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Abstract: In this study, long-term (10 years) radiosonde-based cloud data are compared with the
ground-based active remote sensing product under six prevailing large-scale synoptic patterns,
i.e., cyclonic center (CC), weak pressure pattern (WP), the southeast bottom of cyclonic center
(CB), cold front (CF), anticyclone edge (AE) and anticyclone center (AC) over the Southern Great
Plains (SGP) site. The synoptic patterns are generated by applying the self-organizing map weather
classification method to the daily National Centers for Environmental Protection mean sea level
pressure records from the North American Regional Reanalysis. It reveals that the large-scale synoptic
circulations can strongly influence the regional cloud formation, and thereby have impact on the
consistency of cloud retrievals from the radiosonde and ground-based cloud product. The total
cloud cover at the SGP site is characterized by the least in AC and the most in CF. The minimum
and maximum differences between the two cloud methods are 10.3% for CC and 13.3% for WP.
Compared to the synoptic patterns characterized by scattered cloudy and clear skies (AE and AC),
the agreement of collocated cloud boundaries between the two cloud approaches tends to be better
under the synoptic patterns dominated by overcast and cloudy skies (CC, WP and CB). The rainy and
windy weather conditions in CF synoptic pattern influence the consistency of the two cloud retrieval
methods associated with the limited capabilities inherent to the instruments. The cloud thickness
distribution from the two cloud datasets compares favorably with each other in all synoptic patterns,
with relative discrepancy of ≤0.3 km.
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1. Introduction

Clouds have a critical influence on the Earth’s radiation budget and climate change [1].
Cloud vertical structures can interact with atmospheric dynamics and have a pronounced impact on
the climate sensitivity [2–4]. Despite their significance, the accurate information of cloud profile is one
of the most fundamental data sources for global weather and climate studies [5]. Thus far, significant
discrepancies still exist in cloud retrievals from different cloud products [6–8].

To produce the reliable cloud climatology from various measurements at a regional scale, the U.S.
Department of Energy’s Atmospheric Radiation Measurement (ARM) program has deployed a suite of
ground-based remote sensing instruments at a few fixed sites. As the first ARM field measurement
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site, the Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma has been providing
cloud data collected by the surface radar, ceilometers and lidar for over two decades. The cloud
vertical structure information is available as an Active Remote Sensing of Cloud (ARSCL) value-added
product (VAP) over the site [9]. The ARSCL has become a popular product in cloud research for
numerous applications, for example, to obtain the regional cloud characteristics, to evaluate the
satellite measurements and numerical models [10–13].

In addition to the ground-based instruments, the radiosonde launches have also been conducted
for many years over the SGP site. By performing in-situ measurements of atmospheric temperature
and humidity, the radiosonde is able to provide cloud information thus can be used to generate
the cloud vertical structure [14–19]. To supply the measurements obtained from the ARM fix sites,
an ARM mobile facility (AMF) was deployed in China in 2008 [20,21]. Zhang et al. [22] deployed
the radiosonde data collected from this AMF campaign to analyze the cloud distributions over
the site by using a modified method of [23] that employed the relative humidity (RH) and
temperature profiles from the radiosonde data to determine the locations and boundaries of cloud layer.
A preliminary validation of this method was further conducted based on the radiosonde data collected
from different climate regimes, which suggested this method could produce a promising accuracy [24].
Costa-Surós et al. [25] summarized all the previous radiosonde-based cloud vertical structure
estimation methods and also compared cloud vertical profiles to the ARSCL product at the SGP
site. More importantly, they modified the method presented by [22] and their results demonstrated a
better agreement between radiosounding method and ARSCL observations.

