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Abstract: Airport activities can contribute to the emission of ultrafine particles (UFPs) in the
environment. The aim of our study is to assess the airborne levels of UFPs in a military airport and in
the surrounding area. Four outdoor air samplings were carried out inside a military airport during
flight activities, twelve nearby the military airport, five in an urban area, and one in a rural area.
We used a portable Electrical Low Pressure Impactor to detect the particle number size distribution
as well as the number concentration. Particles were chemically analyzed by field emission scanning
electron microscopy. Inside the military airport, we observed an inverse correlation with distance
from flight activities. The median UFP count ranged 3.7 x 103 2.9 x 10* particles/cm3, and the
highest UFP count was 4.0 x 10° particles/cm? (during the taxi and take-off activities). Nearby the
airport, UFP number concentrations were more elevated in the winter season and we did not observe
a correlation with flight activities. Our results show a constant presence of UFPs regardless of
the flight activities nearby the airport. Other anthropic sources may generate UFP concentrations
significantly higher than those generated by airport activities.
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1. Introduction

Air travel, both civilian and military, have been growing rapidly, and will keep increasing in the
next decades [1].

Various studies have shown that air quality near airports can be impaired by the emission of
airborne particulate matter (PM) from the aircrafts [2] and the ground support vehicles, which might
have a potential impact on the environment and the health of people living near or working at the
airports [3].

Health effects associated with PM exposure include respiratory and cardiopulmonary effects,
increased hospitalization rates, and increased mortality rates from all causes and from lung cancer
specifically [4,5]. In 2013, the International Agency for Research on Cancer classified diesel engine
exhaust, a major source of PM, as a Group 1 human carcinogen [6].
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Ultrafine Particles (UFPs, number based diameter <= 100 nm) are considered to cause adverse
health effects [7], which might be diverse, more severe and frequent than those generated by larger
particles, because of their increased surface area per unit mass, and their ability to penetrate cells [8,9].

Previous studies have tried to clarify what aircraft activities would contribute to UFP emission,
by measuring emissions next to a grounded aircraft standing still with engines running at different
thrust levels [10,11], or in a controlled cycle [12,13].

However, aircraft operations may differ from a standard cycle, depending on the piloting
techniques, flight traffic, and airport layout. In particular, the major factors that affect the total
particulate emissions from each aircraft are the engine type, the time spent at each landing-take off
(LTO) engine state, which is in turn related to flight at any airport, number of passengers and airport
schedule, and its mechanical history [14].

While those studies have detected UFPs in aircraft emissions [14,15], their results have not
identified their relationship with the operating conditions and with exposure of resident populations
living nearby to airports. Indeed, other variables may influence the airborne UFP formation,
coagulation, growth, and dispersion at the exit from the aircraft engine, including meteorological
conditions such as wind speed and direction, and humidity.

A second set of studies was addressed to evaluate airborne UFP concentration in airports and
in the surrounding urban areas [16,17], with only a few capable of quantifying the contribution of
aviation sources related to other local and regional sources. The main difficulty in these studies was the
occurrence of numerous other sources emitting similar fuel combustion products around the airports.

Furthermore, characterization was complicated by the fact that an aircraft is a point source that
moves rapidly in a three-dimensional area, and only for a short time on the ground; another problem
was related to the flight activities and the prevailing wind direction in the examined sites.

Recently, two studies that reported high airborne UFP concentrations in communities downwind
of Los Angeles International Airport (LAX) and Santa Monica Airport (SMA, California) [18-21]
demonstrated a significant contribution by the aircraft activities on departure on the UFP concentrations
in close proximity to departure runways, with evidence of rapid plume evolution in the near fields.

Another study, conducted in an aviation base [22], showed the relationship between several main
short-term peaks on UFP concentration during pre-flight operations, take-offs, and landings of jet
engine aircrafts.

The object of this study is to estimate the contribution of aircraft activity emissions on the
concentration of UFPs in areas nearby and inside one military airport. The sampling sites, outside the
airport, were located in kindergarten courtyards, as children are most susceptible to airborne particle
exposure [23], but the acquired data can provide useful information for the assessment of the impact
on local air quality, and can be used to support a correct risk perception by the population.

2. Experiments

In this paper, we present results of 12 outdoor air samplings carried out in three different sites at
different times, between January and June 2014. The three sampling sites (Figure 1) were located in
the courtyard of kindergarten schools at distance of 2.4 km (Site N. 1), 3.5 km (Site N. 2), and 3.3 km
(Site N. 3) from the center of the runway of a military airport.

