asymmetric Convective Model, version2; 3 U.S. Geological 
Survey dataset; 4 NCEP North American Regional Reanalysis dataset; 5 Moderate Resolution Imaging 
Spectroradiometer dataset; 6 Yonsei University boundary scheme; 7 Mellor-Yamada-Janjic boundary 
layer scheme. 

Different from the observation data, where the friction velocity and sensible and latent heat 
fluxes are directly quantified using the EC method, the WRF model relies on parameterizations to 
simulate these turbulence variables. Specifically, surface layer schemes are based on 
Monin-Obukhov similarity theory (MOST), from which the transfer coefficients of momentum, heat, 
and moisture are calculated. For example, PX, revised MM5-similarity, and Eta similarity surface 
layer schemes all employ Monin-Obukhov similarity theory, and details on scheme development 
can be found in Pleim [41], Jiménez and Dudhia [42], and Janjić [43], respectively. The surface 
meteorological parameters at their routine observation heights, such as T2, Q2, and WS10, are 
calculated using similarity theory [44]. WRF simulated friction velocity ( ∗) is formulated as: 
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∗ = − ,  (1) 

where k is the von Kármán constant, L is the Monin-Obukhov length scale,  represents the 
roughness height, z denotes the height above the ground,  is the function for stability correction 
[45], and U is the wind speed in the lower layer. 

Surface heat fluxes, sensible heat flux (H) and latent heat flux (LH), are calculated in the LSM as: H = −ρ ( − ) (2) LH = λE (3) 

where ρ is the air density, cp is the specific heat of air at constant pressure, and U is the wind speed. θ 
is the potential temperature and q represents the humidity. The subscripts a and g stand for the first 
model layer and ground surface, respectively. Ch represents the transfer coefficient of heat. The 
exchange coefficient directly impacts the coupling strength of the land and atmosphere interactions 
in WRF [14]; λ is the latent heat of evaporation of water. E is evapotranspiration, which relies on 
parametrizations of soil moisture and stomatal resistance [13,34]. Details on the difference between 
Noah and PX LSM can be found in Miao, Chen and Borne [20]. 

2.3. Evaluation Methods 

The METSTAT program [46] was used to evaluate the model performance in simulating T2, Q2, 
WS10, and 10-m wind direction (WD10) with the TDL datasets. Mean bias (MB), root mean square 
error (RMSE), and index of agreement (IOA) [47] were calculated: 

= 1 ( − ) (4) 

= 1− 1 ( − ) /
 (5) 

IOA = 1 − ( − ) / (| − | + | − |)  (6) 

where N is the total sampling number over space and time; i is each grid point; P and O represent 
predicted and observed value, respectively. The range of values for IOA is 0 to 1, where 1 implies 
perfect agreement. These evaluation metrics were chosen because they are commonly used statistical 
metrics in NWP model performance evaluation [48]. METSTAT was run for the second domain (4.5 
km resolution) to increase the number of measurement locations in the TDL dataset for the statistical 
evaluation compared to the inner two domains. Measurements from 72 surface observation sites 
from the TDL dataset were available in the second domain for evaluation. 

Mean absolute error (MAE) is also used to describe the average difference between simulated 
and observed friction velocity and sensible and latent heat fluxes: 

MAE = 1 | − | (7) 

The MAE, rather than the IOA, is used here because of MAE’s greater sensitivity to model 
errors in simulating the turbulence variables in our case study. The i is each time stamp. In Equation 
(7), the predicted value (P) is the WRF results of the nearest grid point to the flux tower in the 
innermost domain. The observed value (O) is the turbulence data measured by the flux tower. 

3. Results 

3.1. Surface Meteorological Variables 
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Table 2 provides the summary of the statistical results (MB, RMSE, and IOA) for the simulated 
surface meteorological variables from the eight WRF sensitivity experiments for the second domain 
from 22 to 28 September. The mean observational values of T2, Q2, and WS10 from TDL datasets 
were 289.26 K, 8.36 g kg−1, and 3.22 m s−1, respectively. The MB indicates that all scenarios exhibited a 
warm bias for T2, an over-prediction for Q2 (except for NARR-YSU-M), and an under-prediction for 
WS10 on average. The MB for WD10 ranged from 4.39 to 8.27 degrees for the WRF simulations. The 
average IOA of WRF simulations was highest for T2 (0.94) and lowest for WS10 (0.68). For the FDDA 
sensitivity testing, NAM-ACM2-U had obvious improvements in simulated T2, Q2, and WS10 with 
reduced RMSE and increased IOA compared to NAM-ACM2-U (No-nudge). 
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Table 2. Daily statistical metrics for the simulated surface meteorological variables from the eight WRF scenarios in the second domain (4.5 km horizontal resolution) 
using 72 surface observation locations from 22 September to 28 September 2014. Standard deviations of the metrics are included in parentheses. The lowest RMSEs are 
marked as bold. 