The local weather conditions and their changes are highly associated with the large-scale synoptic
circulations. The atmospheric variables, such as temperature, RH, wind, and cloud distributions as
well as their vertical structures can also be closely related to the large-scale synoptic circulations [26–32].
Therefore, the identification of large-scale synoptic patterns could be the basis on which to improve
the understanding of the consistencies in cloud retrievals from various observational data as well
as to determine the potential attributed sources of their differences. Based on this consideration,
a comprehensive comparison of long-term (2001–2010) cloud products generated from the radiosonde
and ground-based cloud retrieval approaches is performed at the SGP site on the basis of the
classification of large-scale synoptic patterns in this study. It will help prompt knowledge of the
interaction between the large-scale synoptic circulations and the regional cloud properties, and thereby
quantitatively evaluate whether/how the synoptic patterns can influence the consistency and/or
discrepancy between the cloud retrievals from the radiosonde and ARSCL data. Another important
objective is to seek the potential causes for these differences. It is hoped that the results of this paper can
assist with climate model performance by expanding our capability to derive cloud boundaries from
the radiosonde to evaluate models over locations where ground-based radar and lidar are not deployed.
The paper is organized as follows. Section 2 describes the two cloud detection algorithms and synoptic
patterns data used in this study. Comparisons of cloud retrievals from two types of observational
datasets are performed under different large-scale synoptic patterns in Section 3; potential causes for
the discrepancies are also discussed. Main conclusions are summarized in Section 4.

2. Method and Data

2.1. Radiosonde-Based Cloud Detection Algorithm and Products

Radiosonde launches with a vertical resolution of ~10 m are generally conducted four times each
day (at 05:30, 11:30, 17:30, and 23:30 UTC) over the SGP site. By using the algorithm presented in [24],
radiosonde data collected over the SGP site between 2001 and 2010 were used to derive cloud layers in
this study. A brief description of the algorithm is presented here while detailed procedure can be found
in the above literature. The algorithm originates from the method of [23] with many modifications.
It employs height-resolving RH thresholds to determine the cloud layers after transforming the RH
with respect to ice for the levels with temperatures below 0 ◦C.
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2.2. ARSCL Products

Three ground-based active remote sensors that are the 35-GHz Millimeter Microwave Cloud
Radar (MMCR), Micropulse Lidar (MPL), and laser ceilometers have been deployed at the SGP site
during the period of our study concerned [11,33–37]. The vertical resolutions of MMCR and MPL are
45- and 30-m respectively. A Vaisala CT25K ceilometer (15-m resolution), which can provide very
accurate cloud base height up to ~7620 m, was deployed from May 2000 to April 2010. The CT25K
ceilometer was then replaced with a Vaisala CL 31 to provide greater resolution (10-m). The MPL
can detect cloud bases up to 18 km in the absence of any hazy layer and lower cloud layer. ARM
cloud radars have a maximum detection range of ~20 km. The laser beams from the MPL and the
ceilometers are excellent for detecting all clouds that are visible from the ground to the instruments’
height measurement ranges, but easily attenuated as they pass through cloud layers. The detection
of cloud-base heights from radar is often affected by the presence of large precipitation particles, as
well as insects and bits of vegetation. The radar is unable to detect some of clouds composed of small
hydrometeors or thin clouds located at high altitudes. The greatest strength of radar measurements is to
provide the cloud vertical distribution and to amend the drawback of lidar measurement, which cannot
penetrate thick clouds. By combining the advantages of these three instruments, the ground-based
cloud product (ARSCL) was generated by the ARM project [9,38]. This cloud product has a temporal
resolution of 10 s and a vertical resolution of 45 m. A maximum of 10 cloud layers boundaries can be
obtained from each ARSCL profile. The laser beams from the ceilometers and MPL are appropriate
for providing first cloud base height. Hence, the Cloud Base Best Estimate (CBBE) field, which uses
a mixture of ceilometer and MPL information, is deployed to filter hydrometeors below CBBE [39],
which is specified as follows. The ARSCL cloud layers are discarded if both their cloud base heights
and cloud top heights are lower than the CBBE. The cloud base height is set to CBBE for the ARSCL
cloud layers with cloud base heights below the CBBE but the cloud top heights above the CBBE.

2.3. Synoptic Patterns Algorithm and Products

The synoptic patterns identification method used in this study is adopted from the approach
of [40]. A detailed description of the weather classification can be found in the reference. A brief
introduction is presented here for completeness. By applying the self-organizing map (SOM) method
to 10 years of daily National Centers for Environmental Protection (NCEP) mean sea level pressure
(MSLP) records from the North American Regional Reanalysis (NARR), a total of 25 synoptic patterns
are characterized for the ARM SGP domain. The NCEP NARR products are used because they are
the grid data with high spatial resolution (32 km × 32 km) and wide domain range (from 30◦N to
50◦N, and from 75◦W to 120◦W), which are specifically appropriate for the SOM method. The MSLP
field associates highly with the spatial pattern of large-scale synoptic processes and is thus widely
taken as a proxy for the atmospheric circulation [41]. As an artificial neural network algorithm used
for clustering, visualization and abstraction, the SOM is very effective in studying the relationships
between the local weather conditions and the large-scale climatology [42,43].