Because of the impossibility of carrying out multiple samplings at the same time,
the measurements were repeated four days in each site: two during wintertime and two during
springtime. Each sampling lasted no less than 4 hours. The courtyards of kindergarten schools were
chosen as representative of areas attended by susceptible people (children). In particular, the sampling
instrument was placed at least 15 meters from the road and at least 15 meters from other possible
emission sources (e.g., the school kitchen).

In order to match aircraft activities with the UFP concentration in specific areas, flight operations
and aircraft passages above the sampling sites were recorded for each sampling, along with exact
hour and meteorological data, including temperature (min and max), average wind speed, wind
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direction, and relative humidity. No pre-flight data were available, which are reportedly responsible
for a significant amount of UFP emissions [2].

O. SiteN. 1

Figure 1. Site N. 1, Site N. 2, and Site N. 3, nearby the military airport.

In order to inquire into the role of the flying activity inside the airport, we carried out four outdoor
air samplings (Figure 2), by means of Electrical Low Pressure Impactor (ELPI), inside the military
airport during flight activity of some specific military aircrafts (Tornado Fighter):

e at a distance of 300 meters from the take-off area, situated to the south of the runway, and
250 meters from the taxiway (sampling N. 1);

e  atadistance of 1400 meters from the take-off area and 100 meters from the taxiway (sampling N. 2);

e at a distance of 150 meters from the take-off area, situated to the south of the runway, and
100 meters from taxiway (sampling N. 3);

e outside the helicopter hangar at a distance of 600 meters from the take-off area, situated to the
north of the runway, and 30 meters from taxiway (sampling N. 4).
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Figure 2. Sampling sites at the military airport.

All the sampling sites inside the military airport were chosen in order to have a downwind
position from the emitting sources, depending on the operational needs of the aircraft activities.

These measurements were conducted in September 2014 and February 2015.

As for the measurements outside the airport, exact timing, meteorological conditions, and aircraft
activities were recorded. Each sampling lasted no less than 3 hours.

Additionally, in March-June 2014 we carried out five outdoor air samplings in the courtyard of a
kindergarten in an urban area with high traffic density, and one outdoor air sampling in the courtyard
of a school in a rural area, to serve as background environmental conditions.

A summary of measurement times and meteorological data of all sampling sites are reported
in Table 1 (nearby airport, urban, and rural area) and Table 2 (inside the airport). In Table 2 the
measurement site is defined with respect to the runway.
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Table 1. Measurement times and meteorological data during each sampling (nearby airport, urban,
and rural area).

Season Sampling Date Time (h) Temperature Average Wind Wind Relative Measurement
Site Range (°C) Speed (knots)  Direction Humidity (%) Site
N1 1 February 2014 09:50-12:48 8-15 5.37 WNW 66-87 Upwind *
. 20 February 2014 08:53-12:46 14-15 14.25 NW 62-71 Upwind *
Winter N.2 6 February 2014 09:35-12:58 13-19 6.28 WNW 55-82 Downwind *
: 8 February 2014 10:39-12:48 10-16 9.28 w 63-87 Downwind *
25 January 2014 08:49-12:51 8-14 14.87 NwW 50-76 —
N.3 13 February 2014  10:27-12:34 5-16 8.12 w 82-87 —_
N1 21 May 2014 09:10-13:02 23-24 18.75 SSE 69-73 Downwind *
. 18 June 2014 09:30-13:01 24-28 13.25 NW 34-69 Upwind *
N.2 29 May 2014 09:35-13:29 20-26 7.71 w 38-64 Downwind *
. 20 June 2014 09:15-13:15 24-31 10.00 NW 27-64 Downwind *
N.3 20 May 2014 09:23-13:00 20-22 16.12 SSE 68-83 Upwind *
Spring : 17 June 2014 09:06-12:57 24-27 11.00 NNW 47-64 Downwind *
28 March 2014 11:10-13:50 13-18 6.17 NwW 57-82 —_
29 March 2014 09:26-13:25 14-17 16.06 E 62-77 —
Urban 31March 2014 08:27-13:36 11-17 473 SE 73-100 —
area 16 June 2014 09:01-12:57 25-27 9.54 w 44-57 —
23 June 2014 09:09-13:00 26-29 16.10 SSE 44-74 —
Rural area 2 April 2014 09:30-13:28 10-20 10.25 SE 50-74 —
*: Position from the military airport; —: Neither downwind, nor upwind

Table 2. Measurement times and meteorological data during each sampling (inside the airport).

