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Abstract: Based on the operational regional ensemble prediction system (REPS) in  

China Meteorological Administration (CMA), this paper carried out comparison of two 

initial condition perturbation methods: an ensemble transform Kalman filter (ETKF) and a 

dynamical downscaling of global ensemble perturbations. One month consecutive tests are 

implemented to evaluate the performance of both methods in the operational REPS 

environment. The perturbation characteristics are analyzed and ensemble forecast 

verifications are conducted; furthermore, a TC case is investigated. The main conclusions 

are as follows: the ETKF perturbations contain more power at small scales while the ones 

derived from downscaling contain more power at large scales, and the relative difference of 

the two types of perturbations on scales become smaller with forecast lead time. The growth 

of downscaling perturbations is more remarkable, and the downscaling perturbations have 

larger magnitude than ETKF perturbations at all forecast lead times. However, the ETKF 

perturbation variance can represent the forecast error variance better than downscaling. 

Ensemble forecast verification shows slightly higher skill of downscaling ensemble over 

ETKF ensemble. A TC case study indicates that the overall performance of the two systems 
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are quite similar despite the slightly smaller error of DOWN ensemble than ETKF ensemble 

at long range forecast lead times. 

Keywords: regional ensemble prediction system; initial condition perturbation keyword; 

ensemble transform Kalman filter; dynamical downscaling 

 

1. Introduction 

It has long been known that numerical weather prediction (NWP) is sensitive to the initial condition 

(IC) error, model error and the chaotic nature of atmosphere, thus an ensemble prediction method [1] has 

emerged as a practical way for providing probabilistic forecasts. Since the ensemble predictions 

implemented operationally in the early 1990s at the National Centers for Environmental Prediction [2] 

and at the European Center for Medium-Range Weather Forecast [3], an ensemble prediction system 

(EPS) has been operational in many meteorological centers to provide operational global weather 

forecast [4–6]. 

Since the probability distribution for the various sources of errors are more complicated for regional 

NWP, it is difficult to predict the meso-scale severe weather. It seems that developing a regional 

ensemble prediction system (REPS) is a practical way to solve this problem. How to generate IC 

perturbations for regional ensemble prediction is an important issue. One of the possible choices is 

dynamical downscaling of a global EPS, which interpolates forecast fields from a set of representative 

members of the global EPS to obtain different ICs for the regional domain with higher resolution. This 

method has been successfully applied in some current operational REPS [7–9]. Recently, downscaled 

IC perturbations have also been successfully applied in experimental convection-permitting REPSs 

with higher resolution [10,11]. In these convection-permitting ensembles, an intermediate resolution  

REPS is typically used to transfer the information in a chain of forecasts from the coarse-resolution 

global EPS to the high-resolution REPS. Although dynamical downscaling is attractive for its 

simplicity and good performance, the regional small-scale uncertainties cannot be explicitly represented 

with dynamical downscaling but just following the governance of the global ensemble that is driving  

it [12]. Some other studies try to generate IC perturbations for REPS by using a regional version of 

traditional IC perturbation methods, such as the Breeding Growing Mode (BGM), Singular Vectors 

(SVs), Ensemble Transform Kalman Filter (ETKF), etc. It is proved that these methods can also trigger 

limited ensemble spread and benefit forecast skill for REPS [13–16]. 

However, so far it is still unclear whether these regional versions of IC perturbation methods, as 

primarily designed for medium-range forecasting, are fully superior to downscaling when applied to 

REPS. Bowler and Mylne [17] tested ETKF and downscaling as the IC perturbations generators for a 

regional version of MetOffice Global and Regional Ensemble Prediction System (MOGREPS), and 

revealed that the perturbations generated by regional ETKF contain more detail at small scales and less 

power at large scales with less than 18 h forecast lead time. These perturbations are overall smaller than 

the ones derived from the downscaling, and the skill of the two ensembles is very similar, with slightly 

higher skill being seen from the downscaling. Whereas the comparison results of downscaling and 

regional IC perturbation generators presented by Saito et al. [18] are mixed, as the downscaling method 
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tends to perturb synoptic-scale disturbances and showed the best ratio of the ensemble spread to the 

RMSE, while the regional version of BGM, ET and SVs tend to perturb meso-scale disturbances, thus 

affecting local intense rains more. Although whether these regional IC perturbation generators can yield 

advantage over dynamical downscaling is still obscure, there is no doubt that these methods can produce 

more information of small/meso-scale uncertainties than dynamical downscaling, and this information is 

particularly useful for the forecasting of local severe convective weather [19,20]. 

