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Abstract: Surface energy balance (SEB) is a basic principle for all of the atmospheric circulation
models, and surface soil heat flux (G0) is an important component of energy balance. Plastic mulch
is widely used in arid regions and alters land surface processes. In this study, hourly/daily G0 and
SEB over a mulched cotton field were analyzed in Northwest China. The net radiation beneath the
mulch was simulated using transmitted down short-wave and down long-wave radiation through
the mulch and up short-wave and up long-wave radiation from the soil beneath mulch. The results
show that: (1) on the hourly time scale, G0 in mulched soil is much smaller than that in non-mulched
soil, day and night. This implies that mulch prevents energy going into the soil during the daytime
and reduces soil heat loss at night. On the daily time scale, G0 is similar in mulched and non-mulched
soil. (2) During the seedling emergence period when the cotton is small, the energy balance closure
over mulched soil (0.79) is slightly smaller than that over non-mulched soil (0.81). (3) Comparing to
soil temperature in non-mulched soil, there’s a time offset on soil temperature in mulched soil at the
same depth, which will bring a hysteresis on G0 and SEB.
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1. Introduction

Energy exchange between the surface and the atmosphere is one of the most crucial ecological
processes in terrestrial ecosystems [1,2]. Surface energy balance is the basic principle for atmospheric
circulation models [3] and is also essential for surface evapotranspiration estimation [4–7]. Surface soil
heat flux (G0) represents the energy absorbed or released by surface soil during a given time period [2].
It is an important component of the surface energy balance. Although G0 is relatively small on daily
and longer timescales, the instantaneous G0 can contribute as much as 50% of the net radiation for
dry and bare soil [8–11]. G0 is also a significant component of the energy balance for vegetated
surfaces [12,13] and plays an important role in estimating surface evapotranspiration [14]. Incorrect
G0 is supposed to be an important reason for energy imbalance [15]. Land surface change will affect
G0 and energy balance and impact atmospheric properties [16]. The land surface characteristics, such
as soil moisture, surface albedo, leaf area index and roughness, are related to land surface fluxes
and are important for the simulation of local and regional weather and climate variables, including
air temperature, wind, humidity and precipitation [17–21]. The land cover change can influence the
atmospheric circulation not only at meteorological timescales, but also at climatological timescales [22].

The plastic film mulching technique and drip irrigation method have been widely applied in
Xinjiang in Northwest China [23]. The mulched area amounted to more than 1.2 million hectares
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in 2009 in Xinjiang [24]. The film mulch reduces heat convection and evaporation from the soil to
the atmosphere. The mulch also changes surface albedo and soil moisture, which will impact the
meteorological parameters. Moreover, the droplets on the film mulch and the water vapor in the air
beneath the film mulch can absorb long-wave radiation, resulting in more soil heating due to the
greenhouse effect [25]. The soil thermal and moisture conditions are improved by mulch to ensure
crop germination and small plant growth [24,26–28]. The mulch promotes crop development and
yield [29]. Polythene mulch increased soil temperature by approximately 6 ◦C at a 5-cm depth in
northern Vietnam [29] and by 1.6 ◦C at a 15-cm depth in Xinjiang, China [30]. Mulch greatly retards
the loss of moisture from soil, which reduces the irrigation frequency and amount [29]. The mulch is
also beneficial for disease control [25].

The mulch alters matter and energy exchanges and affects land surface processes, which has
attracted substantial research. Previous studies mainly focused on the effect of mulch on soil
temperature, crop growth and yield, while few research studies address its effect on the soil heat flux
and energy balance. The present study will explore how the plastic mulch affects the soil heat flux and
energy balance with 3-year (2013–2015) continuous observations at the Korla cotton site in Xinjiang,
Northwest China. The surface soil heat flux was calculated by the thermal conduction equation using
the observed soil temperature and moisture profile. The air heat storage and atmospheric moisture
change were taken into account for energy balance, together with the observed sensible and latent
heat flux by an eddy covariance system (EC). The net radiation beneath the mulch is essential for the
surface energy balance beneath the mulch. It was calculated using transmitted down short-wave and
down long-wave radiation through the mulch and up short-wave and up long-wave radiation of soil
beneath mulch.