. Average . .
Samplin . Temperature . Wind Relative Measurement
site Date Time(h) Rl te)  WindSpeed i Humidity (%) Site
(knots)
N.1 5 September 2014 09:01-12:45 26-31 10.33 NNW 33-57 Downwind
N.2 8 September 2014 08:51-12:51 29-32 12.25 SE 45-66 Downwind
N.3 12 September 2014 09:25-12:47 29-32 14.25 NW 38-54 Downwind
N.4 12 February 2015 10:27-13:36 10-16 11.20 SSE 67-87 Downwind

The monitoring program was carried out with ELPI+™ (Dekati, Tampere, Finland). A detailed
description of the ELPI+™ function and its functioning has been published [24]. The ELPI+™ is
connected to a vacuum pump with a flow rate of 0.6 m3/h and a pressure of 40 mbar measured
at the final stage of the impactor. Particle size distribution and concentration are measured in the
size range between 6 nm-10 um, with a 10 Hz sampling rate. In this study, we focused on particles
ranging between 6 nm and 94 nm in size, divided into four classes of geometric mean aerodynamic
diameter (Di) of 10, 22, 39, and 72 nm, which correspond to the first, second, third, and fourth size
fraction, respectively.

During selected samplings, particles in the second, third, and fourth size fractions were collected
on the aluminum foil substrates to be subsequently analyzed by Field Emission Scanning Electron
Microscopy (FESEM SUPRA™ 35 with GEMINI column technology, Carl Zeiss, Oberkochen, Germany).
For technical reasons this procedure was not possible for particles in the first size fraction (Di 10 nm).

3. Results

3.1. Outdoor Air Sampling Nearby the Airport

Figure 3 shows UFP counts (number of particles/cm?) in the courtyard of three kindergartens
nearby the military airport during wintertime and springtime samplings; whether any flight activity
occurred during the sampling is indicated in the subheading of each column.
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Figure 3. Range, interquartile range, and median ultrafine particle (UFP) number concentrations by
site and season.

In springtime, results did not vary by flight activity. Values were comprised within a limited
range, with UFP median counts between 3.2 x 10°-8.8 x 103 part/cm3 (max 1.3 x 10° part/cm?), and
increased in winter conditions, in which median values between 4.1 x 10*-1.5 x 10° part/ cm3 (max
3.8 x 10° part/cm?) were detected. Still, no change was observed in relation to the flight activities.
The maximum value, detected on 21 May 2014, is not shown in Figure 3, since the Y scale was limited
to 4.0 x 10° part/cm3 to make the chart readable.

3.2. Air Sampling Inside the Airport

The sampling sites inside the military airport were located downwind to the take-off and taxiing
area. The median UFP count ranged 3.7 x 103-2.9 x 10* particles/cm? across the sampling sites, with
a highest UFP count of 4.0 x 10° particles/cm? at the sampling site N. 4. Figure 4 shows the graphs of
the samplings inside the military airport.

The highest UFP count was measured near the helicopter hangar, 30 meters from the taxiway on
the north part of the runway, during the taxi and take-off activities. In sampling site N. 4, helicopter
engines were tested nearby the sampling site, which contributed to the emission from aircraft activities
in the last fraction of the sampling period. In Figure 4 (as for Figure 3), the maximum values are not
shown as the Y scale was limited to 4.0 x 10° part/cm3 to make the chart more readable.

Figure 5 shows, as an example, UFP counts at the sampling sites N. 1 and N. 3 located about
2400 m upwind from the main airport building, the first outside its fences about 150 meters from the
take-off area, and the second inside the fences and 100 meters from the taxiway. The overflying aircraft,
landings, take-off, and taxi times are highlighted with vertical lines in the graph. The spider chart
indicates the prevailing wind direction during sampling. The UFP count at the sampling site N. 1 does
not vary with the flight activities (passage of the aircraft above the sampling site). On the contrary,
the UFP count at sampling site N. 3 increases with flight activity.
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Figure 5. UFP count and prevailing wind direction during sampling at sites N. 1 and sampling N. 3

inside military airport.
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3.3. Air Samplings in Urban and Rural Areas

In the urban area, UFP values were higher than the rural area. In particular, in the urban area
(five samplings) median values between 1.6 x 10* —3.9 x 10* part/cm? (max 9.2 x 10° part/cm?®) were
detected, while in the rural area (one sampling) the median UFP count was 7.5 x 103 part/cm? (max
1.5 x 104 part/cm3).

