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Abstract: Most previous top-down global carbon monoxide (CO) budget estimates have used 

only concentration information and shown large differences in individual source estimates. 

Since CO from certain sources has a specific isotopic signature, coupling the concentration 

and isotope fraction information can provide a better constraint on CO source strength 

estimates. We simulate both CO concentration and its oxygen isotopologue C18O in the 3-D 

global chemical transport model MOZART-4 and compare the results with observations. 

We then used a Bayesian inversion to calculate the most probable global CO budget. In the 

analysis, δ18O information is jointly applied with concentration. The joint inversion results 

should provide more accurate and precise inversion results in comparison with CO-only 

inversion. Various methods combining the concentration and isotope ratios were tested to 

maximize the benefit of including isotope information. The joint inversion of CO and δ18O 

estimated total global CO production at 2951 Tg-CO/yr in 1997, 3084 Tg-CO/yr in 1998, 

and 2583 Tg-CO/yr in 2004. The updated CO budget improved both the modeled CO and 

δ18O. The clear improvement shown in the δ18O implies that more accurate source 

strengths are estimated. Thus, we confirmed that the observation of CO isotopes provide 

further substantial information for estimating a global CO budget. 
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1. Introduction 

Carbon monoxide (CO) is closely coupled to the hydroxyl radical (OH), which produces CO 

through the oxidation of methane (CH4) and other hydrocarbons while also being the predominant 

removal agent for CO as well [1,2]. Thus CO- and OH-related chemistry directly and indirectly affects 

the abundance of other atmospheric gases including methane and halocarbons [3]. In conjunction with 

NOx, CO also plays a central role in determining the abundance of tropospheric ozone [4,5]. Carbon 

monoxide has also been useful as a tracer of transport for pollutants [6,7] and fire emissions [8] and as 

an additional constraint for CO2 fluxes [9]. 

It is known that methane oxidation, fossil fuel and biofuel combustion, non-methane hydrocarbon 

(NMHC) oxidation, and the burning of biomass are the major sources of CO (Table S1). The complex 

distribution of these various sources of CO, together with the short lifetimes and large temporal 

variations of some of its chemical precursors, make it very difficult to estimate a reliable global CO 

budget [1,10]. Reaction with OH is the primary sink, removing approximately 90% of CO from the 

atmosphere [11–14], with surface deposition accounting for the remainder [15]. 

The inverse modeling technique estimates the source strength of atmospheric components by 

constraining a priori source inventories using observational data of chemical species and an atmospheric 

chemical transport model. Most previous CO source strength estimates have used only concentration 

information [14,16–23]. Regardless of the origin of concentration data sets (satellite, aircraft, or surface 

measurement), there were discrepancies of up to 30% in total CO inventory estimates as well as large 

variations among the source types of 15%–100% (Figure 1). 

Since fractionation of isotopes occurs in most biological, physical and chemical processes, the 

different source types of CO have different isotope ratios. Thus, isotope measurements provide strongly 

complementary source information for finding more realistic estimates [24–26].  

The isotope ratio of a sample is generally referenced to the isotope ratio in a standard material and 

expressed as: 

( 1) 1000sample

standard

R

R
δ = − ×  (1)

where R is the ratio of the minor isotope to the major isotope, and the standard used for oxygen isotope 

ratio (δ18O) of CO is Vienna Standard Mean Ocean Water (VSMOW). 

There have been several δ18O and δ13C values reported for the main sources of CO (Figure 2 and 

Table S2). Since δ13C and δ18O signatures of each CO source are uncorrelated, each carbon and 

oxygen isotope contains its own isotopic source signature and can be independently applied in the 

budget optimization [24,27]. For some sources, the C or O isotope composition is clearly different 

from the other sources and this enables us to separate it from the others. For instance, the oxygen 

isotopic signature of CO from the combustion process such as fossil fuel combustion and biofuel use is 

distinctively different to non-combustion sources (Figure 2). 
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Figure 1. Carbon monoxide (CO) sources and total amount of CO emissions derived from 

inversion analyses. 

 

Figure 2. Isotopic source signatures of CO based on data in Table S2. The size of each 

circle represents the relative source strengths estimated in IPCC 2001 report. 
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Including isotope information in an inversion study can lead to more accurate and precise source 

strength estimates [28], since isotope measurements provide significant additional information on the 

sources by enabling separate analyses of C16O and C18O, instead of CO alone. There have been several 

concentration-isotope ratio inversion schemes that were applied to find the best source strength 

estimates of atmospheric CO2 and CH4 [24,26,29–32]. For carbon monoxide, Bergamaschi et al. [24] 

analogously adopted the methane isotope inversion technique [33] and showed isotope information can 

constrain the CO sources more reliably. Along with a posteriori concentration, a posteriori isotope 

ratio also provides additional information to confirm the inversion results and this adds more reliability 

to the inversion results. 

The goal of the work presented here is to improve and develop a new joint inversion method of CO 
and its isotopes for accurate CO budget estimation. Thus, optimization methods that maximize the 

benefit of including isotope information are investigated. The availability of an enhanced 3-D global 

chemical transport model and updated isotope ratio measurements enables more robust CO inversion 

results. Here we use MOZART-4 (Model for OZone And Related chemical Tracers) [34] to simulate 

CO and δ18O in ways which agree fairly well with observations. Although, we ran the model for CO 

concentration and δ18O from 1996 through 2004, the availability of isotope measurements allows us to 

constrain CO budgets for 1997, 1998, and 2004. 

For constraining the sources of CO, although the δ13C signature from the methane oxidation is 

clearly different from the other sources, this source is relatively well known. In addition, δ13C 

signatures are close to each other for some major sources (e.g., NMHC oxidation and fossil fuel use) 

while the oxygen isotopic source signatures are distinctly different for those sources. Therefore, this 

study focuses on the oxygen isotopes of CO and shows these have a greater potential to separate the 

CO sources [1,35,36].  

The outline of the paper is as follows. The measurements of carbon monoxide concentration and its 

isotope ratios measurements used in this study are described in Section 2. In Section 3, detailed 

descriptions of the forward model simulation including inventories of a priori sources, methods of C18O 

incorporation, and evaluations of model performance are presented. Next, the development of various 

joint inversion schemes combining concentration and isotope ratio information are presented (Section 4). 

In Section 5, the results of inversion analyses including the source strength estimates are discussed.  

2. Observation of Atmospheric Carbon Monoxide and Its Isotopes 

The concentration and isotope ratios of CO used here have been measured from eight stations and 

most air samples were collected weekly or biweekly. The location of each station is shown in Figure S1. 

Table S3 shows the periods of model simulation, CO, δ13C and δ18O observations at each sampling 

location. Monthly averaged concentration and isotope ratios were used in the inversion analyses. A 

subset of the NOAA (National Oceanic and Atmospheric Administration) GMD (Global Monitoring 

division) network CO mixing ratios [37,38] was also used to get inversion results for comparison.  

Each concentration and isotope ratio data set was inverted individually or together to update CO 

source strengths.  