 
NAM-  

ACM2-U 
(No-nudge) 

NAM-  
ACM2-U 

NARR-  
ACM2-U 

NAM-  
ACM2-M 

NAM-  
YSU-M 

NAM-  
MYJ-M 

NARR-  
YSU-M 

NARR-  
MYJ-M 

2-m Temperature (K)  
MB 0.08 (±0.59) 0.06 (±0.35) 0.01 (±0.33) 0.15 (±0.38) 0.27 (±0.18) 0.64 (±0.16) 0.85 (±0.21) 1.31 (±0.18) 

RMSE 2.13 (±0.40) 1.69 (±0.20) 1.87 (±0.19) 1.80 (±0.22) 1.81 (±0.20) 1.80 (±0.17) 2.18 (±0.17) 2.28 (±0.19) 
IOA 0.91 (±0.02) 0.95 (±0.01) 0.95 (±0.01) 0.95 (±0.01) 0.95 (±0.01) 0.95 (±0.01) 0.93 (±0.01) 0.92 (±0.01) 

2-m Humidity (g kg−1)  
MB 0.54 (±0.30) 0.56 (±0.11) 0.40 (±0.11) 0.61 (±0.15) 0.16 (±0.11) 0.32 (±0.12) −0.05 (±0.14) 0.15 (±0.12) 

RMSE 1.30 (±0.25) 0.99 (±0.12) 0.91 (±0.14) 1.08 (±0.13) 0.83 (±0.14) 0.86 (±0.11) 0.93 (±0.14) 0.89 (±0.09) 
IOA 0.75 (±0.12) 0.87 (±0.04) 0.88 (±0.04) 0.84 (±0.04) 0.90 (±0.04) 0.90 (±0.03) 0.87 (±0.04) 0.88 (±0.33) 

10-m Wind Speed (m s−1)  
MB −0.04 (±0.33) −0.67 (±0.13) −0.61 (±0.11) −0.74 (±0.16) −0.63 (±0.15) −0.15 (±0.15) −0.53 (±0.12) −0.03 (±0.21) 

RMSE 1.80 (±0.19) 1.56 (±0.16) 1.61 (±0.14) 1.64 (±0.18) 1.59 (±0.16) 1.60 (±0.16) 1.75 (±0.19) 1.87 (±0.26) 
IOA 0.66 (±0.07) 0.72 (±0.06) 0.69 (±0.06) 0.69 (±0.07) 0.71 (±0.06) 0.74 (±0.06) 0.62 (±0.08) 0.64 (±0.09) 

10-m Wind Direction (deg)  
MB 8.27 (±4.87) 4.54 (±2.83) 7.01 (±1.85) 4.45 (±3.17) 5.28 (±4.00) 4.39 (±3.82) 7.19 (±4.27) 5.36 (±4.24) 

RMSE N/A1 N/A N/A N/A  N/A N/A N/A N/A 
IOA N/A N/A N/A N/A N/A N/A N/A N/A 

1 N/A indicates non-available. 
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3.1.1. Surface Temperature 

The ACM2 with nudging case (NAM-ACM2-U) improved model performance for T2 by 
producing a lower RMSE than NAM-ACM2-U(No-nudge) by 21%, which is consistent with Otte [49] 
who found that FDDA improves meteorological simulations. All scenarios with nudging produced a 
warm bias during the daytime and a cold bias at nighttime, except for the cases of NARR-YSU-M 
and NARR-MYJ-M. Overall, T2 was overestimated in these two cases, where NARR-MYJ-M 
produced the largest mean bias for T2 among the runs (Table 2). The NAM forcing dataset 
performed better than NARR for T2 with a 16% lower RMSE and 2% higher IOA on average. 
Compared with the NAM-ACM2-U experiment, the NAM-ACM2-U(No-nudge) RMSE was higher 
by 26%, NARR-ACM2-U RMSE was higher by 11%, and NAM-ACM2-M RMSE was higher by 6%. 
The RMSEs and IOAs were similar among the PBL comparison scenarios for NAM-ACM2-M, 
NAM-YSU-M, and NAM-MYJ-M. Overall, NAM-ACM2-U performed best in simulating T2 and had 
the lowest RMSE and highest IOA. 

Analysis of the average hourly variation of MB indicated that the NAM-ACM2-U(No-nudge) 
experiment was out of phase with the other scenarios (Figure 2), which all had the largest 
over-predictions during daytime at around 1000 LST, indicating a time dependence of the MB. The 
averaged diurnal variation of T2 bias showed that NARR-MYJ-M had the least agreement with T2, 
excluding the NAM-ACM2-U(No-nudge) experiment. NARR-MYJ-M produced the largest warm 
bias (2.45 K) at 1000 LST, which was consistent with it having the second highest RMSE in Table 2. 
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Figure 2. Hourly time variation of (a) 2-m temperature (T2) bias, (b) 2-m water vapor mixing ratio 
(Q2), and (c) 10-m wind speed (WS10) averaged over the 72 sites compared with surface TDL 
datasets. 