The occurrence frequencies of all 25 patterns at the SGP site are shown in Figure 1, with the
maximum and minimum values of 7.6% and 1.9%, respectively. Six synoptic patterns are selected and
discussed in this study. These 6 patterns are the cyclonic center (CC), the weak pressure pattern (WP),
the southeast bottom of cyclonic center (CB), the cold front (CF), the anticyclone edge (AE) and the
anticyclone center (AC), whose numbers are 1, 3, 5, 18, 20 and 24 in Figure 1, respectively. The typical
patterns of CC, WP, AE and AC occurred most frequently, which account for 7.6%, 6.3%, 5.5% and
6.3%, respectively. The occurrence frequencies of both CB and CF are 4.7%. In the CB scenario,
the weather conditions are dominated by cloudy skies associated with the moist southwesterly
airflow at the 500-hPa level. In the CF scenario, drastic changes of synoptic patterns occur due
to the intersection of cold and warm air masses. In view of the relative higher occurrence values
compared to most of the other patterns as well as the typical synoptic features of CB and CF, they are
also included in the study. The sum frequency of these selected 6 patterns is 35%. The percentage of
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situations represented by the other 19 patterns, which are discarded, is 65%. Some synoptic patters
(e.g., 7 and 9) with large percentages of occurrence frequencies are discarded because they are the
transition synoptic patters that are somewhat similar and relevant to the selected six patterns.
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Figure 1. Occurrence frequencies of 25 patterns during 2001–2010 at the SGP site.

The MSLP, the geopotential height at the 500-hPa pressure level and the total cloud cover derived
from the daily NCEP NARR product averaged over 2001–2010 under the selected six synoptic patterns
are separately shown in Figures 2–4. The geopotential heights at 500-hPa pressure level (not used by
the SOM method) are deployed to help understand the air source of high altitude and background
synoptic circulations of cloud formations. The major features of the six synoptic patterns and their
general weather conditions are briefly introduced as follows. The SGP domain is located within the
area of lowest atmospheric surface pressure in the CC pattern (Figure 2a); the skies are usually overcast
due to the moist southwesterly airflow at the 500-hPa level over the SGP site (Figure 3a). In the WP
scenario, the SGP site is within an area of weak depression at the surface; weather conditions are
dominated by cloudy skies. In the CB scenario, the SGP site is located at the southeast bottom of a
strong depression and near a strong anticyclone; conditions at the 500-hPa level are close to those in
the CC pattern and weather conditions are dominated by cloudy skies. In the CF scenario, the SGP site
is located in the transition zone between warm and cold air masses; the common weather conditions
are rainy and windy under this synoptic pattern. In the AE scenario, the SGP site is situated at the rear
of a strong anticyclone and the dominant airflow at the 500-hPa level is from the west; the weather
conditions are usually clear or scattered cloudy sky. In the AC scenario, the SGP site is located in the
center of anticyclone subsidence and is associated with strong divergence in the lower atmosphere;
clear skies dominate as a result of the cold and dry northwest airflow at 500-hPa over the SGP site.
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Figure 2. Mean sea level pressure (units in hPa) derived from the daily National Centers for
Environmental Protection (NCEP), North American Regional Reanalysis (NARR) product averaged
over 2001 to 2010 in the synoptic patterns of: cyclonic center: CC (a); weak pressure pattern:
WP (b); the southeast bottom of cyclonic center: CB (c); cold front: CF (d); anticyclone edge: AE
(e); and anticyclone center: AC (f) over the Southern Great Plains (SGP) site. The black star in each
panel denotes the location of the SGP site.
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Figure 3. Geopotential height (units in m) at the 500-hPa pressure level derived from the daily NCEP
NARR product averaged over 2001 to 2010 in the synoptic patterns of: CC (a); WP (b); CB (c); CF (d);
AE (e); and AC (f) over the SGP site. The black star in each panel denotes the location of the SGP site.
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3. Comparison of Cloud Retrievals from Radiosonde and ARSCL in Different Synoptic Patterns