The CMA has been operationally running a REPS since May, 2014, with the IC perturbations 

generated by a regional version of ETKF. Since this operational REPS is coupled with an operational 

global ensemble prediction system (GEPS) of CMA, it is also possible for the REPS to obtain IC 

perturbation from dynamical downscaling of global ensemble perturbations. This paper will give a 

detailed comparison of ETKF and downscaling in the operational REPS environment. In the study we 

hope to have a further understanding of the advantages and disadvantages of the two typical kinds of IC 

perturbation methods, and this investigation is also expected to provide some information for the 

improvement of the present REPS in the future. 

The outline of this article is as follows. Section 2 describes the ensemble forecasting system, the 

structure of the IC perturbations, and the investigation set-up. Section 3 presents the results and 

discussion from the evaluation of perturbation quality and various ensemble forecast quality measures. 

Afterwards, the Typhoon track forecast quality is investigated. A summary and conclusions of the 

obtained results is provided in Section 4. 

2. System and Method 

2.1. Introduction of the Regional Ensemble Prediction System 

The REPS in CMA has been running operationally so far, this system with relatively high-resolution 

aims at providing probabilistic forecast for meso/small-scale severe weather phenomenon, such as heavy 

precipitation and tropical cyclone (TC). 

This REPS is constructed based on a regional model of GRAPES-Meso (regional version of Global 

and Regional Assimilation and Prediction System) [21]. The GRAPES-Meso regional model runs on a 

regular latitude-longitude grid with a resolution of 0.15 degree in the horizontal and 33 model levels 

vertically. Model domain is set to 70–145.15°E, 15–64.35°N, covering the whole area of China. The IC 

perturbations of this REPS (abbreviated as GRAPES-REPS) are generated by a regional ETKF 

approach, and the model uncertainty is represented by multiple physics [4]. Since the GRAPES-REPS 

have coupled with the GEPS of CMA, the lateral boundary conditions (LBCs) of the GRAPES-REPS are 

also perturbed. Figure 1 shows the model domain of GRAPES-REPS that nested in the global ensemble. 

The GRAPES-REPS consist of 15 members, including a control run and 14 perturbed ensemble 

members. In each day the system started at 0600 UTC, 1200 UTC, 1800 UTC and 0000 UTC. For each 

start time the system provide 6 h forecast perturbations for the next ETKF cycle, specifically for  

1200 UTC and 0000 UTC initiate time the model integrate to 72 h to provide ensemble forecast products. 

Five variables (zonal wind u, meridional wind v, potential temperature θ, Exner pressure π and specific 

humidity q) in the ICs are perturbed. 
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Figure 1. Model domain of GRAPES-REPS within a global ensemble. 

2.2. Introduction of the IC Perturbation Schemes 

In our study, two IC perturbation schemes are used, one is regional ETKF (as applied in the 

operational run), and the other is dynamical downscaling of the GEPS. 

2.2.1. ETKF 

Wang and Bishop [22] demonstrated the viability and effectiveness of ETKF in generating IC 

perturbations (as also called analyses perturbations) for global ensemble forecast. The ETKF can 

generate IC perturbations that correspond well to the observational density. In addition, compared with 

BGM technique that maintain variance in few directions, ETKF can maintain comparable amounts of 

variance in all orthogonal and uncorrelated directions spanning its ensemble perturbation subspace; 

moreover, the computation cost of ETKF is not much more than BGM. 

The derivation of ETKF analyses perturbations is based on the hypothesis that the forecast covariance 

matrices and analysis covariance matrices can be represented by forecast perturbations Xf and analysis 

perturbations Xa. The relationship between Xf and Xa is established after solving the optimal data 

assimilation equation; as a result, the forecast perturbation can be transformed to analysis perturbation 

through a transformation matrix T, that is 

a fX X T= Π  (1)

where forecast perturbations are listed as columns in the matrix Xf and analysis perturbations are listed as 

columns in the matrix Xa. Π is a scalar inflation factor to inflate the analysis perturbation amplitude so as 

to ensure that the 6 h forecast ensemble variance is consistent with the control forecast error variance. 

Following Wang and Bishop, T is given by 
1/2( ) TT C I C−= Γ +  (2)

where columns of the matrix C and Γ contain the eigenvectors and the corresponding eigenvalues  

of the matrix: 
1( )f T T fZ H R HZ−  (3)
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where the matrix H is the linear observation operator that maps model variables to observed variables 

and the matrix R is the observation error covariance matrix. 