Because the average lifetime of tropospheric CO is approximately two to three months [39], the 

background CO can be considered zonally well-mixed in the atmosphere and its inter-hemispheric 
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mixing is quite limited [16,40]. Thus, sampling locations were carefully selected to represent the 

background state of the atmosphere at specific latitude zones. 

The methodologies of the sampling and measurement techniques are well described in [41–43].  

A brief description of the isotope analysis method is given here. The collected air samples are 

processed through a cryogenic vacuum extraction line. Water vapor and most trace gases are trapped in 

the first two cryogenic traps and CO is then oxidized to CO2 by Schütze reagent [44]. The produced 

CO2 is collected in the last cryogenic trap. Concentrations are determined by measuring the total pressure 

of the oxidized CO in a calibrated volume, and isotopes are measured in an isotope ratio mass 

spectrometer. The manometrically measured CO mixing ratios are consistent with the NOAA GMD 

CO measurements (Figure 3). Additionally, the National Institute of Water and Atmospheric Research 

(NIWA) data sets used gas chromatography method as well for quality control. The δ18O of CO2 is 

converted to the δ18O of CO and the precision of measurement is ±2 ppbv for concentration, ±0.2‰ for 

δ13C and ±0.8‰ for δ18O [36,41]. 

 

Figure 3. Global zonal distribution of CO concentration. The blue squares are National 

Oceanic and Atmospheric Administration Global Monitoring Division (NOAA GMD) CO 

and the red dots are CO used in this study, showing they are comparable. All available 

monthly mean concentrations during 1996–2004 are used for plotting. The error bar is the 

range of mean seasonal variation of the multi-year CO observations. 

3. Forward Model Description 

3.1. MOZART-4 and Its Tracer Version 

MOZART-4 is a 3-dimensional global chemical transport model handling 97 chemical and  

aerosol species with more than 196 chemical reactions. In past studies, MOZART-4 reproduced certain 

observations fairly well for CO [45], ozone [46], nitric acid [47], aerosol optical depth [48], and 
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isoprene [39]. MOZART-4 has also shown good agreement with other model simulations of CO [49] 

and O3 [50].  

A tracer version of MOZART-4 [34,39,51] was developed and applied in this study. Chemical 

reactions directly related to CO are included in the model along with prescribed mixing ratios and 

other parameters such as OH concentration and chemical production rates. This information is  

pre-calculated and saved from the simulation of a full-chemistry version of MOZART-4. Due to its 

simplified chemistry, the tracer version is much faster than the regular version of MOZART-4, yet still 

allows for analyzing the relationships between sources and concentrations or isotope ratios. In the 

tracer version of MOZART-4, we tagged CO for each source, isotopologue, and geographic regions of 

origin, which enables tracking the CO and its isotopes. Fossil fuel use, biofuel use, and biomass 

burning sources were divided into nine emission regions: North America, Central America, South 

America, North Asia, South Asia, Australia, Europe, North Africa, and South Africa. Hence, 62 tagged 

tracers are included in the model. 

The MOZART-4 simulation used in this study has a horizontal resolution of 2.8° × 2.8°. There are 

28 levels from the surface to the top of the stratosphere (2hPa). The model was driven by the  

NCAR reanalysis of the National Centers for Environmental Prediction forecasts (NCEP/NCAR 

reanalysis) [52,53]. The chemical species react and are transported in the model every 20 min. The 

time period of model simulation was from April 1996 to December 2004, and the first six months’ 

simulations were discarded since those months were considered as spin-up months.  

3.2. Sources and Sinks of Atmospheric CO  

The global budget of a priori CO sources used in this study is shown in Table 1. Carbon monoxide 

emissions from fossil fuel and biofuel use are taken from [17]. They derived CO source strengths from 

April 2000 to March 2001 using MOPITT (Measurement of the Pollution in the Troposphere) satellite 

observations and updated the inventory monthly for 15 regions. In Figure 1, some previous  

fossil fuel and biofuel CO inventories are shown and a priori fossil fuel and biofuel used in this study 

(679 TgCO/year) is a little lower than the average (799 TgCO/year).  

The Global Fire Emissions Database (GFED) version 2 [54] inventory is used for the biomass 

burning source of CO. Annual CO emissions estimated by the GFED-v2 are shown in Table 1. 

Carbon monoxide is also directly emitted from other natural sources: vegetation and the ocean. 

Carbon monoxide emissions from live or dead plant matter are from the photodegradation or 

photooxidation of cellular material [55] and oceanic CO is mainly produced by the photochemical 

oxidation of dissolved organic matter [56,57]. The inventories of these natural sources are taken from 

the POET atmospheric gas inventory [58] (Table 1). 

Methane-derived CO is the most accurately constrained CO source because of the long lifetime of 

CH4 (~10 years) [34,36,59,60], known atmospheric concentration, and well-known oxidation rate. 

Carbon monoxide from methane oxidation is calculated on-line using methane distributions specified 

by the zonal average of the monthly mean NOAA GMD surface CH4 measurements. 

In the tracer version of MOZART-4, NMHC-derived CO is calculated by subtracting on-line 

calculated methane-derived CO from the CO from total hydrocarbon oxidation taken from the full 

chemistry MOZART-4 runs. 
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Table 1. Annual mean of a priori source strengths used in this study (TgCO/year). Global 

Fire Emissions Database version 2 (GFED-v2) inventory is used for biomass burning 

carbon monoxide (CO). 

Sources Northern Hemisphere Southern Hemisphere 

Fossil fuel 340 25 
Biofuel 276 38 

NMHC oxidation 310 232 
Methane oxidation 497 379 

Ocean 8 12 
Biogenic 104 57 

Biomass burning 
(year)  
1997  
1998  
1999  
2000  
2001  
2002  
2003  
2004 

  
192  
397  
221  
199  
193  
222  
235  
192 

  
364  
193  
171  
137  
171  
196  
161  
212 

Reaction with the hydroxyl radical is the dominant sink of tropospheric CO. The calculated lifetime 

of methane from the MOZART-4 run is 10.5 years [34] and previous estimates of 9.4 years [59] 

indicate that the model may slightly underestimate globally averaged OH. Another minor CO sink is 

its surface deposition, which is controlled by the activity of microorganisms in the soil. The soil uptake 

velocity is a function of soil moisture content of different ecosystems and is implemented in 

MOZART-4 [34,61]. 

3.3. Incorporation of Oxygen Isotopes 

To analyze the oxygen isotopes of CO in the model, each source of CO was determined for  

C16O and C18O and specific chemical reaction rates and deposition velocities were assigned to each 

isotopologue. To build inventories of CO isotopes, for the direct emission sources, the total CO 

inventory is divided based on δ18O source signatures. 

Both isotopologues of carbon monoxide are produced from the CH4 + OH reaction in the model: 
16 18

4 methane methaneCH +OH 0.99799882 C O +0.00200118 C O→ × ×  (2)

where the coefficients of the products are the relative abundance of C16O and C18O for δ18O = 0‰. 