3.1.2. Surface Water Vapor Mixing Ratio 

In terms of MB, all WRF scenarios overestimated Q2 by approximately 0.16 to 0.61 g kg−1, except 
for NARR-YSU-M (Figure 2). The RMSE ranged from 0.83 to 0.99 g kg−1 except in 
NAM-ACM2-U(No-nudge) case, which had the largest RMSE (1.30 g kg−1). The mean hourly 
variations of MB were similar in all scenarios, exhibiting over prediction for Q2 with a peak value 
(average of 1.03 g kg−1) at around 1600 LST, except for NAM-YSU-M. The comparison showed that 
the maximum differences among the simulations were during the daytime, which was also found in 
Hariprasad, et al. [50]. It is noteworthy that even though NARR has coarser spatial resolution 
compared with NAM, it has finer temporal resolution (3 h). The MODIS land-use dataset did not 
improve Q2 statistics in terms of RMSE and IOA. The YSU PBL scheme coupled with Noah LSM 
(NAM-YSU-M) outperformed the other scenarios in simulating Q2. 

3.1.3. 10-m Wind Speed 

All simulations were in phase with each other and showed a consistent underestimation of 
WS10 during nighttime (Figure 2). The average daily variation of WS10 from 22 to 28 September 
exhibited an over-estimation of wind speed for MYJ PBL schemes (NAM-MYJ-M and 
NARR-MYJ-M) between 1000 LST and 1600 LST with a maximum bias of 0.8 m s−1. Simulated WS10 
from ACM2 and YSU PBL schemes was smaller and closer to observations compared with MYJ. This 
indicates that the non-local PBL schemes (ACM2 and YSU) produced more realistic surface winds 
under unstable conditions in the daytime compared with the local scheme (MYJ). The local closure 
PBL scheme suffers from over-simplification of representing the vertical turbulent mixing by the 
large eddies in the PBL and thus underperforms compared to the non-local schemes during 
convective conditions. NAM-ACM2-U produced the lowest RMSE (1.56) and NAM-MYJ-M had the 
highest IOA (0.74) among all the scenarios. The statistics showed that in comparison with NARR 
cases, WRF runs using the NAM input forcing data with a finer spatial resolution (12 km) had better 
agreement with WS10 observations. This is consistent with the result from Lu and Zhong [8] when 
modeling a persistent cold air pool event in Utah. 

3.2. Turbulence Data 

3.2.1. Temporal Variation of Surface Fluxes 

Simulated friction velocity (u*), sensible heat flux, and latent heat flux from the eight WRF 
scenarios were compared at the nearest grid to the flux tower observation site (Figure 3). 
Observations are also presented for comparison. Mean u* measured from the flux tower during the 
observation period was 0.18 m s−1, with peak values observed in the daytime. Simulated u* was 
overpredicted in all WRF scenarios by 0.04 m s−1 on average (Table 3), among which NAM-YSU-M 
overestimated it to the largest degree (40%). The simulated u* from WRF is calculated from wind 
speed and stability functions in the surface layer schemes. Since simulated near surface wind speed 
during the observation period was underestimated in NAM-YSU-M (Figure 2), this overestimation 
of u* is related to the MOST scaling being used to derive the stability functions and the corrected 
stability functions in the revised MM5 surface layer scheme which is tied to the YSU PBL scheme. 
NAM-MYJ-M performed better for u* than NAM-YSU-M in terms of RMSE, although with similar 
temporal variability. This is consistent with the case study on turbulent flow parameters in a dry 
convective boundary layer using WRF by Gibbs, Fedorovich and Eijk [3]. NARR outperformed 
NAM in simulating u* with 14% lower RMSE and 15% lower MAE. Considering the higher RMSE 
using NARR in simulating WS10 (Table 2), this preference of NARR in simulating u* might be a 
coincidence. NARR-MYJ-M performed best among the WRF scenarios with the lowest RMSE and 
MAE. The u* for the NAM-ACM2-U and NAM-ACM2-M cases exhibited almost the same temporal 
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variation and magnitude, indicating that land-use datasets had a negligible influence on the 
simulation of the surface layer shear stress at the flux tower site. 

(a) 

(b) 

(c) 
Figure 3. Hourly time evolution of (a) friction velocity, (b) sensible heat flux, and (c) latent heat flux 
simulated at the flux tower site in the innermost domain (0.5 km resolution) with observational data 
for 22 to 28 September. 