2. Methods and Materials

2.1. Experimental Site and Data Records

The Korla site (86◦12′E, 41◦36′N, 886 m a.s.l.) is located in the northeast Tarim River Basin
in the Xinjiang Uygur Autonomous Region (Figure 1). It is characterized by a typical inland arid
climate with scarce precipitation and strong diurnal temperature fluctuation [24]. The mean annual
precipitation is approximately 60 mm, and the mean temperature is 11.48 ◦C [24]. The mean annual
potential evaporation measured by a Φ20 evaporation pan (20 cm in diameter) is approximately
2788 mm [31]. The Korla site is covered by cotton planted in late April and harvested in September.
The major soil type is silt loam. The cotton yield contributes to nearly 50% of the total lint yield of
China, with approximately 3.2 million tons in 2012 [24]. The distribution of cotton planting, plastic
mulch and drip pipe, shown in Figure 2, is referred to as a “one pipe, one film and four rows of cotton
arrangement” [32]. The width of the mulch is approximately 110 cm, and the inter-mulch zone is
approximately 40 cm.

The hourly datasets in 2013–2015 were used in the present study and included EC and automatic
weather station (AWS) measurements (Figure 3). Table 1 shows detailed information on the datasets.
The EC consists of an EC150 open-path CO2/H2O gas analyzer (Campbell Scientific Inc., Logan, UT,
USA), a CSAT3 three-dimensional sonic anemometer (Campbell Scientific Inc., Logan, UT, USA) and
an air temperature/humidity sensor (HMP155A, Vaisala Inc., Woburn, MA, USA) installed at a 2.25-m
height. The EC data were recorded by a data logger (CR3000, Campbell Scientific Inc., Logan, UT, USA)
at 30-min time intervals. The energy and water vapor fluxes (latent heat flux LE and sensible heat
flux H) and carbon dioxide flux were measured by EC. The AWS measurements contained wind speed
and direction, air temperature and pressure, precipitation, net radiation, soil temperature and soil
moisture profiles. The net radiation was measured at a height of 2.25 m by a net radiometer (CNR 4,
Kipp&Zonen, Delft, The Netherlands). The soil temperature and moisture were measured by a Hydra
Probe®sensor (Stevens Water Monitoring System, Inc., Beaverton, OR, USA) in mulched soil and
non-mulched soil, respectively (Figure 3b).
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Figure 2. The plastic mulch and drip pipe in a cotton field at the Korla site. The locations marked 1
and 2 represent mulched soil and non-mulched soil, respectively.
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Figure 3. (a) The plastic mulch when the cotton is just planted; (b) the soil temperature and moisture
sensors; (c) the net radiation sensor and eddy covariance system at the Korla site.

Table 1. The parameters and depths/heights of sensors at the Korla site during 2013–2015.

Instrument Parameters 2013 (m) 2014 (m) 2015 (m)

Eddy covariance
system (EC)

Latent heat flux and
sensible heat flux 2.25 2.25 2.25

Atmospheric
moisture density 2.25 2.25 2.25

Automatic weather
station (AWS) Soil temperature 0.05, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.8 0.1, 0.2, 0.3, 0.5, 0.6 0.05, 0.1, 0.2, 0.3, 0.4,
0.6, 0.8, 1.0, 1.2

Soil water content 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.8 0.1, 0.2, 0.3, 0.5, 0.6 0.05, 0.1, 0.2, 0.3, 0.4,

0.6, 0.8, 1.0, 1.2

Net radiation 2.25 2.25 2.25
Air temperature 2.8 2.8 2.8
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The following post-processing procedures were implemented to control the quality of the EC data:
linear de-trending, tilt correction through the yaw and pitch rotation, density fluctuation correction
and sonic temperature correction [24]. The datasets from 2013–2015 with a 30-min time scale were
converted to hourly values in this study. Furthermore, the missing data accounted for less than 1%,
and the data collected on a few rainy days were also included.

2.2. Methods

The full surface energy balance equation can be expressed as follows [33–35]:

Rn = LE + H + G0 + Sc + Sp + Sa + Sq + Sd (1)

where Rn is the net radiation, L (J·kg−1) is the latent heat of vaporization and E (kg·m−2·s−1) is the
evaporation, the product of which is the latent heat flux. H is the sensible heat flux; G0 is the surface
soil heat flux; Sc is the canopy heat storage in the biomass and water; Sp is the photosynthesis flux; Sa

is the air storage between the eddy covariance system and the ground surface; Sq is the atmospheric
moisture change; and Sd is the canopy dew enthalpy change (all fluxes are in W·m−2). Sc, Sp and
Sd were not included in this study, as cotton plants are very small during the period for the study of
energy balance.