Oxidation reactions of each isotopologue are individually treated in the model since isotopic 

fractionation occurs during the CO + OH reaction due to kinetic isotope effects (KIE). In the  

model, the KIE is considered as the ratio of reaction rate constant of each isotopologue:  

KIE(δ18O) = k(C16O)/k(C18O) where k(C16O) and k(C18O) represent the reaction rate constants of  

C16O + OH and C18O + OH respectively. When CO is oxidized by the hydroxyl radical, the behavior 

of C18O shows an inverse mass dependence. Thus, C18O is preferentially removed from the atmosphere 
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(KIE = 0.990) and this is weakly dependent on pressure. The rate constant for CO + OH itself is 

strongly dependent on pressure [62,63]. The reaction rate (k) of the CO + OH reaction and the reaction 

rate ratio (η) between C16O and C18O are as follows: 
13

18

6 2

1.5 10 (1 0.6 [atm])

( ) ( 1) 1000

              11.6 0.0042 1.9 10

CO OH

CO OH

k p

O KIE

p p

−
+

+

−

= × × + ×

η δ = − ×

= − + − ×

 (3)

Carbon monoxide removal from soil uptake is similar to the normal KIE and the fractionation has 

been measured as η(δ18O)soil sink = 12‰ [64]. 

The isotopic source signature from fossil fuel combustion applied in this study is 23.5‰ [42,65]. 

Based on Brenninkmeijer [42] and Brenninkmeijer and Röckmann [10], 0‰ is used for δ18O in CO 

from methane and NMHC oxidation sources. Since two globally averaged estimates of δ18O in CO 

from biomass burning have been reported (16.3‰ [42] and 18‰ ± 1‰ [62]), a rough average of the 

estimates (17.5‰) is applied in the forward model. For the ocean source of CO, 15‰ is used in the 

model [66]. 

Since there is no previous study on the δ18O of biogenic CO and biofuel CO (Table S2), δ18O values 

from those sources are estimated in this study. δ18O of CO from the direct biogenic emission was 

estimated to be 0‰. While the factors controlling this source are not well known [67], it is a minor 

source of CO (60–160 TgCO/year) [1]. Thus, uncertainties originated from this assumption should not 

largely affect the modeled results. The isotopic source signature from biofuel use is assumed to be the 

same as δ18O of CO from biomass burning. 

3.4. Simulated Atmospheric [CO] and δ18O: Model Evaluation 

Because an inverse modeling method relies on the assumption that the physical-chemical connection 

between the parameters (e.g., source strengths and reaction constants) and the observed properties 

(e.g., concentration and isotope ratio) are known, if a chemical transport model does not simulate  

the real measurement accurately, its source estimates would lose reliability even though all of the 

mathematical assumptions are correct. To get more confidence in our forward modeling results, 

NOAA GMD CO concentrations are shown together in Figure S2. 

Three different measures are used here to assess the model performance: chi-squared (goodness of 

fit) test, model-observation difference and correlation. Usually the “correlation” represents 

dissimilarity of the trend or patterns between the modeled property and measured property and the 

“distance” shows the offset between the model and measurements. If a model accurately reproduces 

observational data, the distance (d) will be close to ‘0’ and correlation (ρ) will be close to “1”. The 

goodness of fit of a model statistically describes how well a simulated result fits the measured data set. 

The reduced chi-square (χred
2) is chi-square divided by the number of degrees of freedom and this 

estimates the ratio of the variance of modeled data set to the variance of measured data set. If the 

observed data are well explained by the model, the χred
2 value will be close to 1.  

The results of the evaluation at each station are shown in Table S5. For the overall data sets, the 

modeled and measured concentration showed a strong correlation (ρ = 0.94) which implies the model 

captures the seasonal and interannual variation of the CO sufficiently and the mean model-observation 
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difference was 10.5 ppbv. Figure 4 shows Southern Hemispheric (SH) CO concentrations are slightly 

overestimated by the model (SCO: 6.2 ppbv, BHD: 6.4 ppbv). This possibly results from the 

underestimation of OH or overestimation of some sources. However, if OH is increased, the modeled 

δ18O will be smaller and therefore further removed from the 1:1 correlation line (Figure 4). Hence, to 

fit both δ18O and CO, the strength of sources having a light δ18O signature (oxidation sources) should 

be reduced. 

 

Figure 4. A scatter plot of measured versus modeled concentration of CO (upper panel) 

and measured versus modeled δ18O of CO (lower panel). The black solid line depicts 1:1 

correspondence and the red line is a regression line of all measurements. The dotted lines 

are regression lines of the NH (dark gray) and the SH (light gray) data sets.  
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Since the NMHC oxidation source has a strong seasonality (Figure S3), even if the source strengths 

are decreased, it is not applicable to explain the year-round overestimation of the modeled CO 

concentration. In Manning et al. [35], they estimated CO yield from the CH4 oxidation is less than 0.7 

based on δ13C measurements while 1 is used for the yield in this study which is also assumed in 

Duncan et al. [68]. This suggests the presented CH4 oxidation source might be overestimated in the 

SH. In the NH, especially during the winter, modeled concentrations are generally lower than 

measured concentrations (Figure 4). For δ18O, the model accurately reproduced observations at high 

latitude stations (ICE, ZEP, ALT) while the modeled δ18O were lighter than the observations at  

mid- and low latitude stations. In high latitudes, the dominant sources (fossil fuel and biofuel 

combustion) have isotope ratios that are similar to the mean isotope ratios of total CO. Thus, the 

isotopic data is not sensitive to their source strength change, particularly during winter. For example, 

the wintertime oxygen isotope ratio from the biofuel source in high latitude is approximately 12‰  

and total δ18O‰ (shown in Figures S3 and S4 respectively), so variations in this source have  

a minimal effect on δ18O but can improve the concentration fit. In the mid- and low latitude NH, the 

underestimations of the modeled [CO] and δ18O implies that the 18O enriched sources (fossil fuel, 

biofuel and biomass burning) are underestimated in the model.  

The χred
2 of the forward model run for CO concentration was 0.65 and of δ18O was 2.29.  

The modeled δ18O shows good agreement to measurements, however, the simulation results of CO 

concentration were even more reliable; ρ[CO] = 0.94 > ρδ18O = 0.86 and χred
2
[CO] = 0.65 < χred

2
δ18O = 2.29. 

This supports the discrepancies of global CO source distributions of previous studies shown in Figure 1; 

the current estimation of total CO emission is relatively well defined, whereas the strength of  

each source is less certain. The δ18O signatures of natural sources such as biomass burning and  

NMHC oxidation have more variability and uncertainty which might lead to additional errors in the 

isotope simulation.  

4. Methodology for Inverse Modeling Analysis 

4.1. Bayesian Synthesis Inversion 

The Bayesian inversion method was used to find the best estimates of source strengths of CO. 

Assuming a Gaussian distribution for all probability distributions and a linear relationship between 

sources and concentrations [14,16,18,20,21,24], the measured concentration of CO can be expressed as: 

y = Kx + e  (4)

where y is the observed concentrations of CO, x is the vector of each CO source strength, K is the 

Jacobian matrix that links concentration and source strength calculated from the forward chemical 

transport model and e is the total error of measurement and model. Since K describes the sensitivity of 

CO concentration to the source change, Kx represents a modeled concentration of CO that expressed 

itself as a sum of the concentration of each source category. 

