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Abstract: Satellite observations can be used to detect the changes of CO2 concentration at 

global and regional scales. With the column-averaged CO2 dry-air mole fraction (Xco2) data 

derived from satellite observations, the issue is how to extract and assess these changes, which 

are related to anthropogenic emissions and biosphere absorptions. We propose a k-means 

cluster analysis to extract the temporally changing features of Xco2 in the Central-Eastern Asia 

using the data from 2009 to 2013 obtained by Greenhouse Gases Observing Satellite 

(GOSAT), and assess the effects of anthropogenic emissions and biosphere absorptions on 

CO2 changes combining with the data of emission and vegetation net primary production 

(NPP). As a result, 14 clusters, which are 14 types of Xco2 seasonal changing patterns, are 

obtained in the study area by using the optimal clustering parameters. These clusters are 

generally in agreement with the spatial pattern of underlying anthropogenic emissions and 

vegetation absorptions. According to correlation analysis with emission and NPP, these 14 

clusters are divided into three groups: strong emission, strong absorption, and a tendency of 

balancing between emission and absorption. The proposed clustering approach in this study 
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provides us with a potential way to better understand how the seasonal changes of CO2 

concentration depend on underlying anthropogenic emissions and vegetation absorptions. 

Keywords: temporal variation of Xco2; clustering; emission and absorption; Greenhouse 

Gases Observing Satellite – Atmospheric CO2 Observations from Space (GOSAT-ACOS) 

 

1. Introduction 

The global carbon cycle has been changed by human activities since the beginning of the industrial 

era [1]. Anthropogenic emissions of CO2, especially that from burning fossil fuels, is considered to be a 

major cause of the continual increase of atmospheric carbon dioxide (CO2) concentrations [2,3]. This is the 

leading driving factor of climate change and global warming [4]. It is well known that CO2 is a long-lived 

greenhouse gas, and the gradients generated by local fluxes are relatively small compared with background 

concentrations [5]. To better understand the carbon budget and combat climate change, it is extremely 

important to know where CO2 is released into the atmosphere and from where it is removed [6,7]. Therefore, 

effective approaches for observing atmospheric CO2 concentrations in high-quality are essential. For a long 

past time, ground-based observations had been the only reliable way of obtaining stable, highly accurate data 

of CO2 concentrations in the atmosphere, which have helped us in understanding the global and latitudinal 

variations of atmospheric CO2 concentration [8,9]. However, the sparseness of current ground-based 

measurement stations [7,9,10] has been limiting our knowledge of the global carbon cycle [11].  

With the development of atmospheric remote sensing technology, satellite observation, with high 

spatial and temporal resolutions has become one of the effective approaches to monitoring the changes 

of greenhouse gases at regional and global scales [11–14]. Space-based remote sensing observations are 

expected to complement, rather than replace, ground-based measurements [15] for detecting how CO2 

concentration changes in space and time and where CO2 is emitted and absorbed [16]. In the past few 

years, particularly since GOSAT was launched, satellite observations have contributed a large amount 

of data to help facilitate detection of the changing characteristics of atmospheric CO2 concentrations at 

global and regional scales. 

GOSAT was designed to provide views of real spectra from space in the short-wave infrared band (SWIR) 

and thermal infrared band (TIR), where CO2 absorption lines are located [17,18]. The CO2 concentrations, 

column-averaged volume mixing ratios of CO2 (Xco2) [19], are derived from GOSAT observing spectra and 

auxiliary parameters [11], which are sensitive to the atmospheric boundary layer [10,20]. These parameters 

have been compared and validated with ground-based measurements [21–23] and model simulations [24,25] 

in many studies. Satellite observation covering the globe can help us better understand the spatio-temporal 

changes of atmospheric CO2 concentrations as to confirm carbon sources and sinks. 