3.1. Total Cloud Cover

Ten years (2001–2010) of total cloud cover derived from the radiosonde and ARSCL products
under six synoptic patterns are shown in Figure 5. The total cloud cover is defined as the number
of samples with clouds present divided by the total number of ARSCL (or radiosonde) samples for
each synoptic pattern. A total of 4575 radiosonde profiles are used in this study. The frequencies of
cloud occurrence at the times of radiosonde launches are extremely likely different from that all day
long obtained by the ground measurements due to the diurnal cycle of the cloud occurrence [44,45].
To avoid these potential diurnal cycle biases, the ARSCL data corresponding to the radiosonde launch
periods are selected and used in this study. Colored dots (color bar) in Figure 5 represent the relative
occurrence frequency (%) of each synoptic pattern during 2001–2010, varying from 4.7% (CB and
CF) to 7.6% (CC). The NCEP NARR-based total cloud covers surrounding the SGP domain are also
presented in Figure 5, which are 31%, 24%, 28%, 54%, 31% and 20% under six selected synoptic
patterns, respectively, varying in a similar manner as that by the observational retrievals from both
radiosonde and ground-based instruments. It is seen that the magnitude of the total cloud cover is
highly dependent on the large-scale synoptic circulations. Both the radiosonde and ARSCL-based total
cloud amounts over the SGP site are characterized by the least and the most occurred in patterns of
AC (Radiosonde: 44%; ARSCL: 33%) and CF (Radiosonde: 84%; ARSCL: 72%), respectively. Overall,
very similar manners of their variability are revealed by the two cloud measurements. However, a
systematic difference occurs in the magnitude of total cloud cover between the two observational
cloud products. Cloud amounts from the radiosonde measurements are always larger than the ARSCL
products by ~10% for all six patterns. It should be noted that a similar systematic difference (8%)
between radiosonde (59%: 114/193 cases) and ARSCL (51%: 99/193 cases) cloud retrieval methods
was presented in [25] at the SGP site. In view of the high complexity and variations of the cloud
distributions, the ARSCL product can express the total cloud cover well over the SGP site due to its
high temporal resolution (ten seconds). The systematic difference between the two cloud products
should be partially attributed to their different observation temporal intervals [4,11], and the mismatch
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of the objects detected by the two instruments due to the balloon’s drift and fixed ground-based
observation [24]. The minimum and maximum differences between the two methods are 10.3% and
13.3% in patterns of CC and WP, respectively; their mean bias is 11.8% for all six patterns.
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line), and NCEP NARR (short dashed line) for the six synoptic patterns (CC, WP, CB, CF, AE and
AC) during 2001–2010 at the SGP site. The color of the dots in radiosonde data represents the relative
occurrence frequency (%) of each synoptic pattern during the period analyzed.

3.2. Vertical Cloud Fraction

Many years’ worth of radiosonde and ARSCL data at the SGP site allows for a closer look at the
difference of the vertical cloud fraction between the two datasets at a fine vertical resolution, which
should favor for the better understanding of their consistencies/discrepancies. The vertical resolutions
of the radiosonde and ARSCL profiles are 10 m and 45 m, respectively. To make the comparison
more meaningful, the vertical cloud fractions from both measurements are generated at atmospheric
heights ranging from the surface to 16 km spaced at 100-m intervals (i.e., 0–100 m, 100–200 m, . . . ,
15,900–16,000 m) and specified as follows. The radiosonde- and ground-based vertical cloud fractions
in each 100-m bin is defined as the number of times a cloud or portion of cloud is detected in that
bin divided by the total number of vertical profiles for each synoptic pattern. The average profiles
of vertical cloud fractions derived from the two cloud products in six patterns during 2001–2010 are
shown in Figure 6. A common characteristic exhibited by all six synoptic patterns is that the cloud
retrievals from the two datasets are bimodal with a lower peak located in the boundary layer and an
upper peak located in the high troposphere. However, large variations in magnitude are demonstrated
among different synoptic patterns at a more detailed level. With regard to the lower-level peak, most
cloud layers are detected in CF pattern (Radiosonde: 33%; ARSCL: 27%) and much fewer cloud layers
occur in the other patterns, especially in AC (Radiosonde: 5%; ARSCL: 4%). For the upper-level peaks,
the maximum and minimum values also occur in patterns of CF (Radiosonde: 29%; ARSCL: 20%) and
AC (Radiosonde: 13%; ARSCL: 6%), respectively.

