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Abstract

Current temperature prediction methods often focus on time-series information while
neglecting the contributions of different meteorological factors and the context of varying
time steps. Accordingly, this study developed a Dual-Attention-BiLSTM (a bidirectional
long short-term memory network with dual attention mechanisms) network model, which
integrates a bidirectional long short-term memory (BiLSTM) network model with random
forest-based feature selection and two self-designed attention mechanisms. A sensitivity
analysis was conducted to evaluate the influence of the attention mechanisms. This study
focuses on Shijiazhuang City, China, which has a temperate continental monsoon climate
with significant seasonal and daily variations. The data were sourced from ERA5-Land,
comprising hourly near-surface temperature and related meteorological variables for the
year of 2022. The results indicate that integrating the two attention mechanisms significantly
improves the model’s prediction performance compared to using BILSTM alone. The mean
absolute error between simulation results ranges from 0.80 °C to 1.08 °C, with a reduction
of 0.17 °C to 0.39 °C, and the root mean square error ranges from 1.17 °C to 1.37 °C, with a
reduction of 0.12 °C to 0.22 °C.

Keywords: near-surface temperature; BiILSTM; random forest; two attention mechanisms

1. Introduction

Changes in the Earth’s ozone layer and frequent human activities have led to global
warming, rising sea levels, and an increase in extreme weather events [1]. In recent years,
some regions of China have experienced significant warming trends, especially in Northern
and Eastern China, which have experienced rising temperatures, droughts, and frequent
extreme weather events [2]. China is located on the eastern side of the Eurasian continent, to
the west of the northwest Pacific, and is affected by monsoon climates year-round [3]. The
variability in the monsoon climates directly influences the temporal and spatial distributions
of the surface temperature, which in turn affect the accuracy of temperature predictions [4].
Accurate temperature forecasting in localized regions is crucial for reducing secondary
disasters caused by abnormal temperatures, minimizing agricultural and industrial losses,
and ensuring the safety of people’s lives and property [5].

Researchers have typically relied on numerical models for temperature forecast-
ing [6,7]. In recent years, machine learning, originating from artificial neural networks
(ANNSs), has become increasingly popular. By extracting data and mimicking brain func-
tions, machine learning algorithms can interpret data features and model relationships to
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predict physical processes [8,9]. ANN models, including long short-term memory (LSTM)
networks and convolutional neural networks (CNNs), have yielded promising results
in temperature prediction research [10-13]. Studies abroad have also demonstrated that
artificial neural networks perform well in temperature forecasting by effectively captur-
ing the nonlinear characteristics of temperature data, thereby improving the prediction
accuracy [14]. However, single neural network models still have limitations, especially
in their homogeneous processing of input meteorological features, which overlooks the
different impacts of various meteorological factors on temperature predictions. As a result,
researchers are exploring the integration of other machine learning techniques to further
enhance the prediction accuracy and stability [15-17]. The random forest (RF) model, which
measures the importance of feature variables, can identify factors most strongly correlated
with temperature and eliminate noise interference from raw meteorological data [18]. Atten-
tion mechanisms, a novel deep learning technology, have been widely applied in fields such
as natural language processing, image recognition, and data prediction. These mechanisms
focus the model on relevant information by assigning different weights to variables and
time steps. Applying attention mechanisms to temperature prediction could improve the
model’s ability to capture spatial and temporal temperature variations [19].

In this study, we used the fifth generation European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5-land) reanalysis
data for Shijiazhuang in 2022 and employed the random forest model for feature weight
extraction. The attention mechanism considers the different impacts of meteorological
features on temperature changes. A bidirectional LSTM (BiLSTM) temperature prediction
model that incorporates the random forest model and attention mechanisms was developed
to forecast near-surface temperatures for the next 12, 24, 36, and 48 h. The results of
this study provide technical support for improving the accuracy of local near-surface
temperature prediction.

2. Materials and Methods
2.1. Data

In this study, we focused on Shijiazhuang, Hebei Province, China (114.5° E, 38° N).
This city is located on the eastern coast of the Eurasian continent (see Figure 1) and has a
temperate continental monsoon climate. It experiences distinct seasonal changes, with sig-
nificant temperature variations between seasons and between day and night. Additionally,
the area is influenced by local and surrounding geographical features, leading to complex
and distinct temporal and spatial temperature variations [20]. Given the representative na-
ture of the temperature changes in this region, accurate short-term temperature forecasting
is of practical significance for improving meteorological services, enhancing agricultural
production, and improving the quality of life for residents.