Variations of Xco2 depend on terrestrial biosphere fluxes, anthropogenic emissions, and foreign 

fluxes transported by atmospheric wind fields [26]. Accordingly, the spatial distributions of 

anthropogenic emissions and biosphere fluxes can be characterized based on the Xco2 variations, which 

can be observed by satellite. At present, there are two main ways, model-driven and data-driven, for 

detecting sources and sinks. Model-driven way applies the inverse modeling approach, incorporating an 

atmospheric transport model to deriving surface CO2 fluxes for sources and sinks from satellite 
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observations [27–29]. Based on prior fluxes and meteorological data, this method takes advantage of 

grid cells to quantify CO2 sources, and sinks, and transmission exchanges and help us to know the 

mechanism of CO2 changes. However, the uncertainty and low spatial resolutions of initial data used in 

the model inputs and prior fluxes, and the implicit relationships between emissions/absorptions and 

concentrations result in our understanding for CO2 fluxes is not exact in space and time. The data-driven 

way detects sources and sinks directly by using the multi-source data including satellite observations to 

detect the changes of CO2 concentration. This direct analysis of change characteristics of CO2 

concentration using satellite observations based on proper regional divisions has been shown to be an 

effective way to study CO2 changes induced by emitting and absorption. For example, Kort et al. [30] 

explored the enhancement of atmospheric CO2 concentrations over Los Angeles using GOSAT data. 

Moreover, Keppel-Aleks et al. [31] used GOSAT data to compare the differences of CO2 concentrations 

between emission and upwind regions to analyze fossil fuel emissions. This data-driven way is intuitive 

and may reveal the real changes since satellite observations provide direct and instantaneous 

measurements of CO2 concentrations. 

Clustering of data is an effective analysis tool to extract valuable information from data by grouping 

large datasets according to their similarity [32]. This approach has been widely applied in global climate 

change analysis [33–35] but is still not applied in studying of CO2 concentrations. In this paper, we 

propose a clustering approach of satellite CO2 observation data based on the temporally changing 

characteristics of CO2 concentrations. The objective of this approach is to study the spatial patterns 

from the clustering that may indicate CO2 emissions and absorptions. Auxiliary datasets, including 

bottom-up emission datasets, net primary product (NPP) datasets, and land cover datasets are used to 

evaluate the performance of the clustering results. 

2. Materials and Methods 

2.1. Used Data 

We chose Central-Eastern Asia (from 18°N to 55°N in latitude, and from 70°E to 140°E in longitude) 

as the study area. The area covers Eastern China and Northern India, where CO2 emissions are rapidly 

increasing [3] on account of high population densities, rapid economic development, and significant 

energy consumption sharpen [36,37]. 

(1) Gap-filled Xco2 Dataset 

GOSAT Xco2 data are irregularly distributed and have many gaps in space and time because of the 

limitation of GOSAT observation mode, cloudy block and data screening. For viewing the space-time 

continuous changes of CO2 concentrations, we applied a spatio-temporal kriging interpolation  

method [38–40] to fill the gaps and generated a mapping dataset in 1° × 1° grid cells and ten-day interval 

in time (from 18°N to 55°N in latitude, and from 70°E to 140°E in longitude, from 1 June 2009 to  

15 May 2013 in time). We generated two datasets from this gap-filled data. One is the monthly averaged 

Xco2 dataset (M-Xco2) containing 1415 grid cells with 47 month-averaged Xco2 values for each grid 

cell. The other is the seasonally averaged Xco2 dataset (S-Xco2) containing 1561 grid cells with 15 
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season-averaged Xco2 values for each grid cell. These two datasets have been filtered based on Xco2 data 

integrity in time series. 