2.2.2. Dynamical Downscaling 

A traditional “downscaling” mechanism is a process that aims at finding a mathematical relation 

between the global and local fields, that is stable in time and, valid for a variety of different 

meteorological systems. The generation of some systems (e.g., convective phenomenon) are too 

complicated to be linearly predictable from the large-scale flow, so the downscaling usually achieved by 

a complicated, nonlinear “transfer function” [23]. There are a variety of downscaling techniques  

in the literature, but two major approaches can be identified at the moment, namely, dynamical 

downscaling and empirical (statistical) downscaling. Dynamical downscaling approach is a method of 

extracting local-scale information by regional models with the coarse global data used as boundary 

conditions [24]. For a regional ensemble forecast, the dynamical downscaling of an ensemble of  

global IC stats will produce the IC stats of regional ensemble [25]. Generally, this downscaling  

approach to generate IC perturbations for REPS is attractive due to its relative simplicity and practicality 

of implementation. 

The resolution of the GEPS in CMA is T639L60 (spectral triangular T639 with 60 vertical levels, 

corresponding to 30 km resolution). A masked breeding method [26] is applied to compute ICs of this 

GEPS, with 12 h optimization time interval. For each initial time, the forecast perturbations of the 

pervious breeding cycle are scaled to have initial amplitude comparable to an estimate of the analysis 

error. Mathematically, 
a f
ij ij ijX X c=  (4)

where Xa
ij and Xf

ij are analysis perturbations and forecast perturbations at latitude i and longitude j, cij is 

a rescaling factor which is a function of latitude and longitude. 

The background state as well as the LBCs of GRAPES-REPS is provided by a GEPS. This 

configuration enable IC perturbations of GRAPES-REPS be obtained from dynamical downscaling of 

this GEPS. This is achieved by interpolating the IC stats of GEPS to the 0.15 by 0.15 degree resolution 

through the initialization process of GRAPES-Meso regional model. 

2.3. Experimental Set-Up 

In the present study, the ETKF method and the downscaling method are compared using the same 

unperturbed analysis and the same forecast model. The numerical experiments are based on the 

operational GRAPES-REPS of CMA. The regional ensemble was run twice to produce forecasts, one set 

of forecasts generated IC perturbations by the regional ETKF, and the other was run using a downscaling 

of the global perturbations as IC perturbations. 

The two different ensembles compared in this work will be denoted as ETKF and DOWN. The 

one-month period of 1 August 2012 to 31 August 2012 is chosen to conduct this comparison test, with 

both sets of ensembles initiated at 1200 UTC each day. Forecasts were evaluated to a lead-time of  

72 h. The system settings of the two tests are identical to the operational run. 
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The background state and the LBCs of experimental REPS are provided by T639 global ensemble 

forecast data. The T639 global analysis states corresponding to each forecast lead times of the forecasts 

are interpolated to a common regular 0.15 by 0.15 degree resolution to verify the forecasts of upper air 

weather variables. The observational TC track data are provided by the Joint Typhoon Warning Center 

(JTWC) Best Track. 

3. Results and Discussion 

We now evaluate the quality of IC perturbation states and ensemble forecasts from each 

methodology. For a regional ensemble forecast, it is desirable to provide information of all scales, not 

only synoptic scales but also convective scales, therefore we start with an examination of the scale 

characteristics of ETKF perturbations and DOWN perturbations. Next, since the ensemble spread 

growth is closely correlated with the perturbation growth, we investigate how the two types of 

perturbations evolve, and how the perturbation amplitude increase with lead time. In addition, an 

“ensemble perturbation precision test” is conducted to determine whether the two perturbation 

techniques can better represent the forecast errors (e.g., locations where perturbation amplitude is large 

corresponds to locations where forecast error is large). Thereafter, we statistically evaluate the 

ensemble forecast skill, with a series of probability verification scores used. We will also present a 

study to evaluate the practicability of two methods in a particular weather case. 

3.1. Power Spectra Analysis 

A good ensemble forecast can provide sufficient uncertainty information, either for small-scale 

phenomenon or for large-scale phenomenon. The spatial scale characteristics of two types of 

perturbations are investigated, this is achieved by calculating the power spectra of both the ETKF and 

DOWN perturbations. A 2-dimemsional Discrete Cosine Transform (2D-DCT) [27], which is suitable 

for spectral analysis of data on a limited area, is used to conduct power spectra analyses. We first find the 

difference between each perturbed forecast and the ensemble mean, and then calculate the power spectra 

by 2D-DCT. The power spectra are calculated for each ensemble member, to create an average power 

spectra value. 