2.2.1. Surface Soil Heat Flux

The surface soil heat flux was calculated by a “TDEC” method (thermal diffusion equation and
correction) proposed by [36], using soil temperature and moisture observations that do not require
accurate thermal conductivity. The equation is as follows:

G(0, t) = G(zre f , t) +
0∫

zre f

∂ρscsT(z, t)
∂t

dz (2)

where G (0, t) (W·m−2) is the surface soil heat flux at time t (s) and G (zref,t) (W·m−2) is the soil heat
flux at a reference depth zref at time t, assumed to be zero if zref is deep enough. ρs (kg·m−3) is the soil
bulk density, and cs (J·kg−1·K−1) is the heat capacity; the product of ρs and cs is the soil volumetric
heat capacity (J·m−3·K−1). T (z,t) (K) is the soil temperature at depth z and time t.

The soil volumetric heat capacity can be obtained from the following equation:

ρscs = ρsolidcsolid(1− θsat) + ρwcwθ (3)

where ρsolidcsolid is the volumetric heat capacity of the soil solids, with a value of 2.1 × 106 J·m−3·K−1.
The uncertainty of the ρsolidcsolid value brings little uncertainty of G0. ρwcw is the volumetric heat
capacity of liquid water, with a value of 4.2× 106 J·m–3·K−1. θsat (%) and θ (cm3·cm−3) are soil porosity
and observed soil water content, respectively. θsat is 42% observed at the Korla site.

The key issue in calculating G0 is obtaining a reliable soil temperature profile from limited
observed temperatures. Yang and Wang (2008) [36] proposed a new method for obtaining a preliminary
soil temperature profile (80 layers in the present study) by the tridiagonal matrix algorithm with the
T (z0) and T (zbot) as the upper and lower boundary conditions, respectively, and then adjusting the
profile with the observed soil temperature. T (z0) (denoted as “Ts”) for bare soil was calculated from
the upward and downward long-wave radiation fluxes:

T(z0) = (
R↑L − (1− εs)R↓L

εsσ
)

1/4

(4)

where R↑L and R↓L are the observed upward and downward long-wave radiation fluxes (W·m−2); εs is
the land surface emissivity, which is 0.96 for silt loam soils [37]; and the Stefan–Boltzmann constant is
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σ = 5.67 × 10−8 W·m−2·K−4 T (z0) for soil beneath mulch will be given in next section. T (zbot) is the
bottom soil temperature measurement. The soil heat fluxes at different soil depths can be calculated by
integrating the adjusted soil temperature profile with the bottom soil heat flux (e.g., 1.6 m) as zero.
The observed soil temperature is assimilated in the process of simulating the soil temperature profile,
which leads to the TDEC method’s lack of sensitivity to soil thermal conductivity that is difficult
to obtain. In addition, TDEC is also not sensitive to T (z0), as it depends on multiple layers of soil
temperature [38].

2.2.2. Net Radiation

The net radiation for bare soil (non-mulched) is as follows:

Rn = (1− ρs)S + R↓L − εsσT4
s (5)

where Rn (W·m−2) is the surface soil net radiation, S (W·m–2) is solar radiation and rs is the surface
soil reflectivity, 0.15 for silt loam soils [37]. εs is the surface soil emissivity, given as 0.96 [37].

The net radiation in the surface soil beneath mulch is as follows [39]:

R′n = (1− rs)τm1S + τm2R↓L + εmσT4
m − εsσT′4s (6)

where R′n (W·m−2) is the net radiation over the soil beneath the mulch; τm1 = 0.84 and τm2 = 0.82
are the transmittances of mulch for solar radiation and thermal radiation, respectively [37]; εm is
the mulch emissivity, given as 0.05 [37]; Tm (K) is the mulch temperature, and Ts