The GOSAT Xco2 retrievals used here are Atmospheric CO2 Observations from Space (ACOS) Xco2 

retrieval products (v3.3) from June 2009 to May 2013 (http://mirador.gsfc.nasa.gov). The ACOS Xco2 

dataset was produced by the Orbiting Carbon Observatory (OCO) team of the US National Aeronautics 

and Space Administration (NASA) using a full physics algorithm for retrieving data from GOSAT’s 

onboard Thermal And Near-infrared Sensor for carbon Observation–the Fourier Transform 

Spectrometer (TANSO-FTS) calibrated spectra measurements (Level 1B). Only data with land high gain 

were used after screening and systematic bias correction described in the ACOS Level 2 Standard 

Product Data User’s Guide, v3.3 [41] to ensure high reliability of the data. 

(2) Auxiliary Data 

In order to evaluate the performance of the clustering results and assess the impact of different 

underlying surfaces on the variations of CO2 concentrations, we collected bottom-up anthropogenic CO2 

emissions, net primary productivity (NPP) data and land cover data. 

The 0.1° × 0.1° gridded annual estimates of CO2 emissions from EDGAR 4.2 FT2010 

(http://edgar.jrc.ec.europa.eu/) was collected [42]. The EDGAR 4.2 FT2010 database was jointly 

developed by the Joint Research Center (JRC) and Netherlands Environmental Assessment Agency 

(PBL). It was generated by applying the emission factors and the calculation method from the 2006 

IPCC Guidelines to international statistics on energy production and consumption, industrial 

manufacturing, agricultural production, waste treatment and disposal, and burning of biomass [43]. 

We collected the NPP data derived from MODIS/Terra observation (MOD17A3, Gridded 1 Km 

Annual Net Primary Productivity (https://lpdaac.usgs.gov)). NPP reflects the carbon sequestration 

capacity of vegetation in terrestrial ecosystems [44,45]. 

Land cover types in the study area vary. The spatial distributions of land cover in the study area were 

obtained from MODIS Land Cover Type data (MCD12C1) by the MODIS-derived LAI/FPAR scheme 

(https://lpdaac.usgs.gov). For statistical analyses purpose, we derived averaged percentages of each land 

cover type in 1° × 1° grid cells from original data. 

2.2. Clustering Approach Based on Multi-Temporal Xco2 Data 

To make use of the temporally changing characteristics of Xco2, we used a robust cluster method to 

classify Xco2 data based on the similarity of CO2 concentrations to temporally changing patterns. K-means 

is an iterative algorithm used to partition the given dataset into k clusters, where k is a user-specified 

number [46,47]. The clustering result should meet the conditions that the intra-cluster similarity is high, 

while the inter-cluster similarity is low. The clustering process was implemented in the following steps: 

(1) Combine multi-temporal Xco2 into a characteristic vector x for each spatial grid cell. The count 

of the grid cells is n, and “Z-score” measures are used to remove seasonality from the data. “Z-score” is 

a distance measure of a data point from the mean in terms of the standard deviation, and can be used for 

standardizing the original data [48]; 
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(2) Randomly select k objects from n grid cells as the initial cluster centroids. The characteristic vector 

of cluster Ci can be expressed as mi; 

(3) Assign or reassign each grid cell to the cluster to which the grid cell is the most similar based on 

the Euclidean distance criterion (Equation (1)) between the grid cell and cluster; 

( ) 2
, i idis C =x x - m  (1) 

(4) Update the cluster centroids by averaging characteristic vector of the grid cells for each cluster; 

(5) Repeat Steps (3) and (4) until the sum of square error criterion (Equation (2)) converges when the 

cluster centroids do not change. 
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Because the results of k-means clustering can be influenced by the initial cluster centroids, and the 

sum of square error (Equation (2)) may fall into the local optimum, the clustering process is repeated for 

ten times. In addition, the lowest value of SSE was chosen for acquiring stable clustering results.  

To test the effects of different time intervals of the mapping Xco2 dataset, we respectively used both 

the M-Xco2 and S-Xco2 to the clustering process described above. Grid cells with similar Xco2 temporal 

patterns could be merged to respectively generate the clustering results for different k (from 3 to 40), in 

which month-interval clustering results are referred to as M-Clusters and season-interval clustering 

results are referred to as S-Clusters. 