The agreement between the two cloud products is reasonable for the low/middle-level clouds
located below 6 km at the majority of altitude levels in all six patterns. Their absolute difference
is generally less than 3%, except that the relative larger bias of the two cloud approaches tends to
occur in CF and AE patterns when the radiosonde overestimates the cloud fraction than the ARSCL
estimation by at most up to ~5% at a few levels. Compared to the low/middle-level clouds, much
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greater discrepancies between the two methods are clearly demonstrated for the cloud layers in
the upper troposphere. Many more high clouds are generated in all six patterns by the radiosonde
than observed by the ARSCL products, which should be partially associated with the limitation of
ground-based instruments in detecting some high cirrus associated with the attenuation effect of lower
clouds and fog on the radar-lidar signals [7]. Furthermore, the magnitudes of the bias between the two
cloud retrievals (radiosonde-ARSCL) vary among different synoptic patterns. Their maximum biases
are 7.7%, 9.9%, 11.4%, 13.1%, 13.3% and 6.8% that generally locates at ~10 km for the six patterns,
respectively. Although these biases are smallest in AC pattern (6.8%), it should be noted that its relative
bias, denoted as (radiosonde-ARSCL)/radiosonde, is rather large because of the least clouds observed
by the two approaches in this pattern.
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3.3. Collocation of Cloud Boundaries

The cloud boundaries, i.e., cloud-base height and cloud-top height derived from the
radiosonde and ARSCL data, are compared according to different synoptic patterns in this section.
The ground-based observations provide cloud information over the observational site, but the
radiosonde measurements generate cloud information along a slanted pathway. When comparing the
two cloud data sets, consideration must be taken of the differences caused by balloon drifting and the
instantaneous nature of ground-based remote sensing measurements taken at a fixed site. Due to the
cloud horizontal motion caused by the wind field, the ground-based data collected during a period
of time could to some extent represent the cloud distributions over the areas surrounding the SGP
site. To compensate the spatial difference between the radiosonde and ARSCL, comparisons of cloud
boundaries cannot be limited to an instantaneous moment, but should be made for a certain time
range. In this study, the cloud boundaries from ARSCL data collected during the radiosonde launch
periods (generally 1.5 h for each radiosonde launch) are collocated in vertical with the radiosonde
measurements. A total of 5278 collocated cloud boundaries from individual radiosonde and ARSCL
retrievals are obtained from the six synoptic patterns. Figure 7 shows the comparisons of cloud-base
heights between the two cloud retrieval methods. Colored dots in each panel represent the radiosonde
drift distances when the cloud-base height is detected by the radiosonde. In general, a good agreement
of the cloud-base heights between the radiosonde and ARSCL are demonstrated for all patterns, as
shown by the vast majority of data points falling along or overlapping the 1:1 line. As indicated by
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the colors of the dots, a few outlier data are due in part to the mismatched observations in space
between the radiosonde and ground-based measurements as a result of the relative large balloon drift
distances [24]. The correlation coefficients are 0.93, 0.93, 0.95, 0.90, 0.90 and 0.90 for the six patterns.
Given that most of data points are situated nearby the 1:1 line in Figure 7, the histograms of the
differences for the cloud-base heights from the radiosonde and ARSCL data are further presented in
Figure 8. The occurrence frequencies are ≥80% for the absolute differences of cloud base-heights less
than 0.5 km in all six patterns, of which the maximum is 90% in CC pattern. The mean biases of the
two retrievals (radiosonde-ARSCL) are 0.16 km, 0.26 km, 0.15 km and −0.14 km in CC, CF, AE and AC
patterns, respectively; they are almost zero for both WP and CB patterns.
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Figures 9 and 10 show the comparison of collocated cloud-top heights retrieved from the two
approaches under six patterns. Similar to the cloud-base heights, the agreements of the cloud-top
heights are reasonable with most of the data points located in the vicinity of the 1:1 line; their correlation
coefficients are generally larger than 0.90 with the maximum value of 0.95 in CB pattern. The mean
biases (radiosonde-ARSCL) for cloud-top heights are 0.32 km, 0.16 km, 0.10 km, 0.47 km, 0.35 km
and 0.01 km for the six patterns, respectively. The occurrence frequencies hover around 80% for their
absolute differences of cloud top-heights less than 0.5 km under different synoptic patterns.
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The previous comparisons of cloud-base height and cloud-top height are summarized in
Tables 1 and 2. Note that the clear sky cases are not taken into account in the standard deviation,
correlation coefficient and the other parameters calculations. On average, both the cloud-base