′ (K) is the surface
soil temperature beneath the mulch. According to the experiment, Tm was taken as the same as
Ts
′ in the present study. The observed R↑L above the mulch contains three parts: reflective R↓L by

mulch, transmitted thermal radiation of soil beneath the mulch through the mulch (τm2εsσT′4s ), and
transmitted R↓L to soil beneath the mulch reflected by the soil and then transmitted to the air through
the mulch. Thus, Ts

′ can be calculated by the following equation:

εsσT′4s =
R↑L − (1− τm2 − εm)× R↓L − (1− εs)× τ2

m2 × R↓L
τm2

(7)

2.2.3. Air Heat Storage

The air heat storage between the ground surface and the eddy covariance system is:

Sa = ρaca

hw

0

∂Ta

∂t
dz (8)

where ρa (kg·m−3) is the air density; ca (J·kg−1·K−1) is the specific heat capacity of moist air; Ta (K) is
the air temperature at 2.8 m in the present study; and h = 2.25 m is the height of the EC.

2.2.4. Atmospheric Moisture Change

The atmospheric moisture change is:

Sq = L
hw

0

∂q
∂t

dz (9)

where q (kg·m−3) is the moist air density and the latent heat of vaporization L = 2.5 × 106 J·kg−1.
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3. Results and Discussions

3.1. The Effect of Mulch on Soil Temperature and Energy Fluxes

The soil temperature at depths of 5 cm, 10 cm and 20 cm, as well as Rn, H and LE during
the seedling emergence period, are shown in Figure 4. The seedling emergence period is from
23 April–15 May, when the cotton plants are small and there is no drip irrigation. The impact of plastic
mulch on land energy/mass exchange is most obvious in this period, and the effect of vegetation on G0

and energy balance can be ignored. The soil temperature at a 5-cm depth in mulched soil is on average
2.9 ◦C higher than that in non-mulched soil, which shows the thermal insulation of plastic mulch.
In addition, the difference of soil temperatures between non-mulched soil and mulched soil decreases
as the soil depth increases. The average soil temperature differences at 10 cm and 20 cm are 1.9 ◦C
and 1.3 ◦C, respectively. The amplitude of soil temperature decreases with deeper soil and the phase
shift delays. LE is small, as the cotton plants are very small with less transpiration. Moreover, only soil
evaporation in non-mulched soil contributes to LE. The main turbulent flux is H in this period.
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Figure 4. The 3-year mean hourly soil temperature observation in non-mulched and mulched soil
(a) at 5 cm, (b) 10 cm, (c) 20 cm and (d) net radiation Rn, sensible heat flux H and latent heat flux LE
observations during the seedling emergence period (23 April–15 May) at the Korla site from 2013–2015.

There is a hysteresis between soil temperature in non-mulched soil and in mulched soil during the
3-year mean 24-h period, with a counterclockwise distribution (Figure 5). The same soil temperature
in non-mulched soil corresponds to two different values in mulched soil in the morning and afternoon,
respectively. It shows that the mulch delays soil temperature variation, which affects the phase of G0

in mulched soil.
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Figure 5. Scatter plot of soil temperature at (a) 5 cm, (b) 10 cm and (c) 20 cm in non-mulched soil versus
in mulched soil during the 3-year mean 24-hour period at the Korla site from 2013–2015. The number
of data points is 24.

3.2. The Effect of Mulch on Surface Soil Heat Flux

3.2.1. Damped Diurnal Variation of Surface Soil Heat Flux beneath Mulch

The hourly surface soil heat fluxes over non-mulched and mulched soil were calculated by the
TDEC method during the growth periods (23 April–18 September) in 2013–2015. To show the evolution
of G0 over the growing season, variations of the 3-year average of hourly G0 from April–September are
shown in Figure 6. Not only the positive G0 (daytime), but also the negative G0 (nighttime) in mulched
soil are smaller than in non-mulched soil. The sign represents the heat flux direction; the positive G0