The maximum a posteriori (MAP) probability solution of the inverse problem is finding an x̂  

( ˆ ( | )x xP x y dx=  ) where the posteriori probability distribution is a maximum, i.e., 

ˆ T -1 -1 -1 T -1
a e a e ax = x + (K S K + S ) K S (y - Kx )  (5)
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Xa denotes a matrix of a priori source strength estimates, Se is the error covariance matrix of the 

model, Sa is the error covariance matrix of prior information and x̂  is a matrix of optimized source 

strengths. The covariance matrix of x̂  is expressed as: 

ˆ T -1 -1 -1
e aS = (K S K + S )  (6)

4.2. Assigning Uncertainties in the Analyses 

Two error covariance matrices are involved in the inversion calculation using the Bayesian method. 

Properly specifying and assigning those uncertainty terms is a particularly important part of the 

analysis since both inversion results and the a posteriori error covariance matrix (Ŝ) can be sensitive to 

the error covariance matrices [28,69]. 

4.2.1. Uncertainties in Measurements: Se 

The total observations error (Se) is a diagonal covariance matrix comprised of the following 

uncertainties: measurement error, representation error, and forward model error. 

2 2 2
observation measurements representation forward modele = e +e +e  (7)

The measurement error is the sum of all factors affecting the accuracy of the measurement 

including instrumentation error, CO extraction system error, and inter-calibration error. 

Brenninkmeijer estimated the maximum absolute uncertainty (m.a.u.) of CO concentration as 2% and 

of δ18O as 1‰ [42]. The same extraction system design for analyzing CO concentration and measuring 

isotope ratios are used in this study. The errors of measurements presented here (1 σ) are calculated to be 

1.3% and 0.27‰, respectively, through the more than 300 calibration runs. Therefore, the m.a.u. of our 

data sets is also conservatively estimated as 2% for concentration. Since, for δ18O measurements, the 

systematic error produced from the Schütze oxidant is dominant and is less than 1‰, the m.a.u. is 

estimated at 1‰ (Table 2) [41,42].  

Table 2. Estimated and measured uncertainties in isotopic and concentration measurements. 

Quantity Unit Uncertainty (1σ) e.m.a.u * 

  Brenninkmeijer [41] This Study  

CO ppbv 1.70% 1.31% 2% 
δ18O ‰, VSMOW 0.40‰ 0.27‰ 1‰ 

* e.m.a.u denotes estimated maximum absolute uncertainty, i.e., sum of systematic and random errors. 

To apply the errors to the inversion analysis, the estimated error of CO and δ18O are converted to 

the error of C16O and C18O. The error of C16O is considered to be the same as that for CO. The δ18O 

error is converted for C18O error using both C16O error and δ18O error because, by the definition of the 

δ-value, δ18O is the ratio of C16O to the C18O. Thus, the total measurement error is propagated to 5.4%. 

Typically, in CO inversion studies, the measurement error has been evaluated as less than 2% [20,69]. 

However, 5.5% for the measurement error was applied here since the uncertainty of the isotope ratio is 

commonly higher than the uncertainty of the concentration due to the trace amount of the minor isotopes. 
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Because, practically, there is no ‘true’ model to measure the uncertainties of the chemical transport 

model, errors in forward models are very hard to quantify. Sometimes the uncertainties of the forward 

model are neglected and the model is assumed to be perfect [16]. In this study, the errors related to the 

forward model (e2
representation and e2

forward model) are treated as described below. 

Representation error is an aggregated error of the mismatch of the spatial and temporal scale 

between the model and observation. Usually, for analyzing both concentration and isotope ratios of 

CO, air samples are collected for a couple of hours at a surface station while, in the model, the size of 

the corresponding grid box is 2.8° × 2.8° and the concentration is averaged for a day. Since the CO 

monitoring sites used for this inversion analysis are located in remote locations, local sources 

minimally affect the CO measurements. It is also assumed that CO is blended well in the atmosphere 

on the scale of each model grid box because the average lifetime of CO is several months. Therefore, 

the contribution of representation error to the uncertainty analysis is considered to be minimal. In [69], 

aircraft measurements in each model grid box were used to define the representation error. The 

variability of the direct measurements was approximately 5%–10% in each 2° × 2.5° grid. The 

representation error is analyzed by calculating the percentage of mean variance of monthly modeled 

concentration from the overall mean concentration and 8% of the concentration is obtained in this 

study [19,70,71].  

Another uncertainty related to the model is the forward modeling error. It consists of errors raised 

from inaccurate or incomplete chemical reactions, transport, and model parameters (e.g., reaction rates 

and kinetic isotope effects). Error estimation is performed following [69], which assumed the residual 

of the relative error (i.e., the standard deviation of (Ka − y)/y where Ka denotes modeled concentration 

and y is observed concentration) represents the uncertainties of the chemical transport model. In this 

study, the forward modeling error was calculated to be 8.5% of the concentration. 

The observation error covariance matrix Se is derived from the sum of the measurement error and 

representation error and forward chemical model error. The total observation error is approximately 

13%. Considering unknown and unevaluated possible error factors, 15% is used in this study for the 

total observation error in the inversion analyses [9,16,18,20,69,72,73]. 

4.2.2. Uncertainties in a Priori Source Estimates: Sa 

The bottom-up estimates of CO source strengths still have large error ranges and the top-down 

estimates cover a wide range (Figure 1). Thus, to start with, large uncertainties are assigned to the  

a priori emissions, which weakly constrains the sources. In [74], the uncertainty of global annual 

emissions of biomass burning CO was estimated at 30%; however, they also indicated that the regional 

variations are often much higher (factor of 2–5). Duncan et al. [68] showed a 25% uncertainty remains 

for fossil fuel CO despite rigorous and extensive bottom-up estimates. The inconsistency of source 

estimates from the previous inversion analyses shown in Figure 1 also indicates that the uncertainty of 

each source is at least 20% for anthropogenic, 50% for biomass burning, 100% for biogenic 

hydrocarbon oxidation, and 15% for CH4 oxidation [14,16–21]. Previous studies also carefully started 

inversion analyses using weak constraints: 50% of a priori source strength estimates [20,21,68,69,75]. 

In this study, to find the best estimate of the a priori source error covariance matrix (Sa), a sensitivity 

test was performed to analyze the response of inverse modeling results with varying Sa. 
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In Figures 5 and 6, smaller optimized model-observation differences were found with higher  

a priori source uncertainties (Sa). However, the inversions with larger uncertainties frequently failed to 

constrain the sources. Not only a posteriori errors are increased after inversion for some cases but also 

unrealistic large source changes or negative sources are obtained. Assigning more than 100% of the 

uncertainties of each CO source tends to ignore the a priori information too much during the inversion 

process. In contrast, the inversion analyses fail to improve the a priori inventories with small 

uncertainties, e.g., 10% or 20%, because they significantly rely on the a priori source information 

rather than the observations. The distance between the measured concentration and the a posteriori 

concentration converged to a specific value after assigning higher than 50% of source uncertainties in 

the all three cases (97NH, 04SH, and 04NH in Figure 5); the inversion results are insensitive to larger 

than 50% error covariance matrices.  