Figure 2 shows power spectra of 500 hPa temperature perturbations as a function of wavelength, for 

both ETKF perturbations and DOWN perturbations. The power spectra of initial perturbations and 6 h 

forecast perturbations are presented. Results from initial (00 h) forecasts (Figure 2a) show that the 

power of the ETKF perturbations is greater than that of the downscaling perturbations at wavelengths 

less than 1100 km. In particular, for wavelengths less than 60 km (around two grid lengths of the T639 

global model), there is no power for the global ensemble perturbations. These scales cannot be better 

resolved by the global model, so the perturbations derived from the global ensemble exhibit less  

power at these length-scales. Whereas for scales over 1100 km more power can be found in DOWN 

ensemble, as the maximum power can reach to 40 k2 (corresponding to wavelength of 5000 km), while 

the maximum value for ETKF ensemble can only reach to 20 k2 (corresponding to wavelength of  

3200 km). The results from 12 h forecasts (Figure 2b) show that the scale characteristics of the two 

perturbation schemes get closer with forecast lead time. The 12 h ETKF perturbations exhibit amplified 

power than that of 00 h at larger scales, and the most powerful scale is 5000 km, with the power value of 
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60 K2; while the 12 h downscaling perturbations have increased power than that of 00 h at all 

length-scales, including the small-scales that cannot be resolved by downscaling perturbations at  

initial time. 
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Figure 2. All member averaged power spectra of 500 hPa temperature perturbations as a 

function of wavelength for ETKF and DOWN. (a) Initial time; (b) 12 h forecast lead time. 

The results presented above indicate, when applied to the self cycling of GRAPES-REPS, the  

ETKF technique can create analysis perturbations from forecast perturbations which are completely 

produced by regional model and hence, in principle, provide IC perturbations at all scales resolved by 

regional model. The greater power of small-scales can enable the ETKF perturbations to better capture 

the convective, high impact weather uncertainty, whereas the downscaling perturbations could not 

represent the small-scale uncertainty at the initial time, and are better than ETKF at representing the 

large-scale uncertainty. 

3.2. Perturbation Growth Characteristics 

It has just been shown that the ETKF perturbations have greater power at smaller scales while the 

DOWN perturbations have greater power at larger scales. In order to investigate the perturbation 

characteristic intuitively, an attempt has been made to account for the distribution and evolution 

characteristics of both kinds of perturbations. This is achieved by calculating an “approximate energy 

norm” [28], defined as  

2 2 21
' ( , , ) ' ( , , ) ' ( , , )

2
p

r

c
u i j k v i j k T i j k

T
 + +   (5)

where uʹ, vʹ and Tʹ are wind and temperature perturbations, cp is the specific heat and Tr is the 

reference temperature. 

Figure 3 shows horizontal distributions of the energy norm averaged over all members at all levels, 

for both ETKF (left panel) and downscaling (right panel) ensembles, respectively. For the ETKF 

ensemble, the energy norm of analysis perturbations (Figure 3a) in eastern China is generally lower than 

that in the plateau and Western Pacific regions, due to the larger number of observations in this region. 

For the downscaling ensemble, the energy norm of analysis perturbations (Figure 3b) distribution do not 

show obvious observation impact because the rescaling factors in the global masked breeding are 
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designed empirically from climatology data, although the global observation distribution in the mask is 

considered, the breed perturbations cannot reflect the regional observations distribution in detail. 

Additionally, the ETKF analysis perturbations exhibit more small-scale characteristic than DOWN 

analysis perturbations, while the DOWN perturbation pattern is larger in scale, and this difference can 

also reflect the analysis result in Section 3.1. 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

 

Figure 3. All members vertically averaged perturbation energy norm (unit:J/kg) at different 

forecast lead times, for ETKF and DOWN, respectively. (a) ETKF 00 h; (b) DOWN 00 h; 

(c) ETKF 24 h; (d) DOWN 24 h; (e) ETKF 48 h; (f) DOWN 48 h; (g) ETKF 72 h; and  

(h) DOWN 72 h. 
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For 24 h forecast lead time (Figure 3c,d), the perturbations for both ensembles show remarkable 

growth, especially for DOWN perturbations in Western Pacific regions. With the increase of forecast 

lead time, the perturbation patterns for both ensembles become similar. Take 48 h (Figure 3e,f) and  

72 h (Figure 3g,h) forecast lead times for example, the large perturbations regions in both ETKF and 

DOWN perturbation states correspond very well. The results indicate that the difference between the 

two systems in the perturbation distribution pattern for short range forecast is more significant than that 

of long range forecast. 