With the increase in cluster number k from 3 to 40, the averages, standard deviations, and non-negative 

ratios of silhouette values are calculated as measures of how appropriately the data has been clustered. 

Silhouette values [50,51]are used for validating the clustering results [49,50]. The silhouette is a measure 

of how similar each grid cell in one cluster is to grid cells in the neighboring clusters. It is given by 

( ) ( ) ( )
( ) ( ){ }max ,

b a
s

a b

−
=

x x
x

x x
 (3) 

where a (x) is the average distance from x to all other grid cells in the same cluster, and b(x) is the 

minimum average distance from x to grid cells in any other clusters. s(x) ranges from −1 to +1. If s(x) is 

close to −1, it indicates that the clustering of x is incorrect and it should be belonged to its neighboring 

cluster. In contrast, if s(x) is close to 1, the current cluster is suitable for x. 

2.3. Optimal Number of Clusters 

To validate cluster results and choose the best cluster parameters, the numerical evaluation indicators, 

including average silhouette values, and non-negative ratios of the silhouette values were used. Figure 1 

shows the variations of the averages and ratios of s(x), in which the number of clusters k range from 3 

to 40. The error bars represent one standard deviation of the silhouette values. The plots show that the 

incorrect results of the clustering ratios are limited at a low level and that the clustering results are valid 

for either M-Clusters or S-Clusters. Specifically, the averages remain at approximately 0.4; the standard 

deviations are approximately the same; and all the ratios are above 95%. Based on Figure 1a,b, we found 

S-Clusters are slightly better than M-Clusters. 
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Figure 1. Averaged silhouette values and non-negative ratios of silhouette values based on 

clustering results of: (a) M-Cluster; (b) S-Cluster. 

On the other hand, auxiliary data of emissions and absorption were used for proving the effectiveness 

of the clustering approach. The average and amplitude were considered the two most typical characters 

of temporal Xco2 variations. Before clustering, we calculated the correlation coefficients: Ravg_e between 

the Xco2 average and emission, Ravg_n between the Xco2 average and NPP, and Ramp_e between the Xco2 

amplitude and emission. In addition, we calculated the correlation coefficient Ramp_n between the Xco2 

amplitude and NPP based on gridded data, which are introduced in Section 2. Ravg_e, Ravg_n, Ramp_e, and 

Ramp_n results were 0.32, 0.26, 0.13, and 0.52, respectively. These results show that it is difficult to 

directly obtain and quantify spatial distributions of CO2 emissions using Xco2 data in a grid scale. 

Moreover, it is obvious that the NPP, which is representative of the absorption capability, showed a 

relatively strong influence on the Xco2 temporal fluctuation. 

After clustering, the new Ravg_e and Ramp_n in the cluster region scale based on the clustering result 

were also calculated. They are illustrated in Figure 2. As shown in the figure, these correlation 

coefficients continuously remain at a relatively high level when k ranges from 3 to 40, although there is 

a slight decrease associated with the increase of k when a linear or logarithmic model is used. These 

results respectively prove the strong positive correlations in the cluster scale between Xco2 averages and 

CO2 emissions, and between Xco2 amplitudes and NPP. Compared to the analysis results before 

clustering, these results reveal the distribution information on both anthropogenic emissions and NPP. 

In general, these results show that the satellite-based observations are correlated with regional CO2 

emissions and NPP in a cluster region scale, and that the regional division by temporal clustering plays 

a role in exploring these relationships. The regional Xco2 averages can be regarded as a potential 

indicator to quantify the diversity of CO2 emissions intensity in the cluster region scale, while regional 

Xco2 amplitudes can be regarded as a potential indicator for analyzing NPP. 