Atmosphere 2016, 7, 154 11 of 16

height and cloud-top height are generally higher in the radiosonde retrievals relative to the ARSCL
measurements under different patterns. An exception occurs in AC pattern when lower cloud-base
height is determined by the radiosonde relative to the ARSCL with a bias of −0.13 km. The few cloud
layers in this pattern might increase the possibility of mismatch between radiosonde and ARSCL
measurements as a result of the balloon drift. A much closer inspection of Tables 1 and 2 further
reveals a few interesting features. First, the correction coefficient (mean bias) generally varies in a
similar trend for both cloud-base height and cloud-top height among the six patterns. This suggests
that, for a certain synoptic pattern, it has the consistent impact on the agreement of the two methods
in terms of both cloud-base height and cloud-top height. Second, the cloud boundaries tend to
agree better for the two cloud methods in the synoptic patterns dominated by overcast and cloudy
skies (CC, WP and CB) compared to the patterns characterized by scattered cloudy and clear skies
(AE and AC). In the later synoptic categories, the occurrence and properties of scattered (or few)
clouds are very complex and highly variable in space and time, which will influence the agreement
of the two cloud methods due to the difference of the fixed ground-based instruments and drifting
balloon. The maximum difference of the two cloud products occurs in CF pattern with an average bias
of 0.26 (0.47) km for the cloud-base (cloud-top) height. The weather condition in this pattern is
often rainy and windy. The performance of the radiosonde and ground-based cloud generations
decreases under the rainy weather conditions due to the wetness of the radiosonde sensors and the
attenuation effect of precipitation on the radar-lidar signals [7,24]; meanwhile, the wind will increase
the radiosonde drift thus decrease the agreement of the two cloud products. Last, the agreement of the
cloud-base height from the two approaches is better relative to the cloud-top retrievals, which can be
explained as follows. Except that the attenuation effect of cloud layers deteriorates the capability of
ground-based instruments in detecting the cloud-top height, the accuracy of radiosonde observations
may become worse within a certain distance after the balloon travels through a cloud layer due to the
time lag error associated with the wetness of the sensors [24]. However, it seems that this time lag
effect may decrease in AC pattern which is dominated by clear sky and dry air in the atmosphere,
resulting in a minimum bias of 0.01 km for the cloud-top height between the two estimations in this
pattern (Table 2).

Table 1. Comparisons of cloud-base height retrieved from the radiosonde and ARSCL data under six
synoptic patterns in terms of the mean bias (units in km), the standard deviation (StdDev; units in
km), the correlation coefficient (R), and the occurrence frequency of the absolute differences of cloud
base-heights less than 0.5 km for the two methods (OC0.5 km).

Patterns Bias StdDev R OC0.5 km

CC 0.16 1.40 0.93 90%
WP 0.00 1.49 0.93 86%
CB 0.01 1.13 0.95 88%
CF 0.26 1.60 0.90 84%
AE 0.15 1.63 0.90 85%
AC −0.13 1.56 0.90 80%

Table 2. Comparisons of cloud-top height retrieved from the radiosonde and ARSCL data under six
synoptic patterns in terms of the mean bias (units in km), the standard deviation (StdDev; units in
km), the correlation coefficient (R), and the occurrence frequency of the absolute differences of cloud
top-heights less than 0.5 km for the two methods (OC0.5 km).