The temporal variations of sensible heat fluxes were similar in all WRF scenarios and the 
observational dataset (Figure 3), except that on average the value simulated by WRF was up to two 
times larger than the observations (NARR-YSU-M). The sensible heat flux simulated by WRF was as 
large as 322.7 W m−2 (from NAM-YSU-M), where the largest observed value was 175.1 W m−2. 
Simulation discrepancies among the WRF scenarios were largest during the time period associated 
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with peak solar heating. NAM-ACM2-M produced smaller sensible heat fluxes, which was closer to 
observations compared with NAM-YSU-M and NAM-MYJ-M. This can be attributed to the indirect 
nudging for temperature in the PX LSM used in NAM-ACM2-M. The lower positive bias of T2 in 
NAM-ACM2-M (Table 2) was related to the reduced sensible heat flux compared with NAM-YSU-M 
and NAM-MYJ-M. The value of sensible heat flux from NAM-MYJ-M was up to two times larger 
than that from NAM-ACM2-M. NAM-ACM2-U simulated the lowest peak value of sensible heat 
flux of all cases and showed better performance in simulated sensible heat flux than NARR-ACM2-U 
based on a smaller RMSE (Table 3), indicating improvement by using NAM versus NARR. The same 
conclusion could also be made based on the Noah LSM cases (NAM-YSU-M and NARR-YSU-M, 
NAM-MYJ-M and NARR-MYJ-M). The NAM-YSU-M and NAM-MYJ-M scenarios used the same 
Noah LSM, suggesting that the only difference between them was the PBL and surface layer scheme. 
Sensible heat flux simulated using NAM-YSU-M showed less agreement with observations than that 
from NAM-MYJ-M. There was increased soil moisture when there was watering for irrigated 
farmland nearby at around 0800 LST 24 September and around 1400 LST on 25 September, which 
was not reflected in the NAM or NARR initialization data, or simulated by the WRF model. Thus, 
less surface available energy would be partitioned into sensible heat flux due to irrigation. This 
could somehow contribute to the overestimation by WRF results compared to observations, and will 
be further investigated by comparing the simulated and observed latent heat fluxes. 

The PX LSM was expected to produce better simulations of latent heat flux due to its soil 
moisture nudging. The runs with the ACM2 PBL scheme using NAM, though with positive bias, 
captured the daily variation of the latent heat flux. However, during the daytime (0600 LST~1800 
LST), the scenarios using the PX LSM produced higher latent heat flux values than the observations 
by 46.1 W m−2 on average, with differences as large as 285.4 W m−2 (Figure 3). The overestimations of 
the latent heat flux in runs using PX LSM reached their peak at around 1200 LST 26 September and 
were much larger than other time periods. Latent heat flux was underestimated by 28.1 W m−2 in 
Noah LSM cases using the NAM dataset (NAM-YSU-M and NAM-MYJ-M) and was less consistent 
with the temporal variation patterns of the observed fluxes than those using the PX LSM. The WRF 
cases using NARR produced more realistic latent heat fluxes than cases using NAM, with a 27% 
lower RMSE and 19% lower MAE on average. Noah latent heat fluxes were improved with a 57% 
lower RMSE compared to Pleim-Xiu, when NARR forcing data was used. The better performance of 
Noah LSM in simulating latent heat flux is expected considering its better performance in simulating 
Q2 (Table 2). This indicates that the soil moisture nudging in PX LSM is not as effective as its soil 
temperature nudging. This was also found by Gibbs, Fedorovich and Eijk [3], where soil moisture 
simulated by the Noah LSM was in better agreement with observations compared to the PX LSM in a 
case study over the Great Plains. It was found that NAM-ACM2-M produced more realistic latent 
heat fluxes than NAM-ACM2-U in terms of RMSE (Table 3). 

Table 3. Statistics of predicted surface turbulent variables for all schemes compared with 
observations. Predicted values are from the domain with the finest grid resolution (0.5 km). 

Experiment 
Friction Velocity 

(m s−1) 
Sensible Heat Flux 

(W m−2) 
Latent Heat Flux 

(W m−2) 
RMSE1 MB2 MAE3 RMSE MB MAE RMSE MB MAE

NAM-ACM2-U  
(No-nudge) 

0.15 0.03 0.12 27.51 −3.18 19.03 46.12 18.15 26.06 

NAM-ACM2-U 0.15 0.04 0.12 34.22 −0.95 21.04 55.73 24.44 30.47 
NARR-ACM2-U 0.14 0.06 0.11 38.83 13.25 22.32 47.88 23.24 29.52 
NAM-ACM2-M 0.16 0.04 0.12 34.59 −0.26 21.45 48.01 21.07 27.07 
NAM-YSU-M 0.17 0.07 0.14 54.56 18.86 30.96 30.99 −16.92 18.41 
NAM-MYJ-M 0.16 0.07 0.12 49.72 11.45 29.90 30.54 −15.84 18.08 
NARR-YSU-M 0.14 0.02 0.11 59.25 27.68 33.61 20.63 −8.53 13.09 
NARR-MYJ-M 0.13 0.03 0.10 60.17 21.61 33.90 20.60 −4.37 13.40 

1 Root mean square error; 2 Mean bias; 3 Mean absolute error.  
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3.2.2. Spatial Variation of Surface Fluxes 

The average spatial variations of simulated sensible and latent heat fluxes in the daytime and 
nighttime were analyzed for the second domain to examine the differences induced by land-use 
datasets, large-scale forcing datasets, LSMs, and PBL schemes regionally (Figure 4). In the daytime, 
the maximum values of sensible heat flux occurred for the NARR-MYJ-M case in the western part of 
Oregon. In comparison with the nudging case of NAM-ACM2-U, the NAM-ACM2-U(No-nudge) 
predicted higher sensible heat flux, especially in central Oregon. It was evident here that the NARR 
cases produced higher sensible heat fluxes than the NAM cases. The MYJ PBL scheme produced 
higher sensible heat flux than the YSU and ACM2, especially over southeast Washington. The PX 
LSM runs produced lower minimum sensible heat fluxes over north-central Washington than 
scenarios run with Noah LSM. During nighttime, the non-local YSU PBL scheme predicted higher 
sensible heat fluxes than the MYJ and ACM2. 

(a) 

(b) 
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(c) 

(d) 
Figure 4. Averaged simulated (a) daytime sensible heat flux, (b) nighttime sensible heat flux, (c) 
daytime latent heat flux, and (d) nighttime latent heat flux in the second domain (4.5 km resolution) 
from the eight different WRF scenarios over the observation time period. 

Figure 4 suggests that the latent heat flux distribution pattern in the daytime was impacted by 
the land-use distribution seen in Figure 1. Higher values of latent heat flux were present over the 
areas dominated by several kinds of forests, contributing to more surface energy being partitioned 
into evaporation and transpiration. This was also shown by LeMone et al. [11] where the maximum 
observed latent heat flux was over areas with green vegetation. Spatial variation of the predicted top 
layer soil moisture from the eight WRF experiments also influenced surface heat fluxes, where larger 
latent heat fluxes occurred in areas with higher soil moisture. Simulated latent heat fluxes from 
NAM-YSU-M were the smallest among the WRF experiments, in contrast to the largest value from 
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NARR-ACM2-U. The scenario using the MODIS land-use dataset (NAM-ACM2-M) produced 
almost identical latent heat flux spatial distributions and magnitudes to the scenario using USGS 
(NAM-ACM2-U), but predicted slightly higher mean latent heat fluxes over northeastern Oregon. 
Latent heat fluxes from NARR cases run with Noah LSM were mostly higher over forested areas 
than heat fluxes from NAM cases. While NARR-ACM2-U produced larger latent heat fluxes than 
NAM-ACM2-U over nearly the whole domain. It was found that latent heat fluxes simulated by 
NAM-MYJ-M were about twice the value of those using NAM-YSU-M for forested areas. At the 
nighttime, the impacts of land use distribution on latent heat flux distribution were not as significant 
as the daytime. The ACM2 PBL scheme produced higher latent heat fluxes than the YSU and MYJ for 
both the daytime and nighttime. Future studies should investigate the spatial variability of the 
surface fluxes using multiple flux towers to determine the impact of land cover type. 

3.3. Vertical Structure 

The simulated PBL heights and vertical profiles of potential temperature and moisture were 
compared to further examine the influence of land-use datasets, large-scale forcing datasets, LSMs, 
and PBL schemes on vertical turbulence. In WRF, the PBL height is calculated using different 
methods for each PBL scheme. Since simulated PBL height variations may arise from the different 
calculation methods in each of the PBL schemes [48], a unified method of calculating the PBL height 
is more valuable for comparing model results. The bulk Richardson number (Rib) method defines the 
PBL height as the level at which the Rib reaches a critical value. The Rib is calculated as follows Ri = ( / )( − )( − )( − )  (8) 

where θv is the virtual potential temperature; U is the horizontal wind speed; subscript H and s 
represents the level of H (where H is the height) and the lowest model level (surface level) zs, 
respectively. Based on previous studies, the critical Rib varies from 0.15 to 1.0 [51]. However, the 
study of the optimal Rib is out of scope of this research and the bulk Rib method with a critical value 
of 0.25 [45] was used here to diagnose the PBL height for each WRF simulation to ensure consistency 
in comparison. 

Here, PBL heights calculated with the bulk Rib method were analyzed. Simulation derived PBL 
heights (Mean Sea Level, MSL) increased after sunrise, with a peak value (mean of 1.09 km) at 
around 1400 LST (Figure 5). Among the eight WRF scenarios, the NARR cases predicted higher 
mean PBL height over the flux tower site than the NAM, especially in the daytime. Since NARR 
produced higher Rn than NAM, deeper convective mixing was produced for NARR cases because of 
more thermal surface heating to the atmosphere, leading to a lower PBL height for NAM cases. For 
runs with NAM large-scale forcing dataset, the YSU PBL scheme, which produced larger simulated 
sensible heat flux, diagnosed higher PBL height compared to ACM2 and MYJ on average. The 
ACM2 scheme predicted the lowest PBL height in the daytime and MYJ gave the lowest during 
nighttime. The simulated sensible heat flux in NAM-ACM2-M was less than that in NAM-YSU-M 
and NAM-MYJ-M (Figure 3), indicating less surface turbulent mixing in the PX LSM in the daytime. 
Except for NAM-ACM2-U(No-nudge), the WRF scenarios predicted elevated PBL height with an 
average of 0.41 km during the night on 24 September. 
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Figure 5. Hourly time series of PBL height (Mean Sea Level, MSL) of the observation site diagnosed 
by the bulk Richardson number (Rib) method. 

To investigate the PBL entrainment differences among the eight WRF scenarios, moisture and 
temperature vertical profiles were inspected. Figure 6 illustrates the predicted vertical variation of 
potential temperature and water vapor mixing ratio over the flux tower site averaged at 0900, 1500, 
and 0300 LST, corresponding to the morning, afternoon, and nighttime, respectively. There was 
more variability in simulation results for moisture than potential temperature. Temperature profiles 
exhibited a more similar shape and magnitude. NAM-ACM2-U(No-nudge) produced higher 
moisture values below 1.9 km and lower potential temperature than NAM-ACM2-U at 1500 LST, 
indicating that the FDDA nudging method also influenced the PBL structure. The profile difference 
extended above the top of the PBL. Different land-use datasets resulted in negligible discrepancies in 
the vertical profiles (NAM-ACM2-U and NAM-ACM2-M). The impacts of large-scale input forcing 
datasets on the PBL structures were largest at 1500 LST, around the time when PBL height reached 
the highest value. NARR produced higher temperature and lower humidity at 1500 LST than NAM 
from the surface to about 2 km. 

At 0900 LST, NAM-MYJ-M simulated a higher moisture than NAM-YSU-M near the surface. 
Due to the weaker mixing process of the local PBL scheme [26,50], the moisture from NAM-MYJ-M 
was lower than NAM-YSU-M above 2 km. Based on the moisture profile at 1500 LST, the mixing in 
NAM-ACM2-M was shallower than that in NAM-YSU-M near the surface, which is consistent with 
the inter-comparison results of PBL parameterizations from a prior study [25]. After sunset, 
NAM-YSU-M simulated a drier and slightly warmer layer than NAM-MYJ-M, which could be 
attributed to the stronger mixing in the YSU PBL scheme. 

Under the convective conditions at 1500 LST, the potential temperature profiles showed a 
uniform distribution up to around 1 km and then increased with height. This indicated the time 
evolution of PBL after 0900 LST, with a thicker mixing layer from NAM-YSU-M compared with 
NAM-ACM2-M and NAM-MYJ-M. Diurnal variation of mixing was also reproduced from the 
humidity profiles at 1500 LST, characterized by a nearly unvarying distribution from the surface to 
the top of PBL. Stable conditions at nighttime (0300 LST) were simulated by the WRF runs with 
similar potential temperature vertical profiles. Comparison with sounding data in future studies is 
necessary to assess the model performance on the vertical transport and entrainment simulations. 
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(a) 

(b) 
Figure 6. WRF modeled mean vertical profiles of (a) potential temperature (theta: K) and (b) water 
vapor mixing ratio (q: g kg−1) at 0900, 1500, and 0300 LST over the observation site from 22 to 28 
September. 

4. Discussion 

Our two objectives, analyzing the WRF performance on simulating surface meteorology and 
turbulent fluxes and their sensitivity to input datasets and physics configurations, were addressed 
through the eight WRF sensitivity experiments. The results shown above illuminate discrepancies in 
model performance, where often times NWP models are able to simulate one property well (e.g., 
temperature) while experiencing pitfalls in the ability to simulate other variables (i.e., latent heat 
flux). This type of investigation is important because there are limited datasets available to evaluate 
the variables that NWP models have the most uncertainty in, such has surface heat fluxes. The 
following discussion aims to elucidate the details contributing to these discrepancies in results from 
the WRF sensitivity experiments.  

4.1. LSMs Sensitivities to Large-Scale Forcing Datasets 

The Noah LSM was more sensitive to the large-scale input forcing dataset than PX LSM in our 
case, suggesting that the differences between NARR and NAM in simulating T2 were larger for the 
Noah LSM (Table 2). The indirect soil temperature nudging scheme in the PX LSM minimizes the 
impacts of the potential bias introduced by input forcing datasets. The NARR cases simulated Q2 
better than the NAM cases when run with the PX LSM, whereas the preference went to NAM when 
running with Noah LSM. This suggests that there is a sensitivity of LSMs performance to large-scale 
input forcing datasets in NWP models for simulation of surface meteorological variables. 
Additionally, LSMs that implement soil nudging schemes behave differently than LSMs without soil 
nudging because the large-scale input forcing datasets determine which data is available for the soil 
nudging and the quality of the data. Therefore, since the PX LSM model was the only LSM in this 
sensitivity experiment to use any sort of soil nudging scheme, it makes sense that it behaved 
differently than the Noah LSM and was less sensitive to the selection of large-scale forcing data. 
These discrepancies in soil moisture also impact the surface energy balance and will be discussed in 
more detail below. 
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4.2. Simulation Differences for Surface Energy Balance  