represents heat flows from the surface to deeper soil; and the negative is opposite. The G0 values in
mulched soil decrease obviously in late June. The slope of regression between G0 in non-mulched
soil and mulched soil during the growing season (from 16 May–18 September) is 0.52, smaller than
the value of 0.72 in the seedling emergence period (Figure 7), because the cotton grows, and the
dense canopy attenuates solar radiation entering into the soil. Furthermore, drip irrigation creates
higher soil moisture, and the soil temperature beneath the mulch varies slowly, bringing about low
G0. However, G0 in non-mulched soil increases about on 21 June, 4 July and 14 July. That is because
the soil temperature varies largely in these days, which determines the G0 value. There is no drip
irrigation in these days, and soil moisture is small. Furthermore, Rn usually reaches the maximum in
July, later than the solar radiation.
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Figure 6. The variations of the 3-year mean hourly G0 over mulched and non-mulched soil from
23 April 2013–18 September 2015; the vertical dashed line is at 15 May.
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Figure 7. Scatter plot of the 3-year mean hourly G0 in non-mulched soil versus in mulched soil during
(a) 23 April–15 May and (b) 16 May–18 September at the Korla site in 2013–2015. The number of data
points is 552 and 3024, respectively.

The 3-year mean diurnal variation of G0 in the seedling emergence period (23 April–15 May),
the blooming and bolling period (1 July–31 August) and the growing season (April–September) were
studied separately. The G0 in mulched and non-mulched soil shows significant differences during a
24-h period. Moreover, the absolute value of G0 in mulched soil is smaller than that in non-mulched
soil in both day and night, with slopes of regression between G0 in non-mulched soil and mulched
soil of 0.72, 0.40 and 0.55 in these three growing periods (Figure 8d,e,f). The plastic mulch not only
weakens solar radiation into the soil during the day, but also hinders soil heat into the air during
the night. In addition, the difference becomes large in the blooming and bolling periods (Figure 8b),
owing to the aforementioned dense vegetation and drip irrigation in addition to the plastic mulch
effect. The daily maximum G0 in mulched soil is 106 W·m−2 in the seedling emergence period and
47 W·m−2 in the blooming and bolling period. In addition, the time when heat transmission changes
direction (from negative to positive) in the morning in non-mulched and mulched soil is the same,
approximately 9:00 a.m. (Figure 8a). However, the heat transmission in non-mulched soil changes
earlier in the afternoon than that in mulched soil, around 18:30 and 19:30, respectively (Figure 8b).
The plastic mulch delays the change of direction in heat flow in the afternoon.
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Figure 8. The 3-year mean diurnal variations of G0 in mulched and non-mulched soil from
(a) 23 April–15 May; (b) 1 July–31 August and (c) 23 April–18 September; (d–f) scatterplots of the mean
diurnal G0 in non-mulched soil versus G0 in mulched soil in the three periods in 2013–2015.
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According to the thermal conduction equation, G0 values are related to the variation of
temperature in the topsoil at adjacent hours. In the present study, the daily maximum soil temperature
observed in the topsoil minus the daily minimum value (5 cm in 2013 and 2015, 10 cm in 2014)
represents the time variation of soil temperature, which controls G0 values. The 3-year averages of
the daily amplitude (maximum minus minimum) of the observed soil temperature in mulched and
non-mulched zones during April–September are shown in Figure 9. The variations of the amplitudes
of soil temperature are consistent with G0 variations. The amplitude of temperature in non-mulched
soil is larger than that in mulched soil from April–September. The biggest difference between the
amplitudes of temperature in non-mulched and mulched soil appears at the beginning of July, in
agreement with G0 variation, which is caused by solar energy, dense vegetation and drip irrigation.Atmosphere 2016, 7, 107  9 of 16 
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Figure 9. Variations of the 3-year mean daily amplitude of observed soil temperature (5 cm in 2013 and
2015, 10 cm in 2014) over mulched and non-mulched zone from April–September; the vertical dashed
line is 15 May.

Although the plastic mulch increases soil temperature, the amplitude of soil temperature beneath
the mulch is smaller than that in non-mulched soil in the seedling emergence period (Figure 9), which
leads to smaller G0. It follows that the plastic mulch keeps soil temperature stable.

3.2.2. Similar Daily Variation of G0

The solar energy absorbed by the soil is not always equal to the released energy, which depends
on the underlying surface and seasons. Thus, the daily G0 (net energy entering the soil) is not always
equal to zero [2]. Since the hourly G0 beneath the mulch is much smaller than that in non-mulched soil
both in day and night, what about the daily values? The daily G0 in mulched and non-mulched soil are
similar, and both monotonically decrease from April–September (Figure 10), changing from positive to
negative values. It shows that the soil absorbs energy in the spring and releases energy in the autumn.
The G0 values are positive before July, alternately positive and negative from July to early August and
almost negative starting from early August. The energy absorbed by the soil beneath the mulch and by
bare soil between two mulch zones is larger than the released energy from April–June, which makes
for positive G0, and is opposite from early August–September. The maximum G0 beneath the mulch
was 20.5 W·m−2 on 7 May, and the minimum is −14 W·m−2 over bare soil on 8 July.