In addition, p-values were calculated in correlation analyses and applied in significance tests. Here, 

“p-value” is used for testing the null hypothesis of no correlation against the alternative that there is a 

nonzero correlation. As shown in Figure 2, where k is greater than 10, the p-values are less than 0.05, 

and the correlation analysis results can be considered reliable. Based on the above results and analyses, 

k can be appropriately chosen from the range of 10 to 40, and average silhouette values and non-negative 

ratios reach their peak when k is equal to 14 in S-Clusters when the minimum standard deviation is 
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reached. Therefore, k = 14 in S-Clusters (average = 0.417, SD = 0.195, and ratio = 98.014%) is regarded 

as the optimal clustering scheme, and will be described and analyzed in more detail further. 

 

Figure 2. Correlation analysis: (a) Ravg_e between the Xco2 average and CO2 emissions based 

on the clustering results; (b) Ramp_n between the Xco2 amplitude and NPP based on the 

clustering results. 

3. Results and Discussion 

Figure 3 presents the results of 14 clusters obtained using the clustering method described in Section 

2.2, and the mean Xco2 in each clusters. As shown in the figure, Xco2 data of Clusters 1 and 2 in Central 

and Eastern China are the maximum, followed by those of Cluster 3 in Xinjiang province in Western 

China. Xco2 data of Clusters 12, 13, and 14, located around Inner Mongolia, Mongolia, Northeastern 

Kazakhstan, are the minimum. 

 

Figure 3. Clustering result based on S-Xco2 dataset with 14 clusters and the corresponding 

cluster-averaged Xco2 data from 2010 to 2012. 
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3.1. Xco2 and Anthropogenic Emissions 

Based on the optimal clustering result shown in Figure 3, an overlay analysis with CO2 concentrations 

and emission data, respectively, is implemented. Figure 4a,b show annual Xco2 and CO2 emissions in 

2010 overlaid with polylines of the 14 clusters. Figure 4b is the average of CO2 emissions in 1° × 1° grid 

cells derived from original emission data; the emission units are converted to kg CO2/m2. 

 

 

Figure 4. (a) Annual Xco2; (b) Annual CO2 emissions in 2010 overlapped with the optimal 

cluster result (black lines). 

From a comparison of the spatially distributed borders of clusters shown in Figure 4a with emissions 

in Figure 4b, it is obvious that the areas of Clusters 1, 2, and 4 with large Xco2 values coincide with high 

emissions, whereas Clusters 11, 12, and 13 with small Xco2 values correspond to the low emission areas 

in Mongolia, part of Inner Mongolia and Xizang in China. The exception is Cluster 3, located in Xinjiang 

province in western China, where Xco2 is very high but emissions are not. 

 

Figure 5. Regression analysis between cluster-averaged CO2 emissions and Xco2 in 2010. 
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In addition, Figure 5 depicts a correlation between Xco2 and CO2 emissions. The results indicate that 

a positive correlation is shown between emissions and Xco2 at the clustering region scale. Xco2 of Cluster 

3, an outlier in Figure 5, is abnormally high but low in emissions. 

3.2. Xco2 and NPP 

The seasonal changes of CO2 concentrations are mainly caused by vegetation absorptions. The 

amplitude of seasonal variations in a year depends on vegetation coverage and growth activities in the 

northern parts of the northern hemisphere [51–53]. Figure 6a presents the seasonal amplitude of Xco2 in 

2010, which is calculated by the difference between the maximum and minimum of the monthly 

averaged Xco2 of each grid cell. Figure 6b presents the annual mean NPP in 2010 of each grid cell, which 

can indicate the ability of vegetation to absorb CO2. Figure 6b is the average of CO2 fluxes in 1° × 1° 

grid cells derived from original NPP data. 

 

 

Figure 6. (a) Seasonal amplitude of Xco2; (b) grid map of annual NPP in 2010 overlapped 

with the optimal cluster result (black lines). 

It is evident that the spatial distribution of Xco2 amplitudes are generally in agreement with the spatial 

trend of NPP. Clusters 1, 4, 7, and 14 with large amplitudes of Xco2 show significant corresponds to 

high NPP, while Clusters 3, 5, and 11 with small amplitudes of Xco2 demonstrate low NPP. This 

indicates that the impact of NPP, a measurement of vegetation activities, on the seasonal changing 

amplitudes of Xco2. 