The positive bias of sensible heat flux can arise from the bias of the simulated surface radiation 
budget, which further impacts the partitioning of surface available energy [52]. To investigate this 
impact on the simulation results, time variations of simulated Rn were plotted to see differences in 
the simulated surface fluxes among WRF runs (Figure 7). The magnitude and temporal variation of 
Rn from each WRF sensitivity run was similar, with maximum values in the range of 396–452 W m−2. 
The largest influence came from the different large-scale forcing datasets, where NARR produced 
16% higher Rn on average than NAM at the flux tower site. Additional discrepancies arise from the 
LSM, where simulations using the Noah LSM produced 6% lower Rn on average during daytime 
than those with the PX LSM. If the differences in the simulated sensible heat fluxes were solely 
caused by these differences in Rn, the ratio of sensible heat flux to Rn for each WRF sensitivity run 
would be the same. However, the ratios were different, and the average ratio ranged from 0.19 
(NAM-ACM2-U) to 0.65 (NARR-YSU-M) during daytime. This reveals that the difference among the 
simulated surface fluxes was not entirely related to uncertainties in the radiation modeling and may 
be partially attributed to the partitioning of surface available energy. However, this study is limited 
because we do not have radiation observations to compare with the model results. Therefore, future 
experiments should quantify the radiation balance at the surface to do a full investigation of these 
uncertainties in WRF. 

 
Figure 7. Time variation of WRF simulated Rn over the flux tower site. 

Based on the surface energy balance, the net radiation equals to the sum of ground heat flux, 
sensible heat flux, and latent heat flux [53]. Therefore, in addition to the modeled net radiation the 
time series of simulated ground heat flux was investigated to assess its influence on the simulation 
discrepancies (Figure 8, with no corresponding observation data available). NARR cases produced 
33% higher ground heat flux on average than NAM during the daytime when using Noah LSM, 
whereas NAM cases gave higher values than NARR when run with PX LSM. It is seen that ground 
heat flux in runs using the Noah LSM was higher than those using PX LSM, with the Noah LSM 
results having a similar magnitude of ground heat flux compared to the sensible and latent heat 
fluxes. Whereas, the PX LSM ground heat fluxes were smaller in magnitude than both the sensible 
and latent heat fluxes. In the daytime, ground heat flux from the Noah LSM simulation was up to 97 
W m−2 larger than that from the PX LSM results. Thus, the impact of ground heat flux simulation 
difference on the sensible and latent heat flux simulation difference is largest during the daytime but 
is still less significant than the partitioning of surface available energy. 
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Figure 8. Simulated (a) ground heat flux and (b) the first layer soil moisture over the observation site. 

In addition to ground heat flux soil moisture impacts the net surface energy budget and leads to 
evapotranspiration at the surface, and impacts the latent heat flux directly. The initial top layer soil 
moisture (1 cm depth in PX LSM and 10 cm depth in Noah LSM) was consistent among the WRF 
scenarios (Figure 8). The NARR-ACM2-U scheme simulated the soil moisture about 48% less than 
NAM-ACM2-U on average, with a maximum difference of 0.41 m3 m−3 produced during the soil 
moisture augmentation period on 25 September. The increases of soil moisture were related to 
precipitation simulated by WRF scenarios. Not all WRF runs simulate rain on September 25 and all 
the runs simulate different amounts of precipitation. Runs with NARR produced less precipitation 
than the NAM. The soil moisture remained the same in NARR-YSU-M where no precipitation was 
simulated (figure not shown). The NAM-ACM2-M scheme had an almost identical soil moisture 
evolution as NAM-ACM2-U, except with a slightly higher peak during the moisture swell stage. 
This implies that the differences in simulating soil moisture using different large-scale input forcing 
data were larger than those related to different land-use datasets. The Noah LSM had less diurnal 
latent heat flux and soil moisture variability than the PX LSM (Figure 3). Modeled soil moistures 
from the Noah LSM runs using NARR (NARR-YSU-M and NARR-MYJ-M) were higher than those 
using NAM (NAM-YSU-M and NAM-MYJ-M), resulting in higher latent heat flux values that were 
closer to the observations. This indicated that the large-scale input forcing data had a large impact on 
the simulated latent heat flux in runs using Noah LSM, where the NARR data simulated higher Rn 
and more soil moisture (versus NAM) and therefore improved the simulated latent heat fluxes when 
compared to observations. Due to the PX LSM indirect soil moisture nudging, the NAM-ACM2-M 
scheme produced a higher soil moisture enhancement and a faster depletion evolution than 
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NAM-YSU-M and NAM-MYJ-M, therefore the larger latent heat flux in PX LSM (NAM-ACM2-M) 
contributes to a higher mean bias of Q2 than Noah LSM (NAM-YSU-M and NAM-MYJ-M) (Table 2). 