Compared to the hourly G0 in non-mulched soil and that of mulched soil with a slope of 0.72
(Figure 7a), the daily G0 are nearly same, with a slope of 1.07 in the seeding and germination period
(Figure 11a). Although n = 23 in Figure 11a and the p-value is 5.88 × 10−12 < 0.05, they are significantly
correlated at a confidence level of 0.05. It shows that the effect of mulch on G0 is diminished with
increasing time scale and that mulch has a great impact on diurnal G0. However, the daily G0 in
non-mulched soil is larger than that in mulched soil from May–September when the cotton grows,
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with a slope of 0.83 (Figure 11b). That is not only because of the positive G0, but also because the
negative G0 in non-mulched soil is larger than that in mulched soil. The dense vegetation and mulch
constitute two masks over the soil, which leads to less energy entering the soil and also reduces soil
heat loss, leading to smaller positive and negative G0 values.
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Figure 10. The 3-year mean daily G0 over mulched and non-mulched soil from 23 April–18 September
at the Korla site in 2013–2015.
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Figure 11. Scattergrams of the 3-year mean daily G0 over non-mulched soil versus over mulched soil
from (a) 23 April–18 September and (b) 23 April–15 May at the Korla site in 2013–2015.

The sum of positive values of daily G0 beneath the mulch in the seedling emergence period is
242.5 W·m−2, and the sum of negative values is −3.6 W·m−2. These sums of G0 in non-mulched
soil are 200 and −3.6 W·m−2, respectively (Table 2). The cumulative energy is positive (absorbing
energy), with a value of 238.8 W·m−2 in mulched soil, and larger than that in non-mulched soil,
with 196.4 W·m−2 in the seedling emergence period. Furthermore, the heat income to soil beneath
mulch is larger than that to bare soil (242.5 > 200 W·m−2), and heat losses from the soil to air are
less affected by the presence of the mulch, with the same value of 3.6 W·m−2, similar to Liakatas’s
research [39]. This demonstrates that the plastic mulch gathers energy for seed germination and
growth. Although the vegetation and mulch reduce soil heat gain and loss, the cumulative energy is
positive, with a value of 244.0 W·m−2, larger than 127.4 W·m−2 in non-mulched soil.
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Table 2. The sum of positive, negative and all 3-year mean daily G0 values over non-mulched and
mulched soil from 23 April–15 May and from 16 May–18 September at the Korla site in 2013–2015.

Non-mulched Beneath Mulch Non-mulched Beneath Mulch

23 April–15 May (W·m–2) 16 May–18 September (W·m–2)

Sum of positive 200.0 242.5 409.0 446.5
Sum of negative −3.6 −3.6 −281.7 −202.5

Sum 196.4 238.8 127.4 244.0

3.3. The Effect of Mulch on Energy Balance

3.3.1. Smaller Net Radiation beneath Mulch

In addition to atmospheric long-wave radiation, the mulch also contributes downward long-wave
radiation to the net radiation of the soil beneath the mulch. The hourly mulch temperature and
surface soil temperature beneath the mulch (8:00–20:00) were measured using an infrared thermometer
(FLUKE Inc., Everett, WA, USA) for seven days (27–30 April and 3–5 May) in 2016. Ten data points
per hour were measured for mulch and the soil beneath mulch. The average of the 10 data points
was adopted as the final hourly mulch and soil temperatures. The mulch temperature is nearly the
same as the soil temperature beneath mulch (Figure 12a) with a slope of regression between mulch
temperature and soil temperature of 0.96 (Figure 12b), which is consistent with Liakatas’s study [39].Atmosphere 2016, 7, 107  11 of 16 
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Figure 12. The seven-day mean hourly mulch and soil temperature beneath the mulch observed by an
infrared thermometer. (a) Variation of temperature from 8:00–20:00, (b) mulch temperature vs. soil
temperature beneath the mulch at the Korla site in 2016.