Patterns Bias StdDev R OC0.5 km

CC 0.32 1.71 0.92 83%
WP 0.16 1.67 0.92 77%
CB 0.10 1.25 0.95 82%
CF 0.47 1.92 0.89 76%
AE 0.35 1.81 0.90 76%
AC 0.01 1.68 0.90 76%
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3.4. Vertical Distributions of Cloud-Base Height, Cloud-Top Height and Cloud Thickness

In view of fact that clouds in different vertical layers dictate the adiabatic heating rate and the
radiation balance of the atmospheric column, the comparisons of the probability density functions
(PDF) of the cloud-base height (CBH), cloud-top height (CTH) and cloud thickness (CT) of total
cloud layers derived from the simultaneous radiosonde and ARSCL products collected during the
radiosonde launch periods are further investigated in this section. Figure 11 presents the vertical PDFs
of CBH spaced at 1 km interval for the six synoptic patterns. The two retrievals match fairly closely
at all altitude levels in CC pattern which is frequently overcast. A uniform manner presented in the
followed four patterns (WP, CB, CF and AE) is that the radiosonde-based PDF is often greater than the
ARSCL measurements by <3% between 5 km and 10 km. Another distinct discrepancy should be noted
is that the ARSCL-based PDF is greater than the radiosonde estimations by ~6% for CBH below 1 km
in CF pattern. Although a similar structure is grossly presented by the two approaches in AC pattern,
a displacement of the two profiles tends to occur in the vertical above 5 km; the ARSCL places the peak
located around 11 km much higher in the upper troposphere relative to the radiosonde retrievals.
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Figure 11. Probability density function (PDF) of cloud-base height derived from radiosonde (blue
line) and ARSCL (red line) in the synoptic patterns of: CC (a); WP (b); CB (c); CF (d); AE (e);
and AC (f) during 2001–2010 at the SGP site. The space interval is 1 km in each panel.

Figure 12 illustrates the vertical CTH PDF derived from the two methods under six synoptic
patterns. Overall, radiosonde retrievals are very close to the ground-based remote sensing product
in the CC pattern, being consistent with the CBH comparison conducted above. The two cloud
approaches compare favorably with each other above 1 km in the CF pattern; however, the radiosonde
differs greatly from ARSCL for CTH ≤ 1 km by 3%. Relative to the radiosonde, ARSCL data tend to
overestimate the CTH PDF at 10–12 km in remaining four patterns; the maximum absolute difference
is 7% at 11 km in AC pattern. The radiosounding method may miss some thin high cloud layers because
the radiosonde may not detect changes in the relative humidity due to its decreasing performance
at high altitude levels. However, less CTH PDF is generally reported by ARSCL at 5–10 km and
above 12 km.



Atmosphere 2016, 7, 154 13 of 16

Atmosphere 2016, 7, 154  13 of 16 

 

 
Figure 12. PDF of cloud-top height derived from radiosonde (blue line) and ARSCL (red line) in the 
synoptic patterns of: CC (a); WP (b); CB (c); CF (d); AE (e); and AC (f) during 2001–2010 at the SGP 
site. The space interval is 1 km in each panel. 

The occurrence frequencies of CT spaced at 1 km interval for six patterns are shown in Figure 
13. In general, excellent agreements of CT distribution between the two cloud retrievals are 
exhibited in all patterns; the most PDF (~80%) occurs in CT ≤2 km. At a more detailed level, it is 
revealed that the greater PDF for CT ≤ 1 km tends to be detected by ARSCL than estimated by the 
radiosonde with the maximum difference of 9% in AC pattern. This is likely that the radiosonde miss 
some thin high cloud layers due to its decreasing performance of relative humidity detections at 
high altitude levels. The mean thicknesses derived from the radiosonde (ARSCL) cloud products are 
1.5 (1.6) km, 1.3 (1.2) km, 1.4 (1.3) km, 1.7 (1.7) km, 1.5 (1.3) km and 1.3 (1.0) km for the six synoptic 
patterns, respectively. The thickest cloud layers are simultaneously detected by the two datasets in 
CF pattern (1.7 km). Overall, the mean thickness of the two cloud methods agrees well; their largest 
discrepancy is 0.3 km in AC pattern. 

 
Figure 13. PDF of cloud thickness derived from radiosonde (blue line) and ARSCL (red line) in the 
synoptic patterns of: CC (a); WP (b); CB (c); CF (d); AE (e); and AC (f) during 2001–2010 at the SGP 
site. The space interval is 1 km in each panel. 