5. Conclusions 

Eight WRF simulations with different large-scale input forcing (NAM and NARR), land-use 
category datasets (USGS and MODIS), LSMs (PX and Noah LSM), and PBL schemes (ACM2, YSU 
and MYJ) were run to investigate their impacts on modeled surface turbulent fluxes and PBL 
structures. Impacts of observational nudging schemes were also evaluated. The sensitivity 
experiments were conducted using WRF v3.7.1 and evaluated using the TDL surface hourly 
observation dataset and flux tower field experiment data spanning over seven days from a site 
surrounded by farmlands. Through comparisons with observations, the WRF uncertainties in 
simulating surface meteorology parameters and surface turbulent fluxes were evaluated. 
Additionally, the sensitivity to input datasets and physics schemes were investigated by 
intercomparisons among the WRF sensitivity experiments results. 

Overall, the WRF scenarios over-predicted the 2-m temperature and 2-m humidity, whereas 
they provided a negative bias in the 10-m wind speed compared with the observation dataset over 
the second domain. The application of the FDDA scheme significantly improved the simulation of 
surface meteorological parameters, including temperature, humidity, and wind speed. NAM (12 
km, 6 h) better simulated surface meteorology parameters compared with NARR (32 km, 3 h) except 
when using PX LSM to simulate humidity. The Noah LSM was more sensitive to large-scale input 
forcing dataset than PX LSM in our case. Compared with USGS, the application of the MODIS 
land-use dataset was not found to perform better with respect to surface meteorology fields in this 
case. Better performance in simulating T2 was seen for runs using the PX LSM, where the soil 
temperature and moisture nudging method was applied. Simulated surface temperature was 
sensitive to PBL schemes. The YSU PBL scheme (NAM-YSU-M) produced better 2-m temperature 
simulation compared with the MYJ (NAM-MYJ-M) scheme. Non-local PBL schemes (ACM2 and 
YSU) produced more realistic surface winds under unstable conditions in the daytime compared 
with the local closure PBL scheme (MYJ). 

Simulated friction velocity was overestimated by WRF in our case study. The largest 
overestimation was from the YSU PBL scheme. The time evolution patterns of the modeled sensible 
heat fluxes from WRF were consistent with the observation data, although the average simulation 
value was 64% larger than observations. The PX LSM produced lower but more realistic sensible 
heat fluxes than the Noah LSM. The WRF cases using NARR produced more realistic latent heat 
fluxes than cases using NAM. Noah latent heat fluxes were improved with a 57% lower RMSE 
compared to PX, when NARR forcing data was used. The differences among the surface fluxes were 
not entirely related to uncertainties in the radiation modeling and may be partially attributed to the 
partitioning of energy in the surface layer. The scenario utilizing NARR produced surface heat 
fluxes exhibiting similar spatial distribution patterns but higher magnitudes than those with NAM 
because of higher net radiation. The influence of different land-use datasets on surface heat fluxes 
was negligible compared to the influence of the large-scale input forcing dataset. Larger latent heat 
fluxes were present over areas dominated by forests with higher surface moisture in the present 
study, suggesting its relationship with land-use category. 

Explicit evaluation of the WRF model on simulating surface heat fluxes over several different 
regions is required due to the uncertainties in the simulated land-surface interactions which could 
impose limitations on the reliability of weather predictions, such as convection driven processes and 
moisture transport. Comparisons with flux tower field observations are informative and can give 
insight into how to improve surface turbulence parameterizations. This study focused on 
simulations over rolling terrain and observations lasted for seven days. The conclusions drawn were 
based on the analysis of this case study and the simulations were designed based on the observation 
data available. Future work should aim to expand on this case study investigation, where multiple 
aspects of this work can be expanded. For example, future studies should utilize or design field 
experiments to measure surface fluxes over longer time periods so results from NWP simulations 
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can be evaluated using observations collected for more than one week. Since the results shown here 
were impacted by the large-scale forcing data, where there is a mismatch in space and time 
resolution, future studies should investigate improvements to these datasets. For example, one 
option is to supplement the NAM analysis dataset with 3-h NAM forecasts, so the NAM data will be 
at the same temporal resolution as the NARR data. The most significant area of improvement in 
NWP modeling can come from data assimilation. Therefore, the WRF model performance sensitivity 
to different observation datasets used for FDDA needs to be further investigated. The final limitation 
of this study was the lack of measurements to investigate the full surface energy balance closure. 
With measurements of the full energy balance, including the ground heat flux and radiation 
components, the energy balance closure and WRF performance on simulation of energy fluxes can 
be more thoroughly analyzed.  
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