 

Figure 5. Averaged distance between the measurements and a posteriori CO concentrations. 

 

Figure 6. Inversion results (optimization factors and a posteriori errors) of each source 

with different a priori source uncertainties. A logarithmic scale is used for  

optimization factors. 
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Hence 50% of the current source estimates are determined to be within the most proper uncertainty 

range, based on our sensitivity test results and prior investigations. In addition, instead of assigning the 

same errors for all of the sources, additional constraints were given to the methane oxidation sources 

and fossil fuel sources. Because atmospheric methane has a long lifetime, its reservoir is relatively 

well known and only a 7% interannual variability was observed during 1978–1998 [76]. Moreover, in 

these model studies, the CH4 oxidation source is directly scaled to the NOAA GMD surface 

measurements. Therefore, 10% is assigned for the a priori error of methane-derived CO. For the fossil 

fuel source, many inversion studies have been updating the fossil fuel source inventory (Figure 1) and 

this is relatively well known, compared to the natural sources. The a posteriori error of the fossil fuel 

emission inventory in [17] was evaluated as 13% for the global average, and the variability of 

anthropogenic source strength estimates shown in Figure 1 was 18%. Thus, 18% was defined as the 

maximum uncertainty and we choose 20% for the uncertainty (Sa) of fossil fuel sources, which 

arbitrarily added 2% to loosen the constraint (Sa). Thus, the a priori source estimation errors (Sa) are 

set to 10% for methane oxidation sources, 20% for fossil fuel sources, and 50% for all other sources.  

4.3. Inversion Schemes; Incorporation of Isotope Information to the Source Optimization 

Since the units of concentration (ppbv) and isotope ratio (‰) are different, the meanings of unity 

for the model-observation difference are very different and are not comparable. The impact of the 

different units should be correctly accounted for the inversion [77]. Previous studies [24,26,33] have 

solved the inverse problems through minimizing the model-observation difference without balancing 

the two properties.  

Furthermore, for carbon monoxide, in contrast to carbon dioxide or methane, its lifetime is short 

and, therefore, its temporal variation is relatively large. This is especially important for C18O. For 

example, in the NH mid-latitude, the typical inter-seasonal variation of δ13C of CO is 5‰ and δ18O  

of CO is 8‰, while δ13C of CO2 is 0.4‰ and CH4 is 0.5‰ [36,43,78,79]. Thus, if the  

long-lived species’ isotope-inverting methodologies are analogously applied to the CO isotope inversion, 

nonlinearity problems develop and can affect the inversion results [33].  

In this study, a two stage isotope inversion scheme is devised that is able to avoid the shortcomings 

of the previous isotope inversion methods as well as more effectively constrain the sources of CO.  

4.3.1. Decoupled Inversion  

The scheme of the decoupled inversion is basically an extension of the CO-only inversion that has 

been performed by the previous Bayesian synthesis inversion studies. While the CO-only inversion 

uses the concentration of CO, the decoupled inversion uses C16O and C18O separately. Since the 

measurement errors and model uncertainties in C16O and C18O are assumed to be uncorrelated, the 

sources of C16O and C18O can be individually optimized by using the C16O and C18O information:  

8 8 8 8 8 8 8 8

ˆ

ˆ

16O 16O 16O T -1 16O -1 -1 16O T -1 16O 16O 16O
a e a e a

1 O 1 O 1 O T -1 1 O -1 -1 1 O T -1 1 O 1 O 1 O
a e a e a

x = x + ( K S K + S ) K S ( y - K x )

x = x + ( K S K + S ) K S ( y - K x )
 (8)

where, 16O and 18O indicate the C16O and C18O data sets.  
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The two independent inversion results allow for the estimation of both a posteriori C16O and C18O 

source strengths. The ratio of ˆ16O x  to 8 ˆ1 O x  also provides a posteriori δ18O signature of the CO sources. 

This approach can be applied to evaluate potential correlations among isotopologues in isotope inversions. 

4.3.2. Coupled (Simultaneous) Inversion 

Two different joint inversion approaches that combine concentration and isotope ratio data sets 

were tested in this study. One is a simultaneous inversion technique, where the concentration and 

isotope information constrain the sources in one inversion process. The other is a sequential inversion 

technique: each of the measured properties constrains the sources in two consecutive inversion processes. 

In the simultaneous inversion, both modeled and observed concentration and isotope ratio are 

coupled in the solution matrices for the inverse problem: 

ˆ
           
                        

T T 16O 16O16O 16O 16O 16O
-1 -1 -1 a

a e a e 18O 18O18O 18O 18O 18O
a

K xK K K y
x = x + S + S S -

K xK K K y
 (9)

Since the two measurement data sets (major and minor isotopes; C16O and C18O) are used to 

optimize the sources at the same time, the isotope information plays like an additional observational 

data set in the inversion system and, in comparison with the [CO]-only inversion, this renders more 

robust inversion results. 

4.3.3. Coupled (Sequential) Inversion 

When simultaneously inverting different data sets that have a large difference in their magnitude 

(e.g., C16O and C18O), a weighting issue arises because the inversion results can be dominantly 

constrained by the larger magnitude measurement data. One of the methods to balance the contribution 

of two data sets is sequential use of each observation, where the solution inverts one measurement data 

set first and the result provides the input for the inversion of the second observational information [77,80].  

In this study, the sequential use of concentration and isotope information is formulated as follows: 

step 1:

ˆstep 2 :

* 16O T -1 16O -1 -1 16O T -1 16O 16O
a e a e a

* 18O T -1 18O -1 -1 18O T -1 18O 18O *
e a e

x = x + ( K S K + S ) K S ( y - Kx )

x = x + ( K S K + S ) K S ( y - Kx )
 (10)

where x* is an intermediate estimated source strength vector that is acquired from the first step of the 

inversion process.  

The joint inversion results of the simultaneous use of concentration and isotope ratios and the 

sequential use of them are compared and discussed in detail in Section 5.3. 

4.3.4. Optimization of Source Strengths and δ18O Signature in These Inversion Methods 

Estimating the fluxes of each CO source by jointly inverting C16O and C18O is the primary purpose 

of this study. In addition to this, C18O source strength estimates are derived from the optimized CO 

source strengths and a posteriori isotope ratio (rj) of each source obtained from the decoupled 

inversion (Figure 7). Although the same prescribed isotopic source signatures can be applied to 

calculate a posteriori isotope ratios, Bergamaschi et al. [24] showed that applying a posteriori carbon 
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isotopic source signatures, instead of using fixed isotopic source signatures, provides more robust 

inversion results. Our comparison of the inversion results with fixed and updated oxygen isotopic 

source signatures confirm their result for the oxygen isotopic source signatures (Section 5). Thus, the 

δ18O source signature optimization process is implemented in the joint inversion system, in lieu of 

assuming fixed isotope ratios of the sources. Optimized δ18O source signatures calculated from the  

a posteriori CO and C18O source strengths provide an additional benefit of including isotopic 

signatures in inverse modeling. It allows for the verification of the joint inversion results by showing 

the fit of the optimized δ18O values to the observations, while the CO-only inversions can confirm the 

results only by comparing measurements with a posteriori CO concentrations. 

 

Figure 7. Schematic diagram for the two-stage Bayesian synthesis isotope inversion for 

atmospheric carbon monoxide. 

To optimize the isotopic source signature, the C16O-C18O ratio is iteratively optimized from the 

decoupled run since it has been known that the isotope ratio is a nonlinear function of the source 

strengths [24]. Therefore, an iterative method that updates the Jacobian matrix (K, Equation (4)) in 

each iteration was used to solve the inverse problem (Figure 7). Iterations were performed for each source 

and continued until the solution converged:  

18 18
, , 1

18
, 1

ˆ ˆ

ˆ

C O C O
j n j n

C O
j n

x x

x
−

−

−
≤ ε  (11)

During the iterations, the isotope ratios were allowed to vary within a certain range (ε). The 

threshold is assigned for each source based on current understanding of the isotopic source signature. 
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For the fossil fuel source, 2‰ is assigned for the threshold since the previous estimates of the isotope 

signatures are reported in between 22‰ and 24‰ [10,42,62,65] and the direct measurements of the 

exhaust from numerous automobiles indicate the variations of δ18O of CO as ±1.0‰ [81]. The 

previous global estimates of δ18O from biomass burning were 16.3‰ and 18‰ [42,65] and the 

uncertainties reported for biomass burning source signature were ±1‰ [62,82]. However, 5‰ is 

allocated for the threshold of the biomass burning source because [83] indicated a very wide range 

(3‰–26‰) for δ18O from their chamber experiment. For the ε of the other sources, since there is one 

number reported for δ18O of the sources, ±5‰ is estimated for ε, analogous to that for the biomass 

burning source. 

The role of isotope information is expanded in the inverse modeling analysis with the optimized 

source signatures. This enables the separation of the a posteriori source estimates to the inventories of 

major and minor isotopes while the joint inversion gives updated information of the CO source strengths.  

5. Optimized Global CO Budget from Joint Inversion of [CO] and δ18O 

5.1. Optimized Atmospheric CO Sources for 1997, 1998, and 2004 

The global atmospheric CO budget is estimated for 1997, 1998 and 2004. The sources are constrained 

by both CO concentration and oxygen isotope ratio information. Concentration and δ18O are either 

simultaneously or sequentially applied to constrain the a priori CO sources and the former method is 

used to discuss the inversion results, unless otherwise noted. The results of applying different inversion 

techniques will be explained in detail later in this section. 

Frequently, the result of inversion analysis is expressed as a correction or optimization factor (f) that 

is the ratio of a posteriori estimates to the prescribed a priori source fluxes.  

,

ˆi
i

a i

x
f

x
=  (12)

where xa and x̂  is a priori and a posteriori source strength of source i. Thus, if an optimization factor 

is greater than 1, then this means the current estimate of source strength is underestimated.  

Table 3. Optimization factors (f) and a posteriori uncertainty (e, %) of each CO source. 

  Fossil fuel Bio. burn. CH4 ox. NMHC ox. Biofuel Ocean Biogenic 

  f e f e f e f e f e f e f e 

NH 
1997 1.10 1.7 1.33 8.8 1.12 0.8 0.72 7.8 1.79 12.6 1.05 24.9 0.53 15.1 
1998 0.98 2.3 0.89 4.0 1.11 0.8 1.48 9.1 1.64 12.5 1.06 24.9 0.79 20.0 
2004 0.87 1.6 0.94 18.4 1.10 0.8 1.07 9.4 1.31 10.9 1.00 24.9 0.47 16.9 

SH 
1997 0.98 4.0 0.97 7.5 0.97 0.6 0.67 7.0 0.86 23.0 0.96 22.2 0.79 23.1 
1998 1.00 4.0 0.75 6.9 0.98 0.7 0.85 7.8 1.01 23.8 0.98 22.4 0.99 23.0 
2004 0.99 4.0 0.93 4.7 0.98 0.7 0.52 6.5 0.96 23.1 0.98 22.5 0.84 23.0 

5.1.1. Optimized Fossil Fuel and Biofuel Source Strength 

While fossil fuel and biofuel are both anthropogenic sources of CO, the inversion analysis showed 

very different results (Table 3). In the SH, the optimization factors of fossil fuel and biofuel sources 
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are close to unity. This implies that the anthropogenic sources of CO in the SH were accurately 

estimated. The fossil fuel source changed less than 2% after inversion and biofuel estimates changed 

less than 5% except in 1997, during which the a posteriori biofuel source decreased 15%. Since the 

anthropogenic sources play a minor role in the SH, the measurements did not constrain the sources 

tightly. The reductions of their uncertainties are relatively small compared to those in the NH where 

the sources are major components of total CO concentration. 

In the NH, the optimized fossil fuel emission inventory was adjusted less than approximately ±15% 

for the three years. This indicates the a priori fossil fuel source strength [17] is close to the actual 

fossil fuel CO emission in both hemispheres. A slight decreasing trend of the optimization factor is 

also found suggesting CO emissions from fossil fuel combustion decreased from +10% (1997) to 

−13% (2004), albeit a 20% increase in annual global fossil fuel consumption from 1990 to 2005 

[World Resources Institute, http://earthtrends.wri.org]. This may reflect advancement of fossil fuel use 

efficiency and stricter regulations for vehicle emissions. The NH biofuel emission changed significantly 

after the inversion. It increased 79% in 1997, 64% in 1998, and 31% in 2004. In comparison with the 

fossil fuel source, the biofuel source showed a larger source adjustment with a larger a posteriori error 

covariance. This indicates that there are large uncertainties in biofuel source estimate. The biofuel 

source also demonstrated a downward tendency of the optimization factor, which indicates the use of 

biofuel decreased from 1997 to 2004. 

5.1.2. Optimized Biomass Burning Source Strength 

There was only a small difference between the a priori and a posteriori source strengths for 

biomass burning in 1998 and 2004; however, for 1997, which was a high fire year, the inversion 

results suggest an increase of 33% for the NH biomass burning CO indicating GFED-v2 missed some 

sources of the biomass burning CO. The inventory was also not adjusted much for the SH biomass 

burning CO. In general, the joint inversion analyses estimated ca. 10% less CO than the GFED-v2 

inventory on average.  

5.1.3. Optimized Chemical Oxidation Source Strengths 

The methane oxidation source is the biggest source of CO. However, because the methane lifetime 

is long (~10 years) and its reservoir is large, this source is already relatively well-constrained compared 

to the other sources of CO. The joint inversion analysis confirmed this. For all three years, the 

optimization factors are relatively constant in each hemisphere; 1.10–1.12 in the NH and 0.97–0.98  

in the SH.  

Biogenic NMHC emission is the largest component of the NMHC oxidation source of CO (>80% of 

total NMHC-derived CO; [14,68]). Isoprene emissions are estimated to be ~75% of the total natural 

NMHC emissions [39]. Therefore, this source is expected to be sensitive to environmental factors such 

as temperature and precipitation patterns. The strong El Niño event in 1997 was followed by a strong 

La Niña in 1998–1999 and the effect of this on the NMHC-derived CO source is seen very clearly in 

the inversion analysis for each hemisphere. NMHC-derived CO also responded more sensitively to the 

ENSO index change in the NH [84].  
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5.1.4. Optimized Ocean and Biogenic Source Strengths 

 

The optimization factors of the ocean source were close to 1 and a posteriori uncertainty was not 

reduced much. Thus, this source was hardly constrained because of the small influence of the ocean on 

the atmospheric CO.  

The inversion results of direct biogenic CO emission sources suggest a reduction of the emission by 

up to 50%. However, due to the small contribution of the biogenic source, it has limited influence  

to the global CO. Similar to the ocean source, this also was not tightly constrained as evidenced by  

a small reduction in the uncertainty of the source. 

5.1.5. Comparison to the Previous CO Sources Strength Estimates Derived from Inversion Analyses 

The global CO budget estimated in this study is compared to previous CO budget estimates (Table 4). 

Although direct comparison between this study and earlier studies is difficult due to the different years 

of data sets and source categories, most of the a posteriori emissions fall within the range of the 

previous estimates.  

The total direct CO emission was 1210–1651 TgCO/year and the total chemical production of CO 

was 1300–1579 TgCO/year. Those show large ranges because of the large interannual variability of 

biomass burning CO (direct emission) and biogenic NMHC-derived CO (chemical production). Both 

of the improved CO inventories are also placed within the previously reported estimated value ranges; 

1091–1663 TgCO/year for direct emission and 1461–1644 TgCO/year for chemical production. The 

total CO emission and the individual a priori sources are mostly updated by the inversion analysis (this 

study) within the range of previous source estimates. Hence, isotope information adjusts each source 

strength more precisely and accurately while keeping consistency with the total inventory estimates. 

5.2. A Posteriori CO and δ18O 

In order to see the effect of updated source inventories on the CO concentration and δ18O, the 

difference between a posteriori CO and δ18O and observations are analyzed. A detailed derivation of a 

posteriori CO and δ18O is described in the auxiliary material (Doc. S1). The new source inventory is 

more reliable if, in comparison with the model–observation difference, which is based on the a priori 

source information, the difference between a posteriori source strengths derived CO and δ18O is reduced. 

The model–observation differences of δ18O are apparently reduced by more than 50% when the  

a posteriori source strengths are applied (Figures 8 and 9, Table S6). The modeled concentration also 

showed a better fit to the measurements with the updated source inventory (Figure 8). Although, since 

the forward concentration simulation already reproduced the observations quite well (Figure 4), the 

improvement of a posteriori CO concentration is not as clear as a posteriori δ18O (Figures S4 and S5), 

the modeled concentrations are about 45% closer to the observations (Figure 8). Figure S4 shows that 

the a posteriori inventory especially improves wintertime modeled CO. While the a posteriori source 

emissions are estimated for each year and do not contain seasonality, this implies certain sources are 

significantly underestimated during the winter. The a posteriori δ18O decreased the overall offset of 

model-observation difference (Figure 9) and the improvement was more noticeable in the SH (Figure 8).  
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Table 4. The results of global CO budget estimation (this work) in comparison to previous global CO budget estimates. 

 This work 
Bergamaschi 
et al. [14] 

Petron  
et al. [16] 

Petron  
et al. [17] 

Muller and 
Stavrakou, [18] 

Kasibhatla 
et al. [19] 

Arellano  
et al. [20] 

Arellano  
et al. [21] 

Duncan  
et al. [67] 

 a priori a posteriori         

Year of observational data  1997 1998 2004 1993–1995 1990–1996 
Apr. 2000 

–Mar. 2001 
1997 1993–1995 2000 

Apr. 2000 

–Apr. 2001
1988–1997 

Fossil fuel (FF) 365 397 359 321  309 365     464–487 

Biofuel (BF) 313 524 489 396  561 318     189 

FF + BF 678 922 849 716 642 870 683 760 768–857 844–923 841  

Biomass burning 516 * 609 498 377 722 606 408 359 467–561 508–579 501 451–573 

Anthro. HC oxidation     166        

Biogenic HC oxidation     507    362–477 175–209 394 354–379 

Total NMHC oxidation 543 377 656 454    774     

Methane oxidation 875 923 923 919 830   870 709–949 767 820 778–861 

Ocean 20 20 20 20 23 20  23     

Biogenic 160 100 138 97  167  142     

Total surface emission 1375 1651 1505 1210 1364 1528–1694 1091 1261 1235–1418 1352–1502 1342  

Total oxidation source 1418 1300 1579 1373 1503 1461–1536 1650 1644     

Total source 2793 2951 3084 2583 2891 2960–3067 2741 2928 2306–2846 2294–2478 2556 2236–2489 

* mean of 1997, 1998, and 2004 inventories. 
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Figure 8. The ratio of a posteriori model-observation difference (simultaneous inversion) 

to a priori model-observation difference for concentration simulation (dark gray) and δ18O 

simulation (light gray). 

These results indicate that each updated source contributed to improving both the modeled CO and 

δ18O while there was relatively small adjustment of the total CO inventory (Table 4). Thus, this 

suggests that an accurate estimation of source strength distribution is more important than the 

optimization of total CO emission in CO inversion analyses. Due to the advantages of including isotope 

information to the inversion analysis, more realistic source distributions were derived which 

sufficiently satisfy both measured CO and δ18O. Moreover, the improved δ18O fits provide additional 

confidence to the results that are obtained from CO-only inversions. 

 

Figure 9. Cont.  
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Figure 9. Comparison of a priori (brown line) and a posteriori modeled surface δ18O  

with measurements (blue dots). Green and purple lines denote a posteriori δ18O from 

simultaneous inversion and sequential inversion, respectively. Orange line is a posteriori 

δ18O with fixed isotope source signature. A posteriori isotope source signatures obtained 

from the simultaneous inversion are presented in the Table S7. 

5.3. Inversion Results by Different Inversion Schemes: CO-only, Sequential, and Simultaneous Inversion 

Various inversion schemes are tested and discussed in this section to elucidate the influence of 

different isotope information combining methods on the a posteriori source strength estimates. 

Joint application of isotope ratio and concentration measurements generally gives more robust 

inversion results since the isotope ratios provide additional constraint. In Figure 10, a posteriori 

uncertainties of the three different inversion methods are presented. The sequential inversion provided 

the smallest uncertainties and always the biggest uncertainty was found in the CO-only inversion. The 

impact of different inversion methods on biomass burning, NMHC oxidation and the NH biofuel 

source is larger than that on other sources. Due to the small concentration of the minor source, 

biogenic and ocean sources are loosely constrained. The smaller a priori source uncertainties of fossil 

fuel and methane oxidation limit the influence of each inversion method. In the sequential inversion, 

the inverted data sets and the obtained uncertainties from the first inversion step are used as initial 

values for the second inversion (Equation (10)). The final uncertainties (error covariance, Ŝ; Equation (6)) 

of each source strength from the sequential inversion is obtained from the intermediate a posteriori 

source uncertainty term which is already once reduced using C16O information while the joint simultaneous 

inversion constrains the source only once.  
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Figure 10. Comparison of a posteriori uncertainty of three different inversion schemes: 

CO-only, sequential and simultaneous inversion. 

A basic underlying assumption of the Bayesian synthesis inversion is the linear relation between the 

source strengths and measurements. If the relation is nonlinear, as applies in the case of δ18O, the 

inversion should be iterated until converging. The linearity can be verified by comparing the results of 

the sequential and simultaneous inversions. If the results are different, this implies at least one of the 

measurement data sets is not linear with source change. Since the a posteriori source strengths from 

the two different methods are very similar in this study (approximately ±2% on average; Table 5), 

[C16O] and [C18O] appear to be linearly related to a change in source strength. 

While the sequential and simultaneous inversions clearly improve the modeled δ18O and estimate 

similar a posteriori source strengths, the simultaneous inversion shows a significantly better fit to the 

observed δ18O (Figure 9). The averaged differences from the observation were derived to be 1.3‰ and 

1.9‰ for the simultaneous inversion and sequential inversion, respectively.  

In summary, insignificant a posteriori source inventory differences, especially between the joint 

sequential and joint simultaneous inversions, were found in the results of the three inversion schemes: 

CO-only, sequential and simultaneous inversions (Table 5). However, when [CO] and δ18O are jointly 

used in the inversion analyses, the optimized source strengths and δ18O were more reliable than the 

CO-only inversion results. The sequential use of the concentration and isotope information tends to 

reduce the a posteriori uncertainties more effectively (precision) and the simultaneous use of them 

shows smaller model-observation differences (accuracy).  

5.4. The Influence of the Number of Observation Stations in the Inversion Results 

In order to see the influence of the number of observation stations and the consistency of the 

inversion results with using different observational data sets, the sources of NH CO are constrained 

with 11 NOAA GMD surface station measurements (CONOAA).  
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Table 5. The ratios of optimization factors. seq/sim is ratio of optimization factor of 

sequential inversion to that of simultaneous inversion and CO/sim is ratio of optimization 

factor of CO-only inversion to that of simultaneous inversion. Mean deviation from the 

unity (identical result) is ±1.7% for seq/sim and ±4.6% for CO/sim. 

  Fossil Fuel Bio. Burn. CH4 Ox. NMHC Ox. Biofuel Oceanic Biogenic 

1997NH seq/sim 0.99 0.98 0.99 0.98 1.04 0.99 1.00 

 [CO]/sim 1.01 0.99 0.96 1.14 0.92 0.98 1.17 

1998NH seq/sim 1.00 1.00 1.00 0.97 1.03 1.00 1.00 

 [CO]/sim 1.05 1.07 0.97 0.97 0.91 0.98 1.15 

2004NH seq/sim 1.00 1.00 1.00 0.94 1.00 0.99 1.18 

 [CO]/sim 1.05 1.06 0.96 0.96 0.94 1.00 1.38 

1997SH seq/sim 1.00 0.99 0.99 0.98 1.00 0.99 1.00 

 [CO]/sim 1.01 0.97 1.00 0.99 1.04 1.00 1.07 

1998SH seq/sim 1.00 1.01 1.00 0.97 0.99 0.99 0.99 

 [CO]/sim 1.00 1.04 1.00 0.98 0.98 1.00 0.98 

2004SH seq/sim 0.99 0.98 0.99 1.02 0.98 0.98 0.97 

 [CO]/sim 1.00 0.98 0.99 1.05 0.99 0.98 1.03 

CONOAA inversion results are very similar to the results of the joint inversion (Figure S5). For the 

biofuel and biogenic sources, although each method estimated notably different optimization factors, 

the discrepancies are within the uncertainty ranges. The difference between a posteriori concentrations 

of each inversion result and measured concentrations are compared in Figure 11. A similar degree of 

improvement from the a priori model-observation differences is found. 

 

Figure 11. Comparison of model (a priori (orange) and a posteriori (green))—observation 

difference of the Northern Hemisphere. 
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Therefore, consistency of a posteriori source strengths and model-observation differences between 

the CONOAA inversion and joint inversion results indicate that inversion results are sufficiently 

constrained despite the limited number of observations.  

6. Summary and Conclusions 

The simulation results from the tracer version of MOZART-4 reproduced observations of CO and 

δ18O fairly well in both hemispheres. The modeled and measured concentration showed a strong 

correlation (ρ = 0.94) and a small averaged model-observation difference (10.5 ppbv). In general, the 

model underestimated the concentration measurements in the NH and overestimated them in the SH. 

For δ18O, the correlation between the model and observation was 0.86 and the mean model-observation 

difference was 3‰. The model accurately reproduced observed δ18O at high latitude stations while 

modeled δ18O was lighter than observations at mid- and low latitude stations.  

The joint inversion of CO and δ18O estimated total global CO production at 2951 TgCO/yr,  

3084 TgCO/yr and 2583 TgCO/yr for 1997, 1998, and 2004 respectively. The a posteriori fossil fuel 

combustion source changed less than 5% in the SH and adjusted ±15% in the NH. The inversion result 

showed that the a priori biofuel inventory is significantly underestimated in the NH (up to 80%).  

For the biomass burning source, the a posteriori source did not change much. However, in 1997, the 

inversion analysis increased 33% compared to the a priori biomass burning source in the NH. The 

inversion result indicated a significant current overestimation of direct biogenic emission source (up to 

50% in the NH). The methane oxidation source is considered to be a well-known source and its  

a posteriori source strength is similar to the a priori source strength. However, in the NH, ~10% more 

methane-derived CO was estimated, whereas ~3% less methane-derived CO was estimated in the SH.  

The updated CO budget has improved agreement between data and model estimates of CO and 

δ18O, and this is seen more clearly in the oxygen isotope ratio, which can distinguish between different 

sources and so provide more accurate a posteriori source estimates. Moreover, this indicates the 

correct estimation of CO source distribution that can be obtained when isotope information is 

combined with concentration. 

The joint inversion result was compared to the inversion result using CO measured from  

11 NOAA GMD stations in the NH. While the two observational data sets are independent, the 

inversion results estimate similar a posteriori source strengths and interannual trends. Thus, the joint 

inversion reliably constrains the CO sources albeit a small number of observational stations. Also, CO 

concentration and δ18O were simultaneously and sequentially applied in the inversion analysis to find  

a more effective way for combining the two observations. While the sequential inversion provided 

more precise results (smaller a posteriori uncertainties), the simultaneous inversion more accurately 

constrained the CO sources, resulting in smaller model-observation differences.  
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