Figure 12. PDF of cloud-top height derived from radiosonde (blue line) and ARSCL (red line) in the
synoptic patterns of: CC (a); WP (b); CB (c); CF (d); AE (e); and AC (f) during 2001–2010 at the SGP
site. The space interval is 1 km in each panel.

The occurrence frequencies of CT spaced at 1 km interval for six patterns are shown in Figure 13.
In general, excellent agreements of CT distribution between the two cloud retrievals are exhibited in
all patterns; the most PDF (~80%) occurs in CT ≤2 km. At a more detailed level, it is revealed that the
greater PDF for CT ≤ 1 km tends to be detected by ARSCL than estimated by the radiosonde with
the maximum difference of 9% in AC pattern. This is likely that the radiosonde miss some thin high
cloud layers due to its decreasing performance of relative humidity detections at high altitude levels.
The mean thicknesses derived from the radiosonde (ARSCL) cloud products are 1.5 (1.6) km, 1.3 (1.2)
km, 1.4 (1.3) km, 1.7 (1.7) km, 1.5 (1.3) km and 1.3 (1.0) km for the six synoptic patterns, respectively.
The thickest cloud layers are simultaneously detected by the two datasets in CF pattern (1.7 km).
Overall, the mean thickness of the two cloud methods agrees well; their largest discrepancy is 0.3 km
in AC pattern.
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Figure 13. PDF of cloud thickness derived from radiosonde (blue line) and ARSCL (red line) in the
synoptic patterns of: CC (a); WP (b); CB (c); CF (d); AE (e); and AC (f) during 2001–2010 at the SGP
site. The space interval is 1 km in each panel.
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4. Conclusions

A profound knowledge of cloud profile is undoubtedly required for furthering our understanding
of cloud climate effects. However, significant discrepancies still exist in cloud retrievals from different
cloud products associated with their various inherent features and the high complexity of cloud
distributions. Therefore, comparison of cloud profiles from different methods is of significance that is
absolutely required for the improvement of these methods. As the major field measurement facility
established by the Department of Energy’s ARM program in north-central Oklahoma, cloud product
from the ground-based active remote sensing sensors has been provided at the SGP site over many
years. Meanwhile, the cloud profile can also be derived from the radiosonde measurements over this
region. The cloud retrievals from these two methods are quantitatively compared according to six
prevailing large-scale synoptic patterns in this study.

A clear interaction between the large-scale synoptic pattern and the regional cloud cover is
revealed over the SGP domain. Both the radiosonde and ARSCL-based total cloud amounts over the
SGP site are characterized by the least and the most occurred in patterns of AC (Radiosonde: 44%;
ARSCL: 33%) and CF (Radiosonde: 84%; ARSCL: 72%), respectively, which is consistent with the
variation trend exhibited by the NCEP NARR product. Moreover, the large-scale synoptic patterns
have impact on the consistency of cloud retrievals from the radiosonde and ground-based cloud
product. The minimum and maximum differences of total cloud cover between the radiosonde and
ARSCL data are 10.3% and 13.3% in patterns of CC and WP, respectively; their mean bias is 11.8% for
all six patterns. Compared to the synoptic patterns characterized by scattered cloudy and clear skies
(AE and AC), the collocated cloud boundaries (cloud-base height and cloud-top height) tend to agree
better for the two cloud methods in the synoptic patterns dominated by overcast and cloudy skies (CC,
WP and CB); the rainy and windy weather conditions in CF synoptic pattern influence the consistency
of the two cloud retrieval approaches. This should be associated with the various detecting capabilities
inherent to the two types of instruments, the difference between the fixed ground-based instruments
and the drifting balloon, and the high complexity and variations of the cloud distributions. Excellent
agreements of the cloud thickness between the two cloud retrievals are exhibited in all six patterns.

Validation of climate models requires an accurate knowledge of cloud macrophysical properties
from the observational data. The current study provides the statistical characteristics of consistencies
and/or discrepancies between the radiosonde- and surface-based cloud products on basis of six
prevailing large-scale synoptic circulations. Several potential factors accounting for their discrepancies
are also discussed. The results are expected to be beneficial for obtaining a more reliable cloud product
to be used for the validation of climate model simulations.
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