The 3-year mean hourly net radiation in mulched soil is smaller than that in non-mulched bare soil
(Figure 13a), in agreement with other results, such as those of [39–41]. The slope of regression between
Rn in non-mulched and mulched soil is 0.80, and the determination coefficient is 0.99 (Figure 14a).
Primarily because the net solar radiation is reduced by 16% while the net long-wave radiation is
approximately equal (Figure 13b). The slopes of regression between net solar radiation in non-mulched
soil and that in mulched soil and between net long-wave radiation in non-mulched soil and that in
mulched soil are 0.84 and 1.03, respectively (Figure 14b,c). The humid air held below the mulch, which
can absorb the downward long-wave radiation penetrating through mulch and upward long-wave
radiation emitted by the soil beneath the mulch, will contribute to R′n and SEB. Nevertheless, the
humid air is not included in the present study, as the mulch is close to the ground and the space is
very small.
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Figure 13. The 3-year mean diurnal variation of (a) net radiation in non-mulched soil and in soil
beneath mulch, (b) net short-wave radiation and net long-wave radiation in non-mulched soil and
in soil beneath mulch from 23 April–15 May at the Korla site in 2013–2015. Rs represents short-wave
radiation, and Rl is long-wave radiation.Atmosphere 2016, 7, 107  12 of 16 
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Figure 14. The 3-year mean hourly (a) net radiation in non-mulched soil vs. in soil beneath mulch;
(b) net short-wave radiation in non-mulched soil vs. in soil beneath mulch and (c) net long-wave
radiation in non-mulched soil vs. in soil beneath mulch at the Korla site in 2013–2015.

3.3.2. Energy Balance in Mulched and Non-Mulched Soil

To show the effect of plastic mulch on land surface energy balance, data from 23 April–15 May
were selected along with the air heat storage and atmospheric moisture change. To show the energy
balance closure (EBC), the sum of 3-year mean hourly turbulent energy fluxes (H and LE) and heat
storage were plotted against the 3-year mean hourly available energy (Rn – G0) in Figure 15, using
3-year mean hourly data from 2013–2015 at the Korla site. The EBC in surface soil beneath mulch is
0.79 (Figure 15b), smaller than the 0.81 in non-mulched soil (Figure 15a). That may be because the
transpiration is likely not included in mulched soil, as the cotton has emerged on approximately 5 May
and has reached a height of 10 cm on 15 May. Moreover, the uncertainty of parameters (emissivity,
transmittance of the mulch and the emissivity of soil) in R′n calculation may bring uncertainty of EBC
in mulched soil.

There is a hysteresis phenomenon over non-mulched soil (Figure 15a) that appears with an
annular distribution with a determination coefficient of 0.94, smaller than the 0.96 over mulched soil.
That is mainly because G0 is out of sync with Rn over non-mulched soil (Figure 15c), and G0 generally
reaches a diurnal maximum earlier than Rn [4]. In addition, H, LE and S are almost in sync with Rn
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during the 24-hour period. The available energy is out of sync with turbulent fluxes over non-mulched
soil. However, G0 is more in sync with R′n in mulched soil (Figure 15d), as the soil temperature in
mulched soil delays, which leads to the hysteresis over G0. That leads to the available energy being in
sync with the sum of turbulent energy fluxes and heat storage over mulched soil.
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Figure 15. Scatterplot of the 3-year mean hourly (a) available energy (Rn – G0) vs. (H + LE + S) in
non-mulched soil and (b) (R′n – G0) vs. (H + S) in mulched soil at the Korla site from April–May in
2013–2015. The 3-year mean 24-hour Rn vs. G0 (c) in non-mulched and (d) in mulched soil. H and
LE are the sensible and latent heat flux measured by EC, and S is the sum of air heat storage and
atmospheric moisture change calculated by Equation (8) and Equation (9). R′n is net radiation in
mulched soil.