The correlation coefficients between seasonal amplitudes of Xco2 and NPP for each cluster are shown 

in Figure 7. It is shown that correlations between the Xco2 amplitude and NPP are mostly positive; 
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moreover, the larger NPP is, the higher the correlation coefficient is, except for Clusters 1 and 2, which 

are the maximum emission areas (shown in Figure 4b), and Cluster 9. 

 

Figure 7. Correlation coefficients (R) of all clustering classes (p-value < 0.05) between the 

Xco2 amplitude and NPP. 

Regression analysis between the cluster-averaged NPP and Xco2 amplitude is shown in Figure 8. The 

coefficient of determination between them is 0.53 for all clusters, which is similar to the coefficient of 

determination (r2 = 0.52) between Xco2 and the emissions (shown in Figure 5). The results imply that 

the variations of Xco2 can be equally explained by the underlying anthropogenic emissions and 

vegetation absorptions in the whole study area. 

 

Figure 8. Regression analysis between cluster-averaged NPP and Xco2 amplitude in 2010. 

3.3. Attribution of Xco2 Clusters 

Figure 9 shows the variation of the monthly mean Xco2 in each cluster. As is shown, each cluster 

demonstrates a different seasonal changing pattern of Xco2. Clusters 7, 8, 12, and 14 located at the 

northern part present two high Xco2 peaks, which may be caused by vegetation growth activity and 

temperature variations. On the other hand, Clusters 3, 5, and 11 show smaller seasonal amplitudes, which 

can be attributed to sparse vegetation areas in these study regions. 
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Figure 9. Variation of monthly averaged Xco2 in each Cluster (number of clusters k = 14). Blue, 

green, and red lines correspond to average, minimum, and maximum Xco2 values in each cluster, 

respectively, derived from the gap-filled Xco2 dataset. Error bars represent one standard 

deviation of Xco2, and the grey scatter points correspond to original observations from the 

ACOS-Xco2 dataset. 
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Table 1 demonstrates typical statistics of Xco2 and auxiliary data in each cluster, including Xco2 

variations, anthropogenic emissions, and NPP. The contrast of Xco2 in Table 1 is calculated by 

subtracting the average Xco2 of the study area (389.10 ppm) from cluster-averaged Xco2 to indicate the 

difference from the regional background Xco2 value in each cluster. Xco2 amplitude is calculated by the 

maximum monthly cluster-averaged Xco2 minus the corresponding minimum in each cluster. The 

strength of emissions is derived from the emissions in the target cluster divided by the maximum 

emission value of all clusters (Cluster 1). The strength of NPP is calculated in the same way.  

The fraction of land cover is the fraction of low vegetation (L), forest (F), and non-vegetated areas 

(N), in each cluster derived from land cover data. The correlation coefficients (p-value < 0.05) of the 

Xco2 amplitude versus the NPP of all grid cells within a cluster are also listed in this table. The 

correlation between Xco2 and emissions of all grid cells within a cluster is very small and not significant, 

and is therefore not listed in Table 1. 

Table 1. Attribute characteristics of each cluster from the 2010 data. 