3.4. Morphology of Ultrafine Particles

Figure 6 shows the distribution in UFP number, mass, and surface area by location of the sampling
sites, whether inside the military airport, the nearby area, the urban, or the rural area. The bar chart
shows the median of the four particle size fractions (10, 22, 39, and 72 nm).
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Figure 6. UFP number, mass, and surface area distribution by particle size fraction and
sampling location.

In all the locations, the count distribution shows a mode in the nucleation range equal to 10 nm,
although with different concentrations by location. However, in the urban area and nearby the
military airport winter samplings, particles of the 22, 39, and 72 nm size fraction are more represented,
particularly in the UFP mass distribution. The mass distribution shows a mode at the 72 nm size
fraction in all the areas. In the winter samplings nearby the military airport the mass distribution
shows a peak also at the 10 nm size fraction. The surface area distribution of winter samplings nearby
the military airport is bimodal, with the greatest contribution provided by the 10 nm size fraction,
followed by the 72 nm size fraction. The larger size fraction prevails in the other locations, with the
finest fraction more represented in the military airport.

Figure 7 shows an example of the morphology of particles collected during the sampling in the
kindergarten courtyards in the urban area.
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Figure 7. Scanning electron microscopy (SEM) image of particles from a sampling site located in an
urban area.

The morphology of deposited particles seems to vary, in form of single spherical primary particles
<94 nm and irregular aggregates/agglomerates of particles. We did not find differences in morphology
among the sampling sites.

4. Discussion

In our study, the median winter UFP count in the outdoor air samplings nearby the military airport
was higher than the spring median values in all sampling sites. Such findings suggest a role of domestic
heating with fireplaces and pellet stoves, particularly widespread in those communities, which are
considered to be a relevant contributor to airborne particulate matter [25]. Moreover, atmospheric
stability plays the most important role in the transport and dispersion of air pollutants. In the
case-study considered, winter represents the most stable season and spring the most unstable, as
shown in Table 2 in regards to the direction and speed of winds

Springtime UFP counts at the three sampling sites nearby the military airport were similar to
those detected in a rural area, and did not vary with the flight activities. In this area, UFP counts in a
no flight day were approximately twice as high as those detected during the passage of aircrafts.

Consistently with our observation, elevated UFP counts were observed 660 m downwind at Santa
Monica, CA Airport, and background levels were observed 830 m downwind to the civil airport. It is
worth highlighting that the Santa Monica airport study was conducted in an urban area nearby a civil
airport, where aircraft size and flight activities are much larger than in our study area [20].

The measurements carried out inside the military airport show the UFP count increases with
flight activity.

The highest UFP count was measured at the sampling sites nearest to the taxiway, at a distance of
100 and 30 meters, respectively, which suggests a correlation between UFP count and distance from
the source, which is consistent with other reports [18,19].

In all four sampling sites, following the emission peak, we observed a fast decrease of the UFP
count to the previous background levels. During all the samplings, we observed several peaks that
were apparently non-correlated to flight activities near the sampling sites; this might be due to the
ground activities (idling and taxiing operation, ground vehicles emissions) inside the military base.
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While peaks levels were higher 150 m from runway in respect to 300 meters, the median UFP
count comparison was reversed. This might be due to the meteorological conditions variability (wind
speed and wind direction) between the two sampling sites.

The values we detected in an urban area appear to be similar to those reported in other studies [26].

5. Conclusions

Our results do not show a correlation between military flight activities and the UFP counts in
the residential areas nearby a military airport. Nonetheless, the measurements carried out inside the
airport during flying activities showed an increase in the UFP count, with a tendency to decrease with
distance from the emission source, which confirms that distance from the source is an important factor.
On the other hand, the UFP count during flight activities at the military airport was comparable to that
measured in the urban area, with a prevalence of the smallest 10 nm size fraction number and surface
area in the airport and of the largest 72 nm mass and surface area in the urban area.

Limitations of the study include a limited sampling time (4 hours per day on average, instead
of the whole day), the extreme variability of the phenomenon we investigated, the impossibility of
carrying out multiple samplings at the same time, and the execution of outdoor samplings only.

The ELPI+ impact collector successfully identified the particle size distribution and allowed for the
collection of separate samples to be analyzed chemically and morphologically by Energy-Dispersive
X-Ray Spectroscopy (EDS).

Further investigation is warranted to assess and characterize the impact of the UFP emission
sources and to assess indoor UFP levels, in order to more effectively estimate exposure at the population
level and to promote correct risk perception and management.
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