Aside from the perturbation distribution pattern, it is desirable to compare both ensembles in terms of 

perturbation magnitude. We average the perturbation energy norm at all grid points at each level to get 

the vertical distributions of energy norm. Figure 4 illustrates such energy norm profiles for 0–36 h 

forecast lead times. The energy norm of ETKF ensemble (Figure 4a) can keep steady growth with 

forecast lead time, and the most remarkable growth level is around 250 hPa. For example, at 6 h lead 

time, the energy norm at 250 hPa is 2.7 J/kg, while at 36 h lead time, the corresponding value is 4 J/kg. 

The energy value at higher or lower levels is relatively smaller. For DOWN ensemble, the energy norm 

growth characteristics are similar. The largest energy norm can also be found at 250 hPa, with a value of 

3.4 J/kg for 6 h forecast lead time and it 4.4 J/kg for 36 h lead time. It should be noted that the energy 

norm of DOWN ensemble perturbations is always larger than that of the ETKF ensemble perturbations 

at corresponding levels and corresponding lead times. 

100
200
300
400
500
600
700
800
900

1000

0 1 2 3 4 5

V
e
rt

ic
a
l 
p

re
ss

u
re

 L
e
v

e
ls

(h
P

a
)

Total energy norm(J/kg)

(a)ETKF

06h fcst

12h fcst

18h fcst

24h fcst

30h fcst

36h fcst

100
200
300
400
500
600
700
800
900

1000

0 1 2 3 4 5

V
er

ti
ca

l 
p

re
ss

u
re

 L
ev

el
s(

h
P

a)

Total energy norm(J/kg)

(b)DOWN

06h fcst

12h fcst

18h fcst

24h fcst

30h fcst

36h fcst

 

Figure 4. Vertical distributions of ensemble mean total energy (unit: J/kg), different lines 

denote different forecast lead times. (a) ETKF; (b) DOWN. 

3.3. Ensemble Perturbation Precision Test 

While larger perturbation values can indicate the larger magnitude of spread (as larger spread is 

always desirable for ensemble forecast), it is also interesting and important to investigate the “ensemble 

perturbation precision”. Studies by Toth et al. [29] and Zhu et al. [30] suggest that the ability of an 

ensemble to predict case-dependent forecast uncertainty is a critical criterion to evaluate an ensemble 

forecast system. The true forecast error variance can be regarded as a random variable around the 

ensemble perturbation variance. An accurate prediction of forecast error variance is one in which the 

true forecast error variance distributes closely to the ensemble perturbation variance; that is, the 

difference of the forecast error variance around the ensemble perturbation variance is small. We refer to 
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the ability of an ensemble to get forecast error variance right on every day at every grid point variable as 

“the precision” of the ensemble perturbation variance [22]. Information about the degree of ensemble 

variance precision can be used to increase the accuracy of error probability density functions derived 

from ensemble variances. Here, we introduce tests of ensemble variance precision. 

To analyze how well the ensemble perturbation variance can explain the forecast error variance, we 

follow the method used by Wang and Bishop [22] and Wei et al. [6]. First, we compute the ensemble 

perturbation variance and squared error of a variable at each grid point of a particular pressure level.  

A scatterplot (which is not shown) can then be drawn by using ensemble perturbation variance 

(abscissa) and forecast errors variance for all grid points. Since the grid points for the both REPSs are 

502 × 330, we next divide the points into 330 equally populated bins (with 502 grid points in each bin) 

in order of increasing ensemble variance. The ensemble and forecast variances are then averaged within 

each bin. It is the averaged values from each bin that are plotted. The relationship between ensemble 

perturbation variance and forecast error variance of 500 hPa temperature for ETKF and DOWN 

ensembles in forms of such plot are shown in Figure 5. If the number of bins is reduced (e.g., 33 bins 

with 5020 grid points in each bin), it is expected that the curve will be smoother. The result from 33 bins 

is shown by a solid line. For 6 h forecast (Figure 5a,b), the results from the 330-bin case (dotted line) 

show that the range of forecast error variance (maximum minus minimum values) explained by the 

ensemble variance is larger for ETKF(3.3 K2) than DOWN (0.4 K2). For 33-bin case (solid line), the 

range of forecast error variance explained by ETKF ensemble variance is also larger (1.5 K2) than that of 

DOWN (0.3 K2). This shows that ETKF perturbations are better than DOWN perturbations at being able 

to distinguish times and locations where forecast errors are likely to be large from the times and 

locations where forecast errors are likely to be small. For 60 h lead time (Figure 5c,d), the range of 

forecast error variance (10.8 K2 from 330-bin case and 8.3 K2 from 33-bin case) explained by ETKF 

ensemble variance is still larger than that of DOWN ensemble (9.5 K2 from 330-bin case and 7.5 K2 from 

33-bin case), but the difference between the two ensembles become smaller, compared to the 6 h forecast. 
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Figure 5. Cont. 
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Figure 5. Relationship between the 500 hPa temperature ensemble perturbation variance 

and forecast error variances with the value averaged from each of 33 bins (solid lines) and 

330 bins (dotted lines) at all grid points. (a) ETKF 6 h forecast; (b) DOWN 6 h forecast;  

(c) ETKF 60 h forecast; (d) DOWN 60 h forecast. 

3.4. Ensemble Verification Results 

To compare the results of both perturbation methods, we have used several verification methods.  

The methods are root mean square error (RMSE) for ensemble mean, the ensemble spread, the 

continuous ranked probability skill score (CRPS), and the Talagrand diagram. The results are reported 

for several model output variables. 

3.4.1. Root Mean Square Error and Ensemble Spread 

A useful measure of the skill of an ensemble prediction system is how well the variation in the spread 

(deviation of the ensemble about its mean) of the ensemble matches the variation in the RMSE of the 

ensemble mean forecast. We calculated the spatially averaged spread of all variables at all levels for each 

lead time, and compared this to a spatially averaged RMES of the ensemble mean. Figure 6 shows 

one-month averaged ensemble mean RMSE and ensemble spread for ETKF ensemble and DOWN 

ensemble, with two upper air variables of 500 hPa wind speed (WS500), 850 hPa temperature (T850) 

and one near surface variable of 10 m U wind (U10m) presented for comparison. It turns out that for all 

these variables, both methods have a lack of spread, and spread growth is slower than RMSE growth 

for both ensembles. Overall, the DOWN ensemble shows larger spread at all forecast lead times 

comparatively, with relatively smaller RMSE. Similar results can also be observed for other variables at 

different pressure levels (not shown). The results suggest that the larger spread of DOWN ensemble can 

really enhance the accuracy of ensemble mean forecast. 
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Figure 6. RMSE of ensemble mean and ensemble spread for ETKF and DOWN, 

respectively. (a) 500 hPa wind speed; (b) 850 hPa temperature; (c) 10 m U wind. 

3.4.2. Continuous Rank Probability Score 

The continuous rank probability score (CRPS) is an overall measure of the skill of a probabilistic 

prediction, measuring the skill of the ensemble mean forecast as well as the ability of the perturbations to 

capture the deviations around that. For a variable x, if the ensemble predicted probability density 

function is p(x) and the observational value is xo, the CRPS is given by [31] 

[ ]
2

( ) ( )oCRPS P x H x x dx
∞

−∞
= − −  (6)

where  

( ) ( )
x

P x p y dy
−∞

=   (7)

and H(x) is the step function with: 
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 (8)

The CRPS is a penalty score, so smaller values are better. Figure 7 shows the CRPS of WS500, T850 

and WS850 for both ETKF ensemble and DOWN ensemble. It is clear that the DOWN ensemble 

performs better (with smaller CRPS value) than ETKF for all the variables within 72 h lead times.  

CRPS verification on other variables can give similar results (not shown). This demonstrates that the 

DOWN method is better at providing probabilistic forecast than ETKF. Note, however, that the 

advantage of DOWN ensemble is quite limited, and the overall performances of the two ensembles  

are quite similar. 
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Figure 7. CRPS as a function of forecast lead time, for ETKF and DOWN, respectively.  

(a) 500 hPa wind speed; (b) 850 hPa temperature; (c)10 m U wind. 

3.4.3. Talagrand Diagram 

Another measure of statistical reliability is the Talagrand diagram [32]. This is the statistic of the 

frequency that the observation lays inside or outside the whole ensemble. A more reliable EPS should 

have a more flat pattern. “U” shape means lack of spread, “J” or “L” shapes mean there is bias in the 

system. Figure 8 shows the Talagrand diagram for WS500, T850 and U10m for 24 h lead time. It is 

evident that for all the graphs, the diagram of DOWN ensemble is closer to flat than the ETKF ensemble; 

this indicate that the frequency that observations lay inside the whole ensemble is higher for DOWN 
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than ETKF. From Figure 6 we know that both ensembles are under-spread, thus, comparatively 

speaking, this more flat pattern of DOWN ensemble is desirable. 
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Figure 8. Talagrand for ETKF and DOWN at forecast lead time of 24 h. (a) 500 hPa wind 

speed; (b) 850 hPa temperature; (c)10 m U wind. 

3.5. A TC Case Study 

A TC case is studied to assess the practical performances of both ensembles. The 11th typhoon 

“Haikui” (1211) in 2012 was one of the most severe threats to Mainland China and caused several 

hazardous disasters, including heavy precipitation, windstorms, and storm surges. Haikui was born in 

the Central Pacific (about 140.7°E, 23.2°N) at 08030000 UTC and landed on Xiangshan in Zhejiang 

Province, China at 08071920 UTC (Figure 9). Graded as “severe typhoon” according to the CMA, 

Haikui was characterized by generation in the high latitude area, rapid intensification just before 

landing, and stagnation after landing. Here the track forecasts of Haikui (1211) within 72 h lead time 

from ETKF ensemble and DOWN ensemble are compared. 

The predicted tracks of Haikui from ensemble members and ensemble mean of ETKF ensemble and 

DOWN ensemble are displayed in Figure 10. All forecasts are initiated at 08061200 UTC with a forecast 

length of 72 h. From the ETKF ensemble forecast (Figure 10a), we note that the tracks forecasted by all 

the members exhibit a divergence characteristic; this can reflect the spread growth with forecast lead 
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time. The forecasted tracks from several ensemble members are very close to the observation, except the 

ones with drastic northward turning. From DOWN ensemble forecast (Figure 10b), it is clear that there 

are also some members that correspond well to the observation, and it seems that the ensemble mean 

forecast of DOWN is better than that of ETKF. A significant contrast of ETKF ensemble and DOWN 

ensemble is the variability of the directions between the forecasted tracks, since all the tracks forecasted 

by ETKF ensemble can pass through the rectangular region, while the tracks forecasted by DOWN 

ensemble are more diverged with some tracks laying outside of the rectangular region. Although this 

more dispersive distribution of DOWN forecasted tracks may possible to comprise the true TC course, 

such great spread of tracks might not be considered desirable as it can also brought confusing for users. 

 

Figure 9. Observed Track of Haikui (1211). 

 

Figure 10. Seventy-two hour track forecasts of Haikui (1211) from ensemble forecasts of  

(a) ETKF and (b) DOWN. Red line is ensemble mean forecast (MEAN) and blue lines are 

ensemble member forecasts (EPS). 
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An objective of ensemble forecast is to improve the forecast accuracy. To assess the TC track forecast 

accuracy of the two ensembles, the track forecast error is studied. At one forecast lead time, the TC 

track forecast error is defined to be the distance of the forecasted track location from the observational 

location. Such forecast error in terms of track distance is displayed in Figure 11. As shown in Figure 11a, 

the 36 h forecast error of all ensemble members are limited within a range of 300 km, and the error of 

ensemble mean is 73 km at 36 h lead time, which is significantly less than most member forecasts. 

However, we can also find a significant error growth beyond 36 h lead time, and some members exhibit 

extremely large error, for example, there are three members whose error values are over 600 km at 72 h 

lead time. The 72 h forecast error of ensemble mean can still maintain a reasonable value of 387 km. As 

shown in Figure 11b, the error characteristic of DOWN ensemble is very similar to that of ETKF 

ensemble within 36 h forecast lead time, and the error of ensemble mean is small (66 km for 36 h 

forecast). After 36 h forecast, it is obvious that the error value of DOWN ensemble member forecasts 

cover a wider range than ETKF ensemble. The 72 h forecast error value of some members can reach 

1160 km, while some members can exhibit very small errors (smaller than 50 km). The error value of 

ensemble mean is 363 km, which is a little less than that of ETKF. 
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Figure 11. Distance of forecasted tracks and the observational track of Haikui (1211) as a 

function of forecast lead time, for (a) ensemble members and ensemble mean of ETKF and 

(b) ensemble members and ensemble mean of DOWN, respectively. 

Generally speaking, the overall skills of the ensemble mean forecast of the two ensembles are very 

similar, and the DOWN ensemble has slightly higher skill for long forecast lead times. From this TC 

case study, it has not been possible to see clearly improved performance from either ensemble. 

4. Summary and Conclusions 

Based on the operational GRAPES-REPS, this paper carried out comparative studies on two IC 

perturbation schemes for regional ensemble, namely regional ETKF and dynamical downscaling.  

Using the two IC perturbation schemes, two consecutive ensemble forecast tests in an operational 

environment are conducted for a period of one month. The perturbation characteristics are investigated, 

meanwhile ensemble verification are implemented by use of several probability forecast verification 
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methods. Additionally, a TC case of “Haikui” is studied to examine the practical effectiveness of the two 

regional ensemble forecasts. The main conclusions of this research are as follows: 

The perturbations generated by ETKF have larger power at smaller scales, while the perturbations 

have more power at larger scales. The small-scale cannot be well resolved by the global model, so it is 

not surprising that the downscaling perturbations have a lack of small-scale power within short forecast 

range. With the forecast lead time increasing, the differences between ETKF and downscaling 

perturbations at different scales decrease. 

The distribution pattern of both types of perturbations are quite different at initial time, the ETKF 

perturbations can reflect observation density while the downscaling distribution cannot. The two types 

of perturbations showed different growth characteristics, this is mainly due to the different ways in  

which the perturbations are calculated. The perturbations of the global ensemble are generated using a 

masked BGM, and the global perturbations at 12 h forecast lead time are rescaled by a rescaling factor, 

so that the perturbations can match approximately the global model forecast error at 12 h forecast lead 

time in the next cycle. When this is used to drive the IC perturbations for the regional model, the 

difference between the perturbed forecasts and the control forecast at initial time is relatively larger. 

When perturbations are calculated using the regional ETKF, the 6 h forecast perturbations are 

transformed and rescaled, and the perturbation magnitude will match the regional model forecast error at 

6 h forecast lead time in the next ETKF cycle. Since there is significant difference between the calculated 

regional model 6 h forecast error and global model 12 h forecast error, the perturbation magnitude of the 

ETKF ensemble can be much less than that of the corresponding downscaling ensemble. 

Although the downscaling perturbations shows better growth, these perturbations show no more skill 

than ETKF perturbations on representing forecast error. The range of forecast error variance explained 

by the ensemble variance is larger for ETKF than downscaling. This result indicate that the ETKF 

perturbations are better than downscaling perturbations at being able to distinguish times and locations 

where forecast errors are likely to be large from the times and locations where forecast errors are likely 

to be small. 

The one-month statistics of ensemble verifications are also indicative. The RMSE and spread from 

the two ensembles show that the DOWN ensemble has slightly higher skill than the ETKF ensemble, 

and the results from CPRS and Talagrand histogram also support this conclusion. It is known that these 

scores can be influenced by the magnitude of the initial spread [5]. As Section 3.2 shows, the initial 

spread of DOWN ensemble is generally larger. This may reduce the forecast error of the DOWN 

ensemble. A conclusion will be drawn from the future comparison with both systems having similar 

initial spread. 

A TC case study shows that the difference in the ensemble spread between the two systems dominate 

much of the comparison, the tracks from ETKF ensemble forecast are more concentrated, while the 

tracks from DOWN ensemble forecast are more dispersive. The track forecast error is also compared to 

assess whether there is any potential benefit from either system. It seem that the overall skill of the two 

systems are quite similar despite slightly smaller error of DOWN ensemble than ETKF ensemble at long 

range forecast lead times. 

Now that a comprehensive comparison between IC perturbation methods of regional ETKF and 

dynamical downscaling has been made, one may revisit the question of whether it was right to 

implement this downscaling in the operational REPS of CMA, or if there is another way to improve the 
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present ETKF based REPS. The results presented here indicate that the performance of the downscaling 

perturbations ensemble is better than that of the regional ETKF perturbations ensemble in some respects, 

such as the larger spread growth and better ensemble verification scores. Moreover, as described in 

Bowler and Mylne [15], the perturbations derived from downscaling are more consistent with the lateral 

boundary. However, there is no doubt that the downscaling perturbations have a lack of small-scale 

information, and the ETKF ensemble perturbations can better represent the forecast error of regional 

model. Although the above results are mixed, these comparisons may shed some light on further 

improvement in present system. A practical way to take advantages of both ensemble perturbations is 

developing a blending technique, which has been primarily investigated by Caron [33] and Wang et al. [34]. 

This technique can obtain blended perturbations that contain large-scale component from downscaling 

perturbations and small-scale component from ETKF perturbations. As this blending technique can take 

the advantages of both downscaling perturbations and regional ETKF perturbations, it is expected to be 

an appropriate way to achieving good ensemble forecast for the CMA REPS. 
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