Cluster 

Contrast 

of Xco2 

ppm 

Xco2 

Amplitude 

ppm 

Ramp_n Xco2 

Amplitude vs. 
NPP 

Strength of 

Emission 

Strength of 

NPP 

Fraction of 

Land Cover* 

L:F:N 

Types 

1 1.5 9.3 - 1.00 0.79 70:22:4 E 

2 1.2 7.8 −0.27 0.76 1.00 68:27:2 E 

3 1.1 5.4 0.19 0.03 0.15 38:1:60 Δ 

4 0.4 10.7 0.71 0.45 0.81 58:38:1 - 

5 0.2 6.1 0.53 0.05 0.22 38:2:59 - 

6 0.0 7.9 - 0.13 0.61 69:10:20 - 

7 −0.1 11.3 0.74 0.05 0.78 51:48:0.5 A 

8 −0.2 8.8 0.27 0.03 0.60 44:49:0.5 - 

9 −0.4 6.4 - 0.06 0.29 79:0.5:19 - 

10 −0.5 8.7 - 0.09 0.34 89:5:5 - 

11 −0.5 4.6 0.26 0.01 0.08 56:-:42 - 

12 −0.6 7.6 0.61 0.02 0.65 72:26:0.5 A 

13 −0.8 7.6 0.70 0.03 0.33 85:2:12 A 

14 −1.00 8.7 0.56 0.13 0.92 53:45:0.5 A 

* The land cover types “grasses/cereal”, “shrubs”, “broadleaf crops” and “savanna” were grouped into type “L”; “evergreen broad-

leaf forest”, “deciduous broadleaf forest”, “evergreen needleleaf forest” and “deciduous needle-leaf forest” were grouped into type 

“F”; “unvegetated” and “urban” areas were grouped into type “N”. 

In this section, the anthropogenic emissions and vegetation absorptions described in Sections 3.1 and 

3.2, and the seasonal changing patterns of Xco2 of each cluster shown in Figure 9, will be combined to 

analyze the attribute characteristics of the 14 clusters listed in Table 1. As a result, the 14 clusters can 

be divided into three flux types, as outlined below. 

(1) Strong Emission Type: Clusters 1 and 2 

Clusters 1 and 2 as a group, strongly tends to present sources regions as they show the highest Xco2 

(390.6 ppm and 390.3 ppm in average, as shown in Table 1), and the largest positive contrast (1.5 ppm 

and 1.2 ppm). It can be known from bottom-up investigation of carbon emissions (EDGAR) that in these 
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two cluster regions there are very intensive big power fuel plants and dense populations which 

corresponds to large emissions (Table 1). The strong anthropogenic emissions can disturb the temporal 

variations of Xco2. Consequently, the correlations between the Xco2 amplitude and NPP do not show a 

significant correlation although they show a large Xco2 amplitude (9.3 ppm and 7.8 ppm), which is 

likewise due to vegetation coverage of more than 90% in these regions.  

These results indicate that both Clusters 1 and 2 can be attributed to a source with strong emissions. 

These clusters show different temporal variations of Xco2 (Figure 9), even if both of them belong to the 

strong emission type. Cluster 1 is located in the major grain producing areas mixed with many residential 

areas in China. Intensive farming and crop vegetation growth have resulted in a significant seasonal 

amplitude of Xco2 (9.3 ppm in Table 1) due to crop CO2 absorption. Temporal variations of Xco2 show 

that Xco2 sharply increased from August to October over this cluster compared with Cluster 2, which is 

likely due to the crops being harvested and large amounts of straw being burned during this period. 

Cluster 2, located at the paddy fields mixed with the fragmented forests, residential areas, shows that a 

7.8 ppm of Xco2 amplitude, which is slightly less than that in Cluster 1. Their different temporally 

changing patterns of Xco2 indicate the effects of different anthropogenic emitting actions on variations 

of Xco2. 

(2) Strong Absorption Type: Clusters 7, 12, 13, and 14 

Clusters 7, 12, 13, and 14, as a group, tend to be strong sinks, according to the negative contrasts and 

strong correlations between Xco2 and NPP, high fractions of vegetation, and less anthropogenic 

emissions shown in Table 1. Xco2 values over these cluster regions are lower than the overall average; 

moreover, the contrasts are −0.1 ppm, −0.6 ppm, −0.8 ppm, and −1.0 ppm, respectively (Table 1). These 

clusters are located at north of latitude 45°N, and are covered with dense vegetation and forest. 

