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Abstract: Zenith tropospheric delay (ZTD) is a significant atmospheric error that impacts
the Global Navigation Satellite System (GNSS). Developing a high-precision, long-term
forecasting model for ZTD can provide valuable insights into the overall trends of predicted
ZTD, which is essential for improving GNSS positioning and analyzing changes in regional
climate and water vapor. To address the challenges of incomplete information extraction
and gradient explosion in a single neural network when forecasting ZTD long-term, this
study introduces an Informer–LSTM Hybrid Prediction Model. This model employs a
parallel ensemble learning strategy that combines the strengths of both the Informer and
LSTM networks to extract features from ZTD data. The Informer model is effective at
capturing the periodicity and long-term trends within the ZTD data, while the LSTM model
excels at understanding short-term dependencies and dynamic changes. By merging the
features extracted by both models, the prediction capabilities of each can complement
one another, allowing for a more comprehensive analysis of the characteristics present
in ZTD data. In our research, we utilized ERA5-derived ZTD data from 11 International
GNSS Service (IGS) stations in Europe to interpolate the missing portions of GNSS-derived
ZTD. We then employed this interpolated data from 2016 to 2020, along with an Informer–
LSTM Hybrid Prediction Model, to develop a long-term prediction model for ZTD with
a prediction duration of one year. Our numerical results demonstrate that the proposed
model outperforms several comparative models, including the LSTM–Informer based on
a serial ensemble learning model, as well as the Informer, Transformer, LSTM, and GPT3
empirical ZTD models. The performance metrics indicate a root mean square error (RMSE)
of 1.91 cm, a mean absolute error (MAE) of 1.45 cm, a mean absolute percentage error
(MAPE) of 0.60, and a correlation coefficient (R) of 0.916. Spatial distribution analysis of
the accuracy metrics showed that predictive accuracy was higher in high-latitude regions
compared to low-latitude areas, with inland regions demonstrating better performance
than those near the ocean. This study introduced a novel methodology for high-precision
ZTD modeling, which is significant for improving accurate GNSS positioning and detecting
water vapor content.

Keywords: zenith tropospheric delay; zenith tropospheric delay forecasting; neural net-
work; informer; LSTM; combined model; ensemble learning
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1. Introduction
When Global Navigation Satellite System (GNSS) signals travel through the neutral

atmosphere to receivers, the propagation path of the signals is altered due to refraction
caused by gases and water vapor. This phenomenon is known as tropospheric delay [1,2].
Tropospheric delay is typically expressed as the product of the zenith tropospheric delay
(ZTD) and a mapping function corresponding to the direction of the propagation path [3,4].
Previous research has shown that when a satellite’s local horizontal elevation angle drops to
10◦, the ZTD can reach as high as 20 m [5], significantly limiting the positioning accuracy of
GNSS. Therefore, having high-precision a priori ZTD values is crucial for GNSS navigation,
particularly in applications like precise point positioning (PPP) [6,7] and real-time kinematic
(RTK) [8,9]. In addition, in GNSS meteorology, a priori ZTD values are widely used to
detect moisture content and serve as essential data sources for atmospheric analysis and
numerical weather prediction [10,11]. Consequently, developing a high-precision long-term
model to predict ZTD is vital for enhancing GNSS positioning accuracy and understanding
the interactions within the atmosphere. This is of considerable scientific significance for
precise GNSS positioning and moisture content detection [12,13].

Currently, commonly used models for predicting ZTD include those based on mea-
sured meteorological parameters, empirical models that do not require such parameters,
and neural network models [14]. Models that rely on measured meteorological parameters
use real-time data from a specific location, incorporating variables such as temperature,
pressure and water vapor pressure to calculate ZTD [15–17]. However, the difficulty in
obtaining these measured meteorological parameters limits the widespread application
of these models. On the other hand, common empirical models without meteorological
parameters include the UNB series models [18,19], the European Geostationary Navigation
Overlay System (EGNOS) model [20] and the GPT series models [21–24], which primarily
utilize global meteorological observation data and geographical observation data to obtain
and calculate ZTD-related meteorological parameters through linear fitting, and then cal-
culate the ZTD [25]. While these empirical models do not need direct measurements of
meteorological parameters, their accuracy can be affected by the local environment [26].

In recent years, with the continuous development of machine learning (ML) theories,
neural network algorithms such as Artificial Neural Networks (ANN) [27], Deep Neural
Networks (DNN) [28], Convolutional Neural Networks (CNN) [29], and Long Short-
Term Memory Networks (LSTM) [30,31] have provided various new approaches for ZTD
prediction modeling. Among them, LSTM effectively addresses the gradient problem
that traditional neural networks face when processing long sequences. It achieves this by
incorporating a specialized gating structure, which enhances its ability to capture short-
term dependencies in the data. As a result, LSTM performs exceptionally well in adapting
to the rapid changes in ZTD data over short periods. For instance, Zhang et al. created an
effective ZTD prediction model using LSTM in the western Antarctic region [32]. However,
LSTM encounters challenges such as information loss and gradient issues when processing
long input sequences spanning months or even years, which can limit its effectiveness
in long-term ZTD prediction scenarios [33–35]. The attention mechanism intentionally
assigns different weights to various elements by calculating the correlation between each
element in a sequence and the others. This allows the model to focus on long-distance
elements that significantly influence the current prediction. As a result, it captures long-
term dependencies in time series data more effectively, offering a new solution for long-term
time series prediction scenarios [36,37].

Zhang et al. applied a Transformer model to create a ZTD prediction model that learns
complex patterns and dynamics from extensive ZTD time series through a self-attention
mechanism. This enables the model to concentrate on more impactful information, thereby



Atmosphere 2025, 16, 31 3 of 23

enhancing prediction accuracy [38]. However, the Transformer model also faces issues
related to high computational complexity and low processing efficiency for long sequences,
which must be considered in practical applications [39].

To address these issues, Hu et al. (2024) developