
Supplementary Materials: Comparison of Land-Use Regression Modelling with Dispersion and Chemistry Transport Modelling to Assign Air Pollution Concentrations within the Ruhr Area Atmosphere 2016, 7, 48

Frauke Hennig, Dorothea Sugiri, Lilian Tzivian, Kateryna Fuks, Susanne Moebus, Karl-Heinz Jöckel, Danielle Vienneau, Thomas Kuhlbusch, Kees de Hoogh, Michael Memmesheimer, Hermann Jakobs, Ulrich Quass and Barbara Hoffmann

Figure S1. Flowchart of the EURAD model system containing the meteorological driver MM5, the pre-processors ECP and PREP, the emission model EEM and the chemistry transport model EURAD (input parameters are shaded in blue, output parameters are shaded in yellow and procedural parts are shaded in green or magenta) [1].

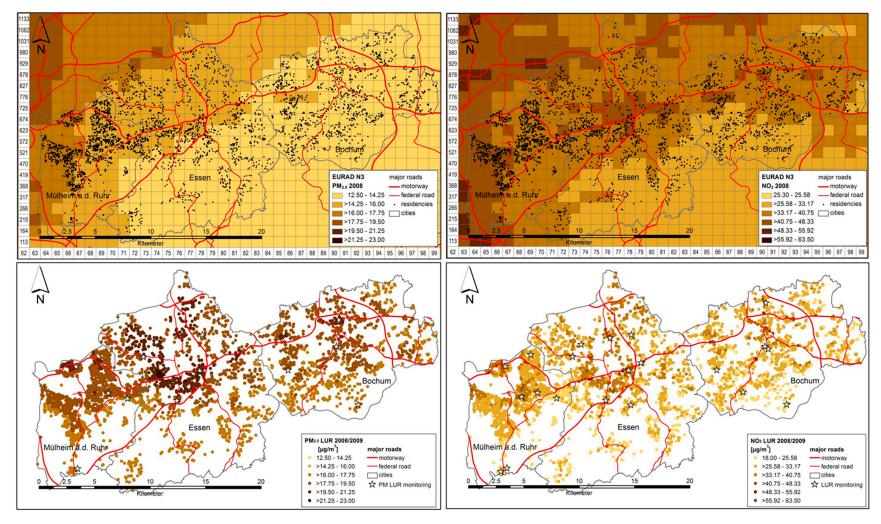
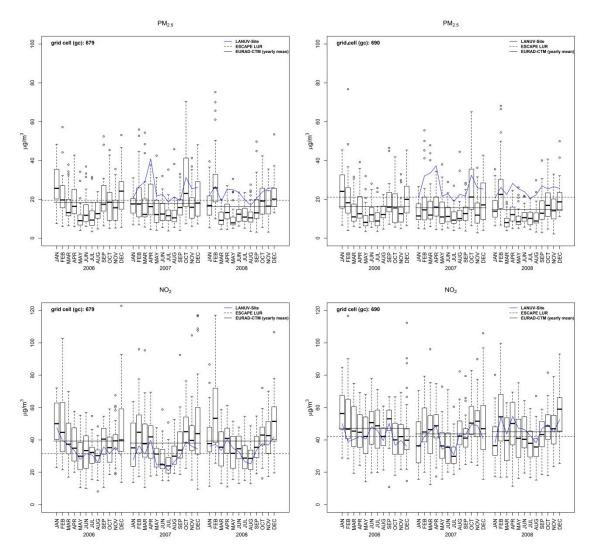



Figure S2. Spatial distribution of EURAD-CTM (1 km², yearly mean 2008) and ESCAPE-LUR (point-specific yearly mean October 2008–October 2009) at 4809 residences within the HNR study area for PM_{10} (A+C) and NO_2 (B+D).

Figure S3. Boxplots of air pollution concentrations of monthly-mean PM₁₀ and NO₂ concentrations over three year for a traffic-specific (grid cell: 690), and a background-specific location (grid cell: 679) with annual mean ESCAPE-LUR estimates and annual measurements at LANUV monitoring sites.

Table S1. Time and locations of the ESCAPE-measurement campaign.

Autumn:		
• 16 October 2008–30 October 2008		
• 3 November 2008–17 November 2008		
• 19 November. 2009–3 December 2008		
• 5 December 2008–19 December 2008		
Winter:		
• 7 January 2009–21 January 2009		
• 26 January 2009–9 Febuary 2009		
• 11 Febuary 2009–25 Febuary 2009		
• 27 Febuary 2009–13 March 2009		
Spring/summer:		
• 24 June 2009–8 July 2009		
• 10 July 2009–24 July 2009		
• 28 Jul. 2009–11 August 2009		
• 13 August 2009–27 August 2009		
Background:		
 No influence by sources in the "direct vicinity" of site 		
 No more than 3000 vehicles per day in a 50 m-buffer 		
• No important sources of PM or NOx within a 100 m-buffer (combustion source,		
construction works, small industries, district heating plant, parking areas) and		
• Distance to large industries > 100 m.		
Traffic:		
• Traffic intensity > 10,000 vehicles per day at site location		
Absence of other sources (preferable)		
• Ground level or first floor measurements (2–3 m).		
NO2: Ogawa badges		
PM: Harvard Impactors		

Table S2. ESCAPE-LUR for PM2.5, PM10 and NO2.

Air Pollutant	Linear Model	Predictors	Adj. R²	LOOCV-R ²
PM _{2.5}	81.73 + 5.61 × 10 ⁻⁸ × HEAVYTRAFLOAD_1000 + 1.20 × 10 ⁻⁷ × INDUSTRY_5000 + 1.04 × 10 ⁻⁴ × POP_1000 - 2.57 × 10 ⁻⁵ × XCOORD	Heavy traffic load in a 1000 m-buffer, Industry in a 5000m-buffer, Population in a 1000m-buffer, X-Coordinate of residential address	0.85	0.74
PM ₁₀	23.86 + 1.47 × 10 ⁻⁷ × HEAVYTRAFLOAD_1000 + 2.44 × 10 ⁻⁴ × POP_1000	Heavy traffic load in a 1000m-buffer, Population in a 1000m-buffer	0.66	0.59
NO ₂	19.66 + 3.48 × 10 ⁻⁷ × INDUSTRY_5000 + 0.022 × POP_100 + 4.1 × 10 ⁻⁶ × PORT_5000 + 1.31 × 10 ⁻⁶ × TRAFLOAD_100	Industry in a 5000m-buffer, Population in a 100 m-buffer, inland sea-ports in a 5000 m-buffer, traffic load in a 100 m-buffer	0.88	0.82

Table S3. Time and Location of routine monitoring sites, provided by LANUV, within the HNR study area [2].

Name and Adress of Monitoring Site	Air Pollutant and Time of Monitoring	Frequency of Monitoring
Milla aina Chamana (CTVD)	NO ₂ (since 1981)	Daily
Mülheim-Styrum (STYR)	PM ₁₀ (since 2002)	Daily
Neustadtstraße, 45476 Mülheim	PM _{2.5} (since 2007)	2-day-basis
Essan Vagalheim (EVOC)	NO ₂ (since 1985)	Daily
Essen-Vogelheim (EVOG)	PM ₁₀ (since 2002)	Daily
Hafenstraße, 45356 Essen	PM _{2.5} (since 2008)	2-day-basis
Eccop Oct (VESN)	NO ₂ (since 1986)	Daily
Essen-Ost (VESN)	PM ₁₀ (since 2003)	Daily
Steelerstraße, 45138 Essen	PM _{2.5} (since 2003)	Daily

References

- 1. Elbern, H.; Friese, E. Eurad-IM Products, Quality and Background Information. Available online: http://www.uni-koeln.de/math-nat-fak/geomet/eurad/modell/eurad_descr_e.html (accessed on 16 December 2015).
- 2. Stationen und Messwerte. Available online: http://www.lanuv.nrw.de/umwelt/luft/immissionen/stationen-und-messwerte/ (accessed on 30 November 2015).