Accordingly, the correlations between Xco2 amplitudes and NPP are significantly larger than 0.55 over 

these clusters. This demonstrates the effects of vegetation absorption on Xco2 variations. With strong 

vegetation absorptions in addition to low anthropogenic emissions over these clusters (Figure 4), they 

tend to be sinks of atmospheric CO2. These clusters show different temporally changing patterns of Xco2 

(Figure 9), which demonstrate the effects of vegetation absorption. Among the clusters, Clusters 7 and 

14 show the highest amplitude of Xco2 seasonal variation (11.3 ppm and 8.7 ppm, respectively, shown 

in Table 1), which is likely induced by the highest coverage of mixed broad-leaf with needle-leaf forest. 

Clusters 12 and 13 show a strong correlation between Xco2 amplitude and NPP, which is 0.61 and 0.70, 

respectively, although they have less forest coverage and a high fraction of grasslands. The values of 

Xco2 over these clusters as shown in Figure 9, moreover, are almost unchanged from October to January, 

or they present a low peak around December, which is likely due to the low temperature in the high 

latitude region. 

(3) Tending to Balance Type: Clusters 4, 5, 6, 8, 9, 10 and 11 

Clusters 4, 5, 6, 8, 9, 10 and 11 are defined as being a “tending to balance” type. All of their mean 

Xco2 values are close to the average level of the whole study area. In addition, Clusters 5, 6, 8, 9, 10 and 

11 do not show significant correlations between Xco2 amplitude and NPP, and there are the small 

anthropogenic emissions over these regions. Cluster 4 shows slightly higher Xco2 than the average level, 
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with a 0.4 ppm contrast, mainly due to significant large anthropogenic emission. However, the 

correlation between the Xco2 amplitude and NPP is 0.71, which implies that the CO2 enhancement from 

the anthropogenic emission may be in equilibrium with the vegetation absorption. Cluster 11, located on 

the Qinghai-Tibet Plateau, shows lower Xco2 amplitude than the other regions, which are probably owing 

to its low NPP and high altitude. 

Cluster 3 is indistinctly grouped as its abnormally high Xco2 while there is less anthropogenic 

emissions (Figure 4). Cluster 3, located at a desert area in China, shows high Xco2 values, which are 

likely owing to uncertainties of Xco2 retrievals from satellite over these high lightness desert [9], and 

further verification is needed in this region. 

4. Conclusions  

In this paper, a k-means cluster analysis method based on the temporally changing features of Xco2 

was proposed for application to the gap-filled ACOS Xco2 dataset to view spatial pattern of CO2 

emissions and absorption in Central-Eastern Asia. 14 clusters were obtained by optimizing the clustering 

results and evaluated using the characteristics of Xco2 variations combined with emissions data, NPP 

data, and land cover data. The clustering result demonstrates that each cluster can be related to the typical 

features of anthropogenic emissions and vegetation absorptions. 

The relationships between seasonal variations of Xco2, and underlying anthropogenic emissions and 

vegetation absorption were analyzed respectively. Cluster-averaged Xco2 tend to correlate with regional 

emissions, while seasonal amplitude of Xco2 is highly related to vegetation NPP. Strong anthropogenic 

emissions may disturb the relationship between the seasonal amplitude of Xco2 and NPP data. 

Consequently, the 14 clusters can be divided into three types: strong emission, strong absorption, and a 

“tending to balance” type. Different clusters, corresponding to different temporally changing patterns of 

Xco2, indicate that the Xco2 values increase with anthropogenic activities and that Xco2 reduction is 

caused by vegetation absorption on a regional scale. 

This study shows that the developed cluster-analysis approach based on temporal variation of Xco2 

can effectively provide a way to reveal the spatial patterns of underlying anthropogenic emissions and 

vegetation absorptions, and therefore enable to us to better understand how the seasonally changing 

pattern of CO2 concentrations is affected by anthropogenic emissions and vegetation absorptions. The 

result of clustering can provide the significant monitoring targets of anthropogenic emissions and 

vegetation absorption to support the implement of regional emissions reduction of carbon. 
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