The ERA5-land reanalysis data for Shijiazhuang in 2022 was used in this study. The
data include hourly near-surface temperatures and five meteorological features strongly
correlated with temperature: 10 m U-component wind, 10 m V-component wind, surface
pressure, total precipitation, and near-surface dew point temperature. The data were
obtained from the ERAS5 reanalysis model’s land module, with a spatial resolution of
0.1° x 0.1° (original resolution of 9 km).
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Figure 1. The map of the geographical location of Shijiazhuang City.

2.2. Attention Mechanism Design

The attention mechanism assigns different weights to various parts of the input
sequence, allowing the model to focus on the most relevant information during long
sequence processing [21]. However, traditional attention mechanisms only incorporate
weight information in the hidden layer, and the model cannot analyze the contextual
relationships at each time step. Additionally, traditional attention mechanisms focus on the
importance of different time steps, treating features within the same time step as a whole
and neglecting the varying contributions of different meteorological features. To address
these issues, we propose two improved attention mechanisms: the key-value attention
mechanism and feature attention mechanism.

2.2.1. Key-Value Attention Mechanism

The key-value attention mechanism enhances the model’s learning ability by interpret-
ing hidden layer information. The mechanism generates two independent mappings from
the hidden layer: key and value vectors. The key vector measures the importance of each
time step, while the value vector stores features closely related to temperature. The model
calculates the dot product between the key vector and the model’s score vector, normalizes
the score, and assigns attention weights. Higher weights indicate greater importance for the
time step. The value vector stores rich semantic information about the time step, allowing
the model to focus on important time steps and learn their feature information. Compared
to traditional attention mechanisms, this mechanism enables the model to learn contextual
information, improving its ability to capture sequential data features. The formulas for the
Key-value Attention Mechanism are as follows:

Keyi(eay = tanh(Wi(ear64)hi(64) 1 Ur(os) )/ ¢y
Value;gy) = Wy (saxea)i(ea) + bo(e4)s 2
score;(q) = u(T64)Keyi(64), 3)

exp(score;(q))

i1y = / 4
exp(scorej(1))

It
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Contextgy) = szi(l)Valuei(M), )
i=1

where Key is the generate key vector; Value is the generate value vector; score is the calculate

importance score; « is the calculate attention weight; Context is the generate context vector;

h; is the hidden state produced by BiLSTM at the i-th time step; Wy is the weight matrix

for the key mapping; and by, is the bias for the key mapping. W, is the weight matrix for

the value mapping; and by, is the bias for the value mapping. u is the score vector. n is the

sequence length. Wy, by, Wy, by and u are initialized using the Glorot (Xavier) method.
The process of the key-value attention mechanism is illustrated in Figure 2.

Hidden layer input

v y

Key vector generation Value vector generation

Importance score computation

Attention weight normalization

Context vector computation

Figure 2. Flowchart of the key-value attention mechanism.

2.2.2. Feature Attention Mechanism

The feature attention mechanism enhances the model’s learning ability by considering
the contributions of different features. The mechanism first uses the random forest model
to compute the feature importance (RF_weights) and then initializes the attention layer’s
weights using this information. Each training input is weighted by the attention layer
before being passed to subsequent layers. This ensures that the model focuses on key
features from the beginning of the training. In later training stages, the model dynamically
adjusts the weights based on the training outcomes. Compared to traditional attention
mechanisms, this approach enables the model to account for the contributions of each
feature, reducing the impacts of low-contribution features and strengthening the learning
of high-value features. The formulas for the Feature Attention Mechanism are as follows:

W((g)%) = RF_weights g, (6)

X(BxTx6) = X(BxTx6) © SOftmax(x(p.7x6)Wiexe)  b(e)), )
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where W) is the initialize feature attention weight vector; x’ is the weighting applied to
the model input; W(*1) is the dynamically adjusted weights; RF_weights is the weight
vector computed by the random forest algorithm; x is the model input; b is the bias for the
feature attention mapping; B is the batch size of the model; and T is the number of time
steps in each input sequence. 7 is the learning rate, and L(7, y) is the loss function for the
current training iteration of the model. b is initialized as a zero vector.

The process of the feature attention mechanism is illustrated in Figure 3.
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Figure 3. Flowchart of the feature attention mechanism.

2.2.3. BiLSTM Model with Attention Mechanisms

The LSTM is an improved version of the traditional recurrent neural network (RNN)
and includes memory units and gating mechanisms. This model selectively retains or
discards historical information, capturing long-term dependencies in sequential data [22].
However, the traditional LSTM can only process data in one direction, limiting its ability to
use future information. The BiLSTM processes both forward and backward information
flows, allowing for better capture of time dependencies and improving the prediction
accuracy and stability [23].

The model developed in this study is a Dual-Attention-BiLSTM (BiLSTM with key-
value and feature attention mechanisms). The model architecture includes an input layer,
feature attention layer, BILSTM layer, key-value attention layer, and output layer. The fea-
ture attention layer dynamically weights the different features, while the BiLSTM layer cap-
tures high-dimensional information through a three-layer BiLSTM network, with dropout
layers added to reduce overfitting. The key-value attention layer uses key and value
mappings to focus on important time steps and learn their features.
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2.3. Random Forest Feature Extraction

The RF is an ensemble learning-based nonlinear predictive model. The main idea is to
construct multiple decision trees through random sampling and feature selection, thereby
reducing the model variance and improving the generalization ability [24]. In this study, we
used the impurity splitting method to assess the importance of each feature. This method
constructs decision trees using the classification and regression trees (CART) algorithm,
which selects the optimal splitting feature and splitting point at each node to minimize
impurity. The importance of each feature is measured by the cumulative reduction in the
impurity across all the trees and all the nodes that use that feature for splitting.

2.4. Experiment Scheme Design

In deep learning model research, the combination of the model structure and method-
ology significantly influences the predictive performance of the model. To thoroughly
evaluate the contribution of the method proposed in this study to the model accuracy, four
different model schemes were designed for comparative analysis. The four model schemes
are summarized in Table 1.

Table 1. Experiment scheme design.

Model Scheme

BiLSTM Feature Attention Mechanism  Key-Value Attention Mechanism

Scheme 1
Scheme 2
Scheme 3
Scheme 4

v
v
v v

L

Scheme 1 uses only the BILSTM model. Scheme 2 adds the feature attention mechanism
on top of the BILSTM. Scheme 3 adds the key-value attention mechanism to the BiILSTM.
Scheme 4 is the complete Dual-Attention-BiLSTM model, which incorporates both attention
mechanisms. All four schemes initialize the input data with feature weights calculated by
the random forest model and perform normalization. Most existing studies set 48 h as the
maximum prediction horizon [25], and since temperature is influenced by the day-night
cycle, choosing multiples of 12 h (12/24/36/48 h) can cover both daytime and nighttime
periods, thus meeting the need for differentiated predictions between day and night [26].
Therefore, this study sets the hourly temperature for the next 12, 24, 36, and 48 h as the
prediction targets, with an input step size of 24 h.

In this study, we used a rolling window method for supervised learning, using histori-
cal data sequences to predict future hourly temperature changes. To prevent overfitting
and enhance the training efficiency, we employed an early stopping mechanism [27]. This
mechanism halts training when the loss function on the validation set does not decrease
after 15 consecutive epochs, and the model parameters with the best performance on the
validation set are saved. After multiple experiments, the model batch size was set to 32, and
the maximum number of epochs was set to 150, aiming to balance the model performance
and training efficiency.

2.5. Model Evaluation Metrics

Model evaluation metrics are crucial for assessing the prediction performance of the
model. In this study, two statistical metrics, the mean absolute error (MAE) and root mean
squared error (RMSE), were used. The MAE computes the average error between the
predicted and observed values, reflecting the overall deviation in the predictions. The
RMSE, by squaring the errors, averaging them, and then taking the square root, gives
higher penalties to larger prediction errors, making it sensitive to temperature anomalies.
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3. Results

We trained and predicted the temperature using the four model schemes developed
in this study. The results are shown in Figures 4-7, showing that the models perform
differently across the schemes. Scheme 1 (Figure 4) has the poorest performance, indicating
that relying solely on the BILSTM network fails to capture the complex characteristics of the
temperature changes. Schemes 2 (Figure 5) and 3 (Figure 6) have better performances than
Scheme 1, with the attention mechanisms playing a role in feature selection and dynamic
weighting. The accuracy of the predictions for each time step is improved by 10-20%,
suggesting that the introduction of either attention mechanism can enhance the model per-
formance. Scheme 4 (Figure 7) has the best overall performance, with a prediction accuracy
improvement of around 30% compared to Scheme 1, further proving that the inclusion of
both attention mechanisms can significantly improve the prediction performance.

Finally, we calculated the average MAE and RMSE for each scheme at the four time
intervals and plotted the prediction errors in Figure 8. As shown in the figure, the RMSE
and MAE for Scheme 1 are 1.41 °C and 1.18 °C, respectively. For Scheme 2, the errors are
1.36 °C and 1.11 °C, representing a 3.5% reduction in RMSE and a 5.9% reduction in MAE
compared to Scheme 1. For Scheme 3, the errors are 1.23 °C and 1.04 °C, showing a 12.8%
decrease in RMSE and an 11.9% decrease in MAE compared to Scheme 1. For Scheme 4,
the errors are 1.24 °C and 0.92 °C, with a 12.1% reduction in RMSE and a 22.0% reduction
in MAE compared to Scheme 1. The results show that Scheme 1 has the largest error, while
Schemes 2 and 3 have similar errors that are smaller than those of Scheme 1. Scheme 4 has
the smallest errors. This further confirms that the dual attention mechanisms significantly
enhance the overall accuracy of the model.
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Figure 4. (a) 12-h, (b) 24-h, (c) 36-h, and (d) 48-h prediction results based on the BILSTM scheme.
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Figure 8. Comparison of prediction errors of the four models.

4. Discussion
4.1. Comparison of Three Models

The applicability of temperature prediction models is typically influenced by local
climate characteristics and topography, with temperature fluctuations in inland areas often
differing significantly from those in coastal or plain regions. However, different modeling
methods and approaches can help explore more possibilities for inland temperature predic-
tion. Therefore, models that perform excellently in other regions are still worth comparing
and drawing insights from when applied to inland areas. Accordingly, we benchmarked
the proposed Dual-Attention-BiLSTM model against the established BiLSTM-Kalman [28]
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and TD-LSTM [29] models for surface temperature prediction in Shijiazhuang City, Hebei
Province.

To verify the performance of the above two studies in inland temperature prediction,
this research replicated the BILSTM-Kalman framework and TD-LSTM model following the
original approaches. The models were trained and tested using the dataset employed in this
study. All training and prediction processes used the same dataset, with prediction targets
being the temperatures for the next 12, 24, 36, and 48 h. To provide a clearer comparison
of the results, this study presents the prediction errors of the Dual-Attention-BiLSTM,
BiLSTM-Kalman, and TD-LSTM models in Table 2, and the prediction results are plotted in
Figure 9.

Table 2. Comparison of Prediction Errors for Three Models.

Time o or T 12h 24h 36h 48h
Model tror type
Dual-Attention-BiLSTM RMSE 1.24°C 1.17°C 119 °C 137°C
BiLSTM-Kalman RMSE 1.46 °C 1.18°C 1.28 °C 1.18°C
TD-LSTM RMSE 1.11°C 0.89 °C 0.95 °C 0.88 °C
Dual-Attention-BiLSTM MAE 0.90 °C 0.80 °C 0.92 °C 1.08 °C
BiLSTM-Kalman MAE 1.35°C 0.97 °C 1.07 °C 0.98 °C
TD-LSTM MAE 0.99 °C 0.74°C 0.79 °C 0.70 °C
(a) 12h Forecast (b) 24h Forecast

Temperature (°C)
Temperature (°C)

5 7 9 11 1 5 9 ]I3 1'7 21
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Figure 9. Comparison of Results for Three Models.

From the error data in Table 2, the TD-LSTM model consistently performs the best
across all prediction durations, maintaining low errors in both short-term and long-term
predictions. While the Dual-Attention-BiLSTM model performs well in short-term pre-
dictions, its error significantly increases at 48 h, indicating poor stability in long-term
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predictions. The BILSTM-Kalman model, on the other hand, exhibits substantial fluctua-
tions in errors, especially at 12 h, indicating generally lower prediction accuracy. Therefore,
the TD-LSTM model performs the best, followed by the Dual-Attention-BiLSTM model,
and the BiLSTM-Kalman model performs the worst.

From the prediction results in Figure 9, it can be seen that more than half of the pre-
dictions made by the TD-LSTM and BiLSTM-Kalman models exceed the observed values,
especially the predicted values at the peak temperature are nearly 2 °C higher than the ob-
served values. In the operational forecasting of near surface temperatures, if the predicted
values are higher than the actual temperature, it will be difficult to provide effective mete-
orological freezing disaster warnings for social production due to insufficient estimation
of low temperatures, resulting in economic losses in agriculture and industry. In addition,
overestimating the peak temperature can lead to unnecessary high-temperature emergency
response and resource waste, resulting in socio-economic losses. In contrast, the prediction
results of the Dual-Attention-BiLSTM model in the first 24 h are more in line with the actual
needs of social production and life. Therefore, the Dual-Attention-BiLSTM model performs
the best, while the TD-LSTM and BiLSTM-Kalman models perform relatively poorly.

From the above analysis, it is clear that the prediction errors of the TD-LSTM and
Dual-Attention-BiLSTM models are similar and both smaller than those of the BILSTM-
Kalman model, showing good temperature prediction performance. However, from a
practical application perspective, the Dual-Attention-BiLSTM model is the best, as it shows
stable performance in short-term predictions and rarely exceeds the observed values.
The TD-LSTM and BiLSTM-Kalman models, due to overestimations, especially in peak
and valley values of temperature, may lead to serious consequences. In conclusion, the
Dual-Attention-BiLSTM model has higher practical application value for near-surface
temperature prediction in inland areas.

4.2. Limitations and Future Research

Despite the good performance and high practical application value of the models in
this study, there are still some limitations. First, the dataset used in this study is limited
to a specific geographical region, and when the model is applied to areas with different
climates and topographies, its prediction performance may decrease. Second, the model
performs well in short-term predictions within 24 h, demonstrating good stability and
accuracy, but as the prediction duration extends to 24-48 h, the performance begins to
degrade, indicating that the model has a limited prediction duration. Finally, the model’s
predictions rely on historical data, which may affect its accuracy when extreme weather
events occur.

Future research can focus on several aspects to further improve the predictive ca-
pabilities of the model. First, additional datasets can be incorporated, each containing
temperature data from different regions, allowing the model to be trained on multiple
datasets to enhance its generalizability. Second, the model could be trained seasonally
by further refining long-term temperature features to improve its long-term prediction
performance. Lastly, specialized mechanisms can be introduced to identify and handle
extreme weather events by annotating and learning from extreme conditions in historical
data, thus enhancing the model’s sensitivity to extreme temperature variations.

5. Conclusions

In this study, we developed a Dual-Attention-BiLSTM model that integrates random
forest feature selection and attention mechanisms for hourly short-term near-surface tem-
perature prediction. The model was tested for predictions over 12, 24, 36, and 48 h, and



Atmosphere 2025, 16, 1175

12 of 14

four other comparative models were constructed to verify the feasibility and improvements
of the proposed approach. The main conclusions of this study are summarized below.

1. The feature attention mechanism, integrated with the random forest algorithm, helps
the model focus on key meteorological features during early training, dynamically
reducing the interference from redundant information and significantly improving
the model’s feature selection capability.

2. The key-value attention mechanism enhances the model’s ability to learn contextual
information across different time steps. By mapping keys and values, the model
captures important temperature change features during critical moments, overcoming
the limitation of traditional attention mechanisms that treat features within the same
time step as being homogeneous.

3. The results of the comparison of the four models demonstrate that using only the
BiLSTM model yields a limited prediction performance. Introducing either attention
mechanism improves the accuracy, while combining both attention mechanisms
yields the best performance. This demonstrates that the synergistic effect of the
dual attention mechanisms significantly enhances the model’s predictive capability.
However, analysis of the results for each scheme revealed that the model performs
best for 24-h predictions. This may be because the model was trained with a 24-
h input window, allowing for better learning within this time frame. This reflects
the model’s generalization ability, which still needs to be improved across various
forecast periods.

Previous research has typically focused on the impact of time-series information on
temperature prediction and has often overlooked the contributions of different features and
contextual information across time steps. By utilizing the BILSTM to capture time-series
relationships and introducing two attention mechanisms, the model developed in this
study enhances the model’s ability to perceive temperature changes. However, the model’s
generalization ability still requires further improvement, and future research should explore
methods of enhancing the prediction accuracy across different forecasting periods. After
comparing with previous research results such as TD-LSTM and BiLSTM-Kalman models,
it was found that the Dual-Attention-BiLSTM model performed better than the other two
models in short-term forecasting within 24 h.
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