4. Conclusions

Plastic mulch has been widely used in agriculture in Northwest China because it can not only
promote soil temperature, but can also reduce water loss from the soil surface, which is beneficial
to seed germination. In addition, the mulch also modifies the thermal microclimate of the soil.
Nevertheless, few studies address its effect on the soil microclimate and energy balance. This study
focused on how the mulch affects G0 and SEB. However, the climate parameters’ change (e.g., air
temperature, wind, precipitation, convection cloud, etc.) caused by changed G0 and SEB in mulched
soil is not included in the present study. In this study, the hourly surface soil heat flux was calculated
from April–September in 2013–2015 using a heat conduction equation based on soil temperature and
moisture measurements in mulched and non-mulched soil at the Korla experimental site planted with
cotton in the Xinjiang Uygur Autonomous Region. The variations of G0 at different time scales were
analyzed. In addition to the surface net radiation beneath mulch, the energy balance in mulched and
non-mulched soil were also discussed. The main conclusions obtained from the investigation are
summarized as follows:

The 3-year mean hourly G0 in mulched soil is smaller than that in non-mulched soil both day and
night from April–September. The plastic mulch not only prevents solar radiation into the soil in the
daytime, but also reduces soil heat loss at night. The hourly G0 over mulched soil decreases obviously
in late June, as solar energy is blocked by the grown cotton and because the drip irrigation increases
soil moisture, making soil temperature vary slowly and bringing about low G0. Moreover, the mulch
delays the moment when heat flow changes direction in the afternoon.



Atmosphere 2016, 7, 107 14 of 16

Although the hourly G0 are largely different, the 3-year mean daily G0 in non-mulched and
mulched soil are similar, with a slope of regression of 1.07 in the seeding and germination period.
This shows that mulch has a great impact on instantaneous G0 and less impact on G0 at a daily time
scale. During the whole growing season, the daily G0 decreases monotonically. G0 values are positive
before July and almost negative starting from early August, which indicates that soil absorbs energy
in spring and releases energy in autumn. The sum of positive values of daily G0 in mulched soil is
242.5 W·m−2, larger than 200 W·m−2 in non-mulched soil in the seeding and germination period.
The sum of negative G0 over mulched and non-mulched soil is the same, −3.6 W·m−2. Thus, the
mulch cumulates more energy into the soil than bare soil.

The surface net radiation beneath the mulch is 0.88 times that over non-mulched soil as less solar
radiation enters into the soil through the mulch, while the net long-wave radiation is almost the same
as that over non-mulched soil.

The EBC in mulched soil is smaller than that over non-mulched soil, 0.79 versus 0.81, based
on 3-year mean hourly Rn, G0, H, LE, air heat storage and atmospheric moisture changes. LE is not
included in mulched soil, which may lead to smaller EBC. The uncertainty of R’n coming from the
uncertainty of parameters may also affect EBC in mulched soil. A hysteresis phenomenon appears
in non-mulched soil between H + LE + S and Rn – G0, as G0 is out of sync with Rn. However, there
is no hysteresis in mulched soil. That is mainly because the soil temperature delays in mulched soil
and leads to G0 delays, which makes G0 is sync with R′n. The average EBC is approximately 0.8 in the
present study, which is reasonable and consistent with the study of Wilson et al. (2002) [42]. The 20%
imbalance may be due to the accuracies of Rn, G0, the mismatch between the turbulent flux footprint
and other components of the energy balance, or the absence of advection.
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Abbreviations

The following abbreviations are used in this manuscript:

Rn net radiation for bare soil (non-mulched)
R′n net radiation for soil beneath mulch
G0 surface soil heat flux
LE latent heat flux
L latent heat of vaporization
H sensible heat flux
ρscs soil volumetric heat capacity
ρsolidcsolid volumetric heat capacity of the soil solids
ρwcw volumetric heat capacity of liquid water
ρaca air volumetric heat capacity
θsat soil porosity
θ soil water content
T (z,t) soil temperature at depth z and time t
T (z0) soil temperature at surface
Ts soil temperature at surface, same as T (z0)
T′s surface soil temperature beneath the mulch
Tm mulch temperature
Ta air temperature
S solar radiation
R↑L upward long-wave radiation flux

R↓L downward long-wave radiation flux
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εs land surface emissivity
εm mulch emissivity
σ Stefan–Boltzmann constant
rs surface soil reflectivity
τm1 transmittance of mulch for solar radiation
τm2 transmittance of mulch for thermal radiation
q moist air density
h the height of the EC
Sc canopy heat storage in the biomass
Sp photosynthesis flux
Sa air storage
Sq atmospheric moisture change
Sd canopy dew enthalpy change
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