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Abstract: Electricity from renewable energy sources (RES-E) is gaining more and more influence
in traditional energy and electricity markets in Europe and around the world. When modeling
RES-E feed-in on a high temporal and spatial resolution, energy systems analysts frequently use
data generated by numerical weather models as input since there is no spatial inclusive and
comprehensive measurement data available. However, the suitability of such model data depends
on the research questions at hand and should be inspected individually. This paper focuses on
new methodologies to carry out a performance evaluation of solar irradiation data provided by
a numerical weather model when investigating photovoltaic feed-in and effects on the electricity
grid. Suitable approaches of time series analysis are researched from literature and applied to both
model and measurement data. The findings and limits of these approaches are illustrated and a
new set of validation indicators is presented. These novel indicators complement the assessment
by measuring relevant key figures in energy systems analysis: e.g., gradients in energy supply,
maximum values and volatility. Thus, the results of this paper contribute to the scientific community
of energy systems analysts and researchers who aim at modeling RES-E feed-in on a high temporal
and spatial resolution using weather model data.
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1. Introduction

The ongoing expansion of electricity generation facilities from renewable energy sources leads
to a decentralization of energy systems. In order to adequately analyze planning and operation of
decentralized energy systems, high-quality RES-E generation profiles are needed in high temporal
and spatial resolution. Often, RES-E generation profiles are not directly available on a spatially
inclusive and comprehensive scale and energy systems analysts apply weather data to calculate the
generation profiles. Since measurement data is usually not available in the required resolution as
well (limited to a few sites), weather models provide one mean to generate the required input data.
However, it needs to be evaluated beforehand if the model data captures those characteristics of the
weather time series that are relevant for the particular research question.

The goal of this paper is to evaluate if solar irradiation data provided by a weather model
is suitable for the subsequent analysis of decentralized energy systems. It is based on a previous
conference contribution by the same authors [1] which introduces the spatial volatility and has been
enhanced by the two more novel indicators. In the context of this paper the term “decentralized”
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refers to electricity consumption and supply connected to the electricity grid on a voltage level below
the transmission grid (e.g., in Germany, 110 kV and lower). This analysis includes the dimensioning
of flexibility options like storage and demand response within distribution grids in order to deal
with local grid congestion (maximum capacity, ramping capabilities). This is relevant considering
the fast growing number of decentralized units generating electricity from renewable energy sources
(RES-E) throughout the world. In contrast to conventional power plants, most RES-E is generated on
a decentralized level, challenging the established decision making and infrastructure in the electricity
sector. New approaches to research decentralized energy systems and the corresponding RES-E
generation are therefore necessary.

Existing approaches for assessment focus on well-known first order statistics. Some additionally
apply advanced instruments from second order statistics. They have in common that they rank
different modeling approaches to simulate solar irradiation against each other using a similar set of
statistics. The development of an assessment framework which focusses on the intended utilization
of the data in energy systems analysis has not been carried out so far.

This paper intends to fill this gap through filtering existing work on assessing weather model
data for the most helpful indicators including common instruments from statistics for time series
analysis. In order to qualify the considered model data for further analysis, we thoroughly compare
between the model data and a reference data set based both on established scientific methods and
on novel performance indicators. Therefore, we carry out a number of well-established tests and
computations of key performance figures in order to quantify the similarity of the model output and
the measurement data taken from various sites in Germany.

They are complemented by a new set of indicators developed in this work measuring peaks,
extreme changes in supply and the differential in supply over space. The new indicators focus on
characteristics that are relevant for the dimensioning of decentralized energy systems and assess
how well a model’s data output, compared to measurement data, captures the fluctuating character
of renewable energy supply over space and time. They assess whether the appearance of extreme
events in the modeled time series is realistic rather than exactly reproducing (measured) real data.
Together they provide decision support to find out how well the model data can be used to work on
problems related to energy systems on the decentralized level.

The model data used for this work was supplied by downscaling reanalysis data of solar
global irradiance from the NASA program Modern-Era Retrospective Analysis For Research and
Applications (MERRA) applying the mesoscale model MM5 [2]. The data has a temporal resolution
of 10 min (spanning from 1990 to 2013), a spatial resolution of 20 km ˆ 20 km. The data of the
57 measurement stations was provided by the German National Meteorological Service (DWD) and
has an hourly resolution. They are quite evenly distributed in length and width over Germany.
A representation of the model data and the location of the considered 57 measurement stations is
given in Figure 1.
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Figure 1. Grid structure of the model data available on a 20 km ˆ 20 km scale (colored rectangles)
and location of the 57 measurement stations (green dots).

This paper is structured as follows. Section 2 gives a review of existing methods to compare
model and measurement data of solar irradiation from the literature. Section 3 identifies and formally
describes the most relevant indicators from literature and introduces the novel indicators. Section 4
summarizes the results from applying the indicators and discusses the reasons and impact. Section 5
concludes and gives an outlook for further improvement.

2. Review of Methods for Assessment in the Literature

In the following, the paper gives an introduction on literature dealing with the assessment of
various solar irradiation models. The common approach is to compare the simulated time series
(also called “predicted” or “forecasted” time series) with measurement data from ground stations.
The selected works were chosen for their quantitative approach, recognition and experience dealing
with weather models or for being related to energy economics:

Murphy [3] highlights that the correlation coefficient is a frequently used indicator to quantify
how well a forecast performs with regard to the corresponding observations (traditionally and in
variations as the “anomaly correlation coefficient”). While he acknowledges that the coefficients
of correlation (R) and determination (R²) describe linear relationships between model data and
observation data, he highlights their lack of ability to account for absolute differences in the observed
and simulated time series. He recommends the mean square error (MSE) to measure and aggregate
these differences.

Myers et al. [4] describe their update of the U.S. National Solar Radiation Data Base (NSRDB).
They take into account three different models producing irradiation data and assess those on the basis
of measurement data from 31 U.S. sites covering two years. The hourly model and measurement
data are compared by means of the root mean square error (RMSE), the mean bias error (MBE) and a
regression analysis covering the parameters of the regression line and the coefficient of determination
(R2). The tested models performed similarly with regard to the RMSE (<100 W/m2) and the MBE
(<10 W/m2) between the modeled and measured hourly global irradiation data. Further analysis is
done by a visual comparison of the frequency distribution and the probability distribution.

Polo et al. [5] derive solar irradiation data from satellite images and evaluate the modeled time
series against measurements by means of the RMSE and the MBE on an hourly and daily basis.
In order to compare a model’s ability to simulate time series of the global irradiation as a percentage,
they normalize by the mean daily irradiation. According to their results the general accuracy of
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satellite models lies within 17%–25% in RMSE when modeling global hourly irradiation and 10%–15%
for averaged daily values. They derive a MBE around ´2.6% and +4.3%.

Gueymard and Myers [6] provide a helpful introduction into the assessment of solar irradiation
models including a classification to qualitative and quantitative assessment. Their list of quantitative
performance indicators covers the following: RMSE, MBE, R, R², t-statistic, skewness and kurtosis
of the respective observed distribution function. They mention approaches to aggregate various
indicators into one key performance indicator e.g., an “accuracy score”.

The model assessment described by Badescu et al. [7] covers an extensive number of 54 different
models simulating hourly global and diffuse irradiation. The reference data for comparison originates
from two measurement stations in Romania. The MBE and RMSE are chosen to indicate whether a
model shows a “good performance”, both normalized using the arithmetic mean of measured values.
A MBE between +5% < MBE < ´5% and a RMSE < 15% qualifies as “good performance”.

Similar to the above described update of a U.S. irradiation data base, Huld et al. [8] describe
their application of a new data source to the Photovoltaic Geographical Information System (PVGIS)
and the outcome with respect to the model’s ability to simulate global horizontal irradiation on a
monthly basis. The data update is derived from the Climate Monitoring Satellite Application Facility
(CM-SAF) and validated using measurement data from 20 sites in Europe. As performance indicator
they use the MBE and the relative mean bias error (RMBE) expressed as a percentage. The authors
conclude that the new data set is improving PVGIS’ ability to model irradiation data on a monthly
basis reaching an overall RMBE of all measurement stations of about +2% varying by a standard
deviation of 5%.

Ineichen [9] assesses the model results of six different, nowcast satellite products“ simulating
hourly, daily and monthly values for global, direct and diffuse irradiation. For the performance
analysis, he generally distinguishes means of first and second order statistics. The first order statistics
include the MBE, RMSE, standard deviation (σ) and R and also a visual check of the frequency of
occurrence and cumulative frequency of occurrence plot. He finds that the considered models are
able to simulate hourly global irradiation with a negligible MBE: Averaged over all sites, the MBE
lies between ´2.7 W/m2 and +6.2 W/m2 (the relative value varying between ´0.8% and 1.8%).
The standard deviation of the MBE with respect to different sites ranges between 2.1% and 5.1%.
These results are limited to sites located at latitudes from 20˝ to 60˝ and an altitude from 0 m
to 1600 m. For the second order statistics, Ineichen names the Kolmogorov-Smirnov test which
measures the difference between the frequency of occurrence (or probability density function) of
the simulated and measured data respectively. Drawing the distribution of the differences between
measurement and model data is another useful way of assessment mentioned by the author particular
helpful for a graphical assessment.

Liebenau et al. [10] analyze the necessary electricity grid extension induced by RES-E power
plants and calculate the tradeoff between curtailing RES-E feed-in and grid extension. They use
simulated time series (wind speed and global irradiation) from the COSMO-EU model of the German
National Meteorological Service (DWD) and convert those to electricity feed-in by photovoltaic and
wind power plants. The assessment of the generated wind and irradiation time series is done using
measurement data from a small number of sites in Germany. The RMSE serves as single performance
indicator and is calculated to about 13%. While the performance evaluation conducted by them is not
as sophisticated as most of the examples mentioned before, it is relevant in the context of this paper,
since their underlying research question is similar to our research of decentralized energy systems
and networks. Their focus on the RMSE indicates its significance as performance indicator.

An interesting initiative on the standardization of the evaluation of satellite driven model data
is represented by the IEA Solar Heating and Cooling Programme’s Task 36 called “Solar Resource
Knowledge Management” [11]. It produced the following four publications particular relevant for
this paper.

1874



Atmosphere 2015, 6, 1871–1888

Hoyer-Klick et al. [12] aim at establishing a set of evaluation guidelines to enable comparable
benchmarking results of solar irradiation models. They name the MBE, RMSE, standard deviation
pσq and R being especially important when measuring the accuracy of a model to produce data as
similar to the reference data as possible. For system design studies, they recommend indicators based
on second order statistics applying the Kolmogorov-Smirnov (KS) test. The analyzed model data
stems from three different models. They state a MBE of ´1% to 4% and a RMSE of 36% to 48% for
the hourly irradiation data of the evaluated models, relative to the arithmetic mean of the data set.
Having calculated KS integrals with mostly above 100% they conclude that the four tested irradiation
models do not match the solar irradiation’s distribution function very well.

Espinar et al. [13] apply the assessment on daily irradiation data from the geostationary
meteorological satellites Meteosat-5, -6 and -7 compared to an extensive number of 38 sites in
Germany. Their assessment is done on the basis of daily irradiation values which excludes their
results to serve as benchmark of this work.

Hoyer-Klick et al. [14] derive two general tables that aggregate information about possible data
sources and minimum requirements of performance when assessing the data. For the hourly global
irradiation, they suggest the MBE to be lower than 5% and the RMSE < 125 W/m2. Both [13]
and [14] apply the Kolmogorov-Smirnov test comparing the probability density function or frequency
of occurrence of the measured and modeled data respectively.

A similar set of performance indicators is used by Ineichen [15] to assess five satellite
models. He presents a large number of tables containing the assessment results of various
comparison indicators.

Reviewing the above mentioned approaches it becomes clear that present approaches to weather
model assessment mostly focus on common statistical indicators from first and second order statistics.
Especially the mentioned first order statistics instruments are limited to capturing the tendency of a
model’s ability to reproduce real data with regard to a certain site and point in time. However, for
energy systems analysis it is not so important to reproduce weather time series as identical as possible
but to capture the relevant characteristics and reproduce those in a realistic manner. In order to assess
a model’s ability to simulate realistic rather than real data we complement the performance indicators
from the literature and introduce a number of indicators capturing the fluctuating and geographically
varying character of RES-E supply.

3. Performance Indicators for the Assessment of Irradiation Model Data

In Section 3.1, we choose a selection of the existing instruments from the literature reviewed
above. We will argue that these indicators, chosen for their popular and widespread application,
are helpful to analyze the similarities of two time series in a general way but lack the ability to
assess important characteristics when conducting energy systems analysis. If a weather model cannot
produce output that accurately reproduces reality in a desired temporal and spatial resolution, the
output might still be realistic enough to allow for the analysis of effects on the energy system.
For a weather time series to qualify for energy systems analysis, it is not so important to reproduce
observed weather situations from the past (=real data) as accurately as possible but to generate
realistic data. In our context, realistic means that events (e.g., peaks or spatial as well as temporal
gradients) do appear in the time series in a similar order of magnitude and frequency but do not have
to occur in the same sequence and at the exact time steps as in the reference time series (which would
be reproducing real data).

Therefore, seeking to complement the indicators from literature, we introduce several novel
instruments for the assessment of solar irradiation model data in the context of energy systems
analysis in Section 3.2. They assess how well a model’s data output captures the fluctuating character
over space and time and the occurrence of extreme values compared to measurement data.
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3.1. Model Assessment Indicators from Literature

In order to evaluate how well time series elements at the same place and time compare with each
other, we choose the following indicators based on first order statistics: MBE, RMSE, R. The MBE
describes how well the model is calibrated and the RMSE reflects the scattering of the model output
against the measurement data. The correlation coefficient R quantifies the model’s ability to capture
linear relationships. From the authors’ point of view, this selection represents the most adequate
indicators from literature for energy systems analysis. We will define the indicators below, definitions
for them can also be found in [3,7,9].

The Mean Bias Error (MBE) adds up the “deviation” mt ´ ot between the modeled mt and the
observed ot values for each (time) step t within these two time series. The sum is normalized by the
number of elements of the time series. The MBE represents the average deviation between model
and measurement data and measures the systematic difference:

MBE “
1
N

N
ÿ

t“1

pmt ´ otq (1)

For the example of solar irradiation data, the MBE indicates how well a model assesses the
amount of electricity generation from solar energy for a given installed capacity. Using Equation (1),
the MBE is expressed as an absolute value having the same measurement unit as the examined
time series. In order to compare MBE performance from different samples with different means or
fluctuation levels, the MBE is normalized by the arithmetic mean o of the observed measurement data.

The second important performance indicator selected from the literature review is the Root Mean
Square Error (RMSE), often also referred to as Root Mean Square Difference (RMSD).

RMSE “

d

řN
t“1 pmt ´ otq

2

N
(2)

While the MBE measures a systematic and average deviation between modeled and observed time
series, the RMSE is an indicator for the scattering of the model data. Differences between measured
and observed data are added up by the second power, therefore high deviations have a strong
influence. In order to express the RMSE dimensionless it can also be normalized, e.g., using the
range of observed measurement data ro “ omax ´ omin.

The correlation coefficient R represents the third chosen comparison indicator. It varies between
´1 and 1 and is an indicator for a simultaneous change behavior of sample data in a linear way. As a
function of covariance Cov and standard deviation σ it is formulated as:

R “
Cov pm, oq

σm σo

R “

1
N

řN
t“1 ppmt ´mq ¨ pot ´ oqq

c

1
N

řN
t“1 pmt ´mq2 ¨

c

1
N

řN
t“1 pot ´ oq2

R “
řN

t“1 ppmt ´mq ¨ pot ´ oqq
b

řN
t“1 pmt ´mq2 ¨

řN
t“1 pot ´ oq2

(3)

A good way to visualize a model’s performance with respect to linear correlation is drawing a
scatterplot. Figure 2 shows an illustrative scatterplot of the modeled and observed irradiation data
at the Bochum site in Germany. The scatterplot draws two time series, e.g., modeled and measured
data, against each other. A perfect match of each modeled and measured data point would result in
a single 45˝ line from the origin.
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Figure 2. Scatterplot of modeled against measured data for one year of hourly data (2003).

As already mentioned above, the Kolmogorov-Smirnov Test (KS Test) is a second order statistics
approach to assess solar irradiation model data on the basis of a time series’ cumulative distribution
function (CDF). The test compares the estimators of the CDF of both the measured and the modeled
data and quantifies the differences. It tests the hypothesis that the modeled and measured data points
are drawn from the same CDF. Therein, it is somewhat similar to the χ2 test but more powerful [16].
Espinar et al. [13] describe the advantage of the KS Test as being a non-parametric, distribution-free
test, since it makes no assumption about the data distribution.

In our analysis we found that the instruments of the KS Test do not prove helpful when applied
to hourly data sets of model data and measurements respectively. The large sample size makes it
quite challenging to fall below the test’s performance threshold, while it is not surprising that the
distribution of measured solar irradiation data from a single site differs from model data simulating
the irradiation over a larger area.

3.2. Assessing the Suitability of Weather Model Data in the Context of Energy Systems Analysis

While the above described instruments from first and second order statistics represent
established indicators to assess a model’s ability to reproduce real data as accurately as possible, we
aim for the ability to produce realistic rather than real data. In the context of this paper, this means
that the model output captures the identified relevant characteristics of a time series and reproduces
those in a realistic manner (see above).

In order to design and analyze decentralized energy systems and their grid constraints, extreme
and rare values of the solar irradiation supply are particularly important. They determine the
maximum capacity of a power line for example or the amount of required back-up generation
capacity. Certain characteristics as frequency, duration and extent of those events are relevant but
not their correct occurrence in time. The indicators presented in this sectionin this section measure
and compare such characteristics.

In contrast to the performance indicators described in Section 3.1, the novel indicators introduced
in this sectionin this section have in common that they stand for a certain characteristic of a single time
series. Thus, in order to interpret them, they are compared to the same indicator of other time series
or another performance indicator.

3.2.1. Maximum Amplitude of Radiation Supply (MARS)

Decentralized energy systems and grids are highly influenced by the imposed load of solar
irradiation driven electricity generation units (e.g., photovoltaics). In order to identify possible grid
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congestions, it is important for extreme and rare situations to be adequately reproduced by the
irradiation model. The MARS is an indicator for the extent of very high values of a given time series
(W/m2). To make the MARS more representative and less vulnerable to measurement errors and
spikes, it is expressed on the basis of a percentile α:

MARSα “
1

pN ´ tq

N
ř

t
xt

ˇ

ˇ

ˇ
rx1 ď x2 ď . . . ď xt ď . . . ď xNs ; t “ max

!

k P N

ˇ

ˇ

ˇ
k ď

α

100
N
)

; α ă 100
(4)

The variables x1 . . . xN represent the time series elements at one site and N the number of
elements.The MARS99.9, MARS99 and the MARS95 return the averaged irradiation supply of the 0.1%,
1% and 5% highest values respectively. It measures the ‘average maximum’ of the modeled and
measured time series respectively.

3.2.2. Maximum Gradient of Radiation Supply (MGRS)

The MGRS is an indicator for the maximum induced flexibility demand by RES-E generation
units: As for most RES-E generation units, the potential for electricity generation of PV units depends
directly on the supply of the underlying energy used for the conversion. Fluctuations in the supply of
solar irradiation therefore directly result in fluctuations of electricity generation. These fluctuations
make it necessary for stand-by or reserve generation capacities to be able to raise or to reduce their
electricity generation schedule in a very flexible manner. This imposed need for other generation,
demand or storage units to balance out feed-in fluctuations is called ‘flexibility demand’ in the
following. The MGSR measures the gradients ∆ P (change rate) of irradiation supply (W/s) between
two elements xn of a time series with a temporal distance of ∆t:

∆Pn,∆t “ |xn`∆t ´ xn|

The MGRS is an indicator for the flexibility demand induced by PV power plants depending on
the solar irradiation supply. The gradients ∆ P are assorted by size in order to compute the percentiles
α. The gradients of changes in irradiation supply are calculated as follows:

MGRSα,∆t “
1

pN ´ tq

N
ř

t
∆Pt,∆t

ˇ

ˇ

ˇ

“

∆P1,∆t ď ∆P2,∆t ď . . . ď ∆Pt,∆t ď . . . ď ∆PN,∆t
‰

; t “ max
!

k P N

ˇ

ˇ

ˇ
k ď

α

100
N
)

; α ă 100
(5)

The MGRS is calculated separately for various time intervals and returns the average value of
the gradients greater than the 99.9, 99 and 95 percentile. In order to evaluate the resulting MGRS,
the average of values greater than the 75 and the 50 percentile are also calculated. Both negative and
positive gradients are aggregated into the MGRS.

3.2.3. Spatial Volatility

As mentioned at the beginning of this section, we are looking for indicators to compare a solar
irradiation model’s ability to capture the fluctuating and uncertain character of irradiation supply.
While the above introduced MARS and MGRS measure the occurrence of extreme and rare values,
the spatial volatility indicates the difference in RES-E generation potential within the same time but
at different locations. The application of the standard deviation as an indicator for the fluctuating
character of a time series over time is well known in the literature (e.g., [12]) whereas, to the
knowledge of the authors, the concept of spatial volatility (a samples standard deviation normalized
by its mean) represents a new concept to characterize renewable energy supply, which we introduce
in this paper.
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The spatial volatility calculates the deviation between the irradiation supply at different sites
and serves as an indicator for spatial differences in RES-E generation. This is important information
when doing energy systems analysis since it influences major elements as for example the necessary
grid capacity or the distribution of conventional power generation capacities.

Comparing the model’s and the measurement’s spatial volatility, it is possible to judge how well
regional disparities in irradiation supply are reproduced by model data. In the context of this paper,
the spatial volatility during time step t of the irradiation supply x1

t . . . xS
t is defined as:

volat “
σt

µS
t
“

c

1
S´ 1

řS
s“1

`

xs
t ´ µS

t
˘2

µS
t

(6)

The variable µS
t denominates the arithmetic mean of the solar irradiation over the number of

available stations S during time step t and σt the respective standard deviation.
In order to reach as significant results from the spatial volatility as possible, the available

measurement data are filtered as follows: Since during the night the irradiation supply is zero at
all stations and therefore the spatial difference of irradiation supply is also zero, only time steps with
model and measurement data greater than zero are taken into account for the calculation. Thus, all
parts of the time series during the night are deleted.

4. Results and Discussion

We apply the above mentioned indicators to an hourly resolution of the time series, which
corresponds to the resolution of the available measurement data. The weather model data is available
on a 10 minute scale and hourly values are obtained by the arithmetic mean over the respective six
10 min values. In Section 4.1, we present the results of the selected first order statistics as described
in Section 3.1: the mean bias error (MBE), the root mean square error (RMSE) and the correlation
coefficient R. Those three indicators are calculated for each of the 57 sites for which both modeled and
measured data are available. The average value over all stations is calculated by uniform weighting.
The results can be taken from Table 1. Subsequently, we describe the corresponding results of our
newly developed performance indicators in Section 4.2.

4.1. MBE, RMSE and R

Regarding the MBE, calculated for each site, it becomes clear that the model data is positively
biased. The averaged MBE over all locations amounts to 24.7 W/m2 per hour or 22%. This means that
on average the model exceeds the measured solar irradiation supply in every hour by 24.7 W/m2.
In order to express the MBE as a percentage it is normalized using the arithmetic mean of the
respective measurement data sets which vary between 95 W/m2 and 132 W/m2.

The RMSE is an indicator for the scattering of data which sums up all deviations weighted to the
power of two, giving more impact to high values. The respective values for the RMSE are 108 W/m2

and 11%, the relative value normalized using the range of each measurement data set.
With regard to the publications introduced in Section 2, the MBE should be around ´5% to +5%

(e.g., [7]) and the RMSE below 125 W/m2 (e.g., [14]) in order qualify as good results. Taking that
into account, these assessment indicators do not produce a clear picture. While the high MBE implies
a relative strong systematic exceedance of the irradiation model over the measurements, the RMSE
appears to qualify for a good modeling performance.

Looking at the results of calculating R (Table 1) it is noticeable that the correlation between
model and measurement data is very similar for nearly all sites. Except at “Hohenpeissenberg” all
correlation coefficients vary less than 5 percentage points from the mean of 90%.
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Table 1. Selected statistics for the 57 sites with measurement data available. Model data was available
through 1990–2013, measurements were only available as noted in columns 1 and 2.

Measurement Available
Site

First Order Statistics

Start Year End Year MBE (W/m²) MBE(-) RMSE (W/m²) RMSE (-) R (-)

1990 2004 Aachen 30.6 29% 116 13% 90%
1990 2013 Arkona 13.3 12% 90 10% 93%
1990 2006 Bocholt 25.9 24% 108 11% 91%
1991 2013 Bochum 27.8 25% 104 10% 90%
1990 1998 Bonn 30.1 27% 120 12% 88%
1990 2001 Bonn 35.8 34% 123 12% 89%
1990 2000 Braunlage 29.4 27% 122 13% 88%
1990 2013 Braunschweig 25.9 22% 101 10% 91%
1990 2013 Bremen 35.5 31% 101 10% 86%
1990 2013 Chemnitz 24.0 20% 102 10% 91%
1990 2002 Coburg 27.1 23% 113 10% 90%
1990 1995 Dresden 31.1 26% 111 12% 91%
1996 2013 Dresden 25.8 21% 109 10% 91%
1990 2013 Fichtelberg 27.1 29% 107 10% 87%
1990 1991 Flensburg 37.0 35% 118 14% 90%
1990 2006 Freiburg 32.1 25% 114 11% 91%
1997 2013 Fuerstenzell 24.2 18% 106 10% 92%
1990 2013 Geisenheim 28.7 23% 101 10% 90%
1990 1991 Gelsenkirchen 40.6 37% 124 14% 90%
1990 2006 Giessen 31.7 28% 114 11% 91%
2001 2013 Goerlitz 22.3 18% 105 11% 91%
1990 1991 Gruenow 25.3 22% 112 13% 89%
1990 2005 Halle 18.8 17% 121 13% 86%
2005 2013 Hamburg 22.1 21% 101 9% 91%
1990 2004 Hamburg 26.7 25% 114 8% 88%
1990 2003 Harzgerode 17.7 15% 122 11% 86%
1990 1997 Heiligendamm 21.9 19% 99 10% 92%
1990 2013 Hohenpeissenberg 0.4 0.3% 104 10% 79%
1990 2002 Kassel 32.3 30% 118 12% 90%
1990 2013 Konstanz 33.7 26% 101 10% 92%
1990 1990 Leinefelde 26.4 22% 113 12% 90%
2006 2013 Leipzig 25.2 23% 106 11% 91%
1990 2013 Lindenberg 20.2 17% 102 9% 91%
1990 2006 Lippspringe 33.2 30% 118 12% 89%
1990 2008 List 8.8 7% 95 10% 91%
1990 2007 Luedenscheid 34.4 32% 118 12% 89%
1990 2010 Mannheim 30.4 25% 109 11% 91%
1991 2003 Neubrandenburg 22.8 22% 101 10% 92%
1990 2013 Norderney 15.5 13% 96 10% 92%
1990 2013 Nuernberg 29.5 25% 103 10% 91%
1990 2001 Osnabrueck 28.9 26% 112 12% 90%
1990 1996 Passau 36.1 29% 117 12% 91%
1990 2013 Potsdam 22.8 19% 101 10% 91%
1998 2013 Rostock-W 13.2 11% 92 10% 92%
1990 2013 Saarbruecken 27.1 22% 102 10% 91%
1990 2013 Schleswig 20.2 18% 99 10% 91%
1991 2013 Seehausen 21.4 19% 105 11% 91%
2008 2013 St.Peter-Ording 8.4 8% 92 10% 92%
1990 2013 Stuttgart 28.3 22% 101 10% 91%
1990 2013 Trier 29.2 25% 104 10% 91%
1990 2013 Weihenstephan 28.2 21% 102 10% 92%
1990 2007 Weimar 25.5 23% 111 11% 90%
1990 2013 Weissenburg 31.2 25% 101 10% 91%
1990 2006 Wittenberg 28.8 28% 111 12% 91%
1990 2013 Wuerzburg 23.8 19% 101 10% 91%
1990 2006 Zinnwald 33.5 30% 122 12% 88%
2009 2013 Zugspitze 8.2 6% 113 10% 91%

Arithmetic Mean 25.7 22% 108 11% 90%

In order to visualize the linear correlation between the data sets we generated two illustrative
density scatterplots (Figure 3). While the correlation between the data sets is recognizable there are a
considerable number of events when measured and modeled values differ substantially. The trend
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of systematic higher model values, measured by the MBE, can also be observed in the density
scatterplots by the high number and higher intensity of pixels above the 45˝ line. Altogether we
conclude that the mean correlation coefficient of 90% indicates a decent model performance, although
some of the authors presented in Section 2 find a higher correlation between the model and
measurement data subject to their study.

Figure 3. Illustrative density scatterplots showing measured and modeled data (hourly) for two sites
at Arkona with the highest correlation (a) and Hohenpeissenberg with the lowest (b).

Summarizing the findings above about MBE, RMSE and R, two main reasons become evident
why the previously calculated indicators are not sufficient for an assessment of the model’s
performance in simulating irradiation data:
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Firstly, they contradict each other and produce different rankings of performance. While on
average the model shows a high MBE, the RMSE appears to be within the limits of a good model
performance. Looking at the site “Hohenpeissenberg”, we find the lowest MBE of all considered
measurement stations 0.4 W/m2 and 0.3%. However, the RMSE is only about average with 104 W/m2

and the correlation coefficient R is the lowest of all stations. These indicators by themselves appear
to be insufficient to assess a model’s performance as also remarked by other authors (e.g., [6]).

Secondly, the above calculated indicators do not capture the relevant properties of an irradiation
time series when doing analysis of decentralized energy systems. They look for the degree of
similarity between measured and modeled data but not for the ability to simulate fluctuations and
extreme values as realistic as possible. When doing energy systems analysis it is not crucial to forecast
or reproduce weather time series as identical as possible. In fact, it is more important for the model
output to capture the relevant characteristics of a time series (e.g., extreme values and gradients)
and reproduce those in a realistic manner. Relevant characteristics identified in this work are the
maximum amplitudes, gradients and the spatial volatility. They are important since they determine
fundamental attributes of an energy system. For example the necessary grid capacity, the demand for
flexible back-up generation capacity and its distribution within the grid.

In the following we summarize the results from applying the new indicators MARS, MGRS
and the spatial volatility introduced in Section 3.2. These indicators are designed to capture and
compare the fluctuations and volatile character of time series which are particularly important for
energy systems analysts.

4.2. MARS, MGRS and Spatial Volatility

The maximum amplitude of irradiation supply (MARS) quantifies the level of solar irradiation
during those hours of a time series with the highest supply. In energy systems analysis this is a
valuable information since the fluctuating feed-in of solar irradiation driven generation units into
the electricity grid is a major challenge for the operation and dimensioning of an energy system,
especially on the decentralized level. The mean of the irradiation values greater than the 95, 99 and
99.9 percentile can be studied in Figure 4. Each of them separately calculated for the modeled and
measured data and averaged over all available sites.

Figure 4. Maximum amplitude of irradiation supply (MARS) for different percentiles.
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On average the 5% largest values of the modeled data are 94 W/m2 or 12.9% higher than the
equivalents of the measured data. This difference decreases to 50 W/m2 and 15 W/m2 when only
the 1% largest and 0.1% largest values are taken into account. In other words, during one year with
8760 h the model data exceed the measurements within 88 h representing the 99 percentile value and
higher (9 h being the 99.9 percentile and higher) by 5.8% (1.6%). Not surprisingly, this trend inverts
when looking at the single largest value of each time series: The measurements are more vulnerable
to errors and at the same time capture extreme and rare events at a single site, whereas the model
simulates irradiation data averaged over a larger area. As a result, the maximum value of the model
data is 66 W/m2 or 6.4% lower than the measurement data’s maximum.

In order to assess the results of the MARS we compare it to the results of the RMSE, which
represents an indicator for the scattering of data and which is normalized to the range of the measured
data. The differences between the MARS95 of modeled and measured data is lower than 13% or
100 W/m2. Regarding the extreme hours of highest supply (MARS99 and MARS99.9) the difference
is well below 10% while the RMSE of the data sets averages to 11% and 108 W/m. Comparing to
the RMSE, the MARS reveals a rather positive indication for the model’s performance in simulating
extreme high values of solar irradiation. This particularly holds when taking into account the model’s
exceedance of irradiation supply revealed by the MBE.

The maximum gradient of irradiation supply (MGRS) is also calculated for different percentiles
and presented in Figure 5. It measures the change rate of the irradiation supply within a determined
time span. In this paper, we calculate the MGRS on the level of 1 h and 3 h intervals. A higher
resolution in time (e.g., 10 min) would be interesting to look into, but the available measurement data
is limited to hourly values.

Figure 5. Maximum gradient of irradiation supply (MGRS) for different percentiles.

The MGRS within 1 h varies from 208 to 494 W/m2 for the values greater than the 95-percentile.
This corresponds to a change of irradiation supply between 21% and 50%, relative to the maximum
value of solar irradiation supply of 994 W/m2

, averaged over the model and measurement data
of all stations. On the level of single stations the MGRS of model and measurement data varies
by a standard deviation of 15–93 W/m2 for the 3-h MGRS and 6–128 W/m2 for the 1-h MGRS
(strictly monotonic increasing with the percentile, except for the 99,9 percentile of the 3 h gradients).
Looking at the 3 h intervals, the MGRS95, MGRS99 and MGRS99.9 vary between 46% and 74% of the
maximum solar irradiation value. As expectable the MGRS within 3 h is significantly greater than
within 1 h.
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Studying the 1 h-gradients, it strikes one that the gradients of the measurement data above the
95 percentile are greater than those of the model data but for the lower percentiles this trend reverses.
This may be explained looking at Figure 6: As mentioned before, each measured time series represents
the irradiation supply of a single location in contrast to the model data which simulates a larger area.
A single cloud shadowing the measurement station might result in a high MGRS for the measured
data but not necessarily on the aggregated level represented by the model data. The results from the
MGRS suggest that the measurements at single locations show higher fluctuations than the model
data representing irradiation over an area.

Figure 6. Illustrative excerpt from the irradiation time series (station: Aachen).

However, when regarding lower percentiles (e.g., 75 and 50) the model data shows higher
average gradients. This might be interpreted as follows: The very high fluctuations on the hourly
level appear infrequently, which can be derived from the strong decrease in the MGRS at lower
percentiles. Therefore, the highest gradients are not caused by the hours around daily sunrise and
sunset but by changes in cloud coverage during the day leading to large fluctuations in irradiation
supply. Taking more values into account by applying lower percentiles, the daily gradients in the
morning and afternoon gain more and more influence on calculating the average gradient and result
in a higher model-MGRS. Evidently, the model simulates the hours around sunrise and sunset with a
higher gradient than observed by the measurement stations.

At the temporal resolution of 3 h gradients, the model data generally exhibits larger gradients.
The MGRS95, MGRS99 and MGRS99.9 exceed the measurement’s MGRS by about 10%. We conclude
that at the 3 h resolution the strong diurnal fluctuations of the measurement data due to cloud
coverage mentioned above, disappear against the daily gradients of sunrise and sunset. As already
discovered from the 1 h gradients, the modeled deterministic changes in the morning and in the
evening hours possess a higher gradient as the measurements.

In order to evaluate the results of the MGRS we calculate the respective standard deviation of
model and measurement data since it is a well-known indicator for the fluctuation of a time series.
For the model and measurement data respectively, it amounts to 242 W/m2 and 198 W/m2 averaged
over all sites. Derived from the MGRS95 to MGRS99.9, the model underestimates the hourly gradients
by 9% to 14% or 20 to 69 W/m2. For the 3 h gradients, the same MGRS percentiles correspond to
an overestimation of 8% to 14% or 54 W/m² to 79 W/m2. Compared to the difference between the
standard deviations of 44 W/m2, the differences in MGRS appear to be within acceptable limits.
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This is confirmed regarding the RMSE between the data sets which lies within a similar scale of 11%
or 108 W/m2 (compare Section 2).

It becomes clear that the main differences between the fluctuations of the two data sets arise
firstly from the gradient of solar irradiation supply during the hours of sunrise and sunset and
secondly from abrupt diurnal changes in cloud coverage. While the first factor might result from a
model weakness, we relate the second factor to the difference between modeling the solar irradiation
supply received by a whole area and measurements taken at a single site. From the authors’ point of
view the 1h-gradients are rather relevant for energy systems analysis, since they are dominated by
non-deterministic, diurnal fluctuations.

The concept of the spatial volatility is to measure the spatial differences of solar irradiation
supply and thereby the difference in possible RES-E generation in space. It is an indicator for regional
disparities in solar irradiation supply caused by the deterministic ecliptic of the sun on the one hand
and stochastic spatial weather variety on the other hand.

The respective spatial volatility of the model data and the measurements are depicted in Figure 7.
The calculation of the spatial volatility considers only those hours of the 24 years that have a solar
irradiation greater than zero (hours with no irradiation are excluded). For every analyzed time step
there was data available from at least 29 of the 57 measurement stations.

Figure 7. Spatial volatility of the measured and modeled data respectively.

Figure 8. Spatial volatility of the measured and modeled data on two illustrative days.
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At first glance, it seems that the model’s spatial volatility exceeds the measurement’s spatial
volatility because of its frequent positive spikes. However, the spatial volatility of the model data
averages 29% and is only slightly higher than the measurement’s mean spatial volatility of 24%.
In fact, taking a closer look at the time series (Figure 8) it unfolds that during the day, the spatial
volatility of the measurement stations is regularly higher than the model’s spatial volatility.

This goes along well with the results from the MGRS assessment, where we found on the hourly
level that the gradients of the model are higher during the hours of sunrise and sunset but lower
during the day compared to the measurements from single sites. In Figure 8, we find a similar
trend: The model produces a rather high spatial volatility during the morning and afternoon hours
compared to the measurement data. During the day this trend reverses. However, both modeled
and measured time series generally produce higher spatial volatility during the hours of sunrise
and sunset compared to midday. This seems reasonable since the spatial distribution of the 57 sites,
particularly along the longitudes, is accompanied by differences in their respective position to the
sun. This results in additional variations during those hours.

Taking into account the above mentioned arguments the spatial volatility does not deliver a
definite judgment of the model’s performance. However, it produces valuable information about the
spatial fluctuations of irradiation supply during the day, consistent for both modeled and measured
data. The spatial volatility also identifies the hours of sunset and sunrise as particular critical with
respect to interregional fluctuations of RES-E feed-in and delivers a quantifying indicator.

4.3. Critical Appraisal

Applied to the data set, the spatial volatility reveals substantial differences between modeled and
measured data (the model data’s spatial volatility exceeds the measurement data’s by 5 percentage
points, which is 21% more). This appears to be a rather high difference and might be explained by
methodical differences in the data formats and temporal resolution of time stamps within the data
sets: Since the measurement data are administrated using the ‘apparent local time’, it was necessary
to convert the time stamps of the data of every single location allowing for temporal shifts of up to
one hour. While the model data is available at a resolution of 10 min, the measurement data was
only available on an hourly basis. This inevitably leads to an inaccurate conversion of temporal
differences. The conversion algorithm for the time stamps of the measurement data used in this work
can be considered as underestimating the spatial volatility. Therefore, the observed difference in the
spatial volatility between model and measurement data is rather overestimated.

For future development of the MARS, MGRS and spatial volatility introduced in this paper,
it might prove helpful to eliminate deterministic trends of the solar irradiation time series.
Thus, frequent and repetitive changes in irradiation supply that are easier to predict do not affect
the indicators. Moreover, a higher temporal resolution will help to improve the significance of the
MARS, MGRS and spatial volatility. This would enable a more accurate preprocessing of the data on
the one hand and allow conclusions on the higher temporal resolution on the other hand.

5. Conclusions and Outlook

The goal of this paper is the evaluation of existing and the development of new performance
indicators for the assessment of data output from a numerical weather model in the context of
decentralized energy systems.

From literature, we extract three first order statistics indicators that aggregate information
from comparing two time series: MBE, RMSE and R. Applying them on the historic data from
57 measurement stations and corresponding model data, they produced an inconsistent assessment
result. More importantly, they did not measure the relevant properties of the time series when
analyzing decentralized energy systems. Grid constraints caused by RES-E mainly occur on a
decentralized level and can only be simulated appropriately if extreme and rare values of solar
irradiation and fluctuations of the irradiation supply in space and time are modeled in a realistic way.
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In order to measure these relevant characteristics, we introduce the MARS, MGRS and the spatial
volatility and apply these to the data set.

Calculating the MARS shows a good performance of the model with respect to reproducing very
high irradiation values, even though the model tends to overestimate the amplitudes. Suggesting
larger maximum capacities of RES-E feed-in, this overestimation potentially leads to an oversized
grid capacity which might be welcomed from a risk-averse perspective.

Evaluated by the 3 h and the 1 h MGRS, the model’s performance qualifies as moderate
compared to the standard deviation and the RMSE. The model’s overestimation of the 3 h gradients
tends to recommend an excess supply of flexible generation capacity. Again, from a risk-averse
perspective this might be welcomed. The underestimation of the differences between the 1 h gradients
can convincingly be attributed to the systematic differences of measurements at a single site and
the modeling of a larger area. Measurements at a single location capture every cloud reducing
irradiation supply whereas the model data might allow for balancing effects within one ‘weather cell’.
When analyzing energy systems with some regional extent, it is likely for balancing effects between
photovoltaics and other RES-E generation units to occur. Therefore, the model’s lack of ability to
reproduce high diurnal gradients and spatial fluctuation appears to be a more realistic simulation of
the solar irradiation supply received by an underlying energy system.

The spatial volatility proves to be an effective tool to measure regional differences of RES-E
generation potential. It quantifies diurnal spatial fluctuations of irradiation supply and identifies the
hours of sunset and sunrise as particular critical with respect to interregional fluctuations. Both MGRS
and the spatial volatility capture the systematic difference between the different spatial resolutions
of the data sets quite well. From the novel indicators introduced in this paper, the spatial volatility
promises the most potential for future development. For example, a further improvement of data
input or a thorough investigation of diurnal and geographic patterns of the spatial volatility appear
as promising enhancements of the spatial volatility’s findings.

The indicators MARS, MGRS and spatial volatility present instruments for energy systems
analysts to quantify the need for flexible capacities to balance out the fluctuating renewable supply
in time. They also allow us to draw conclusions about the spatial differential in renewable energy
supply and thus electricity grid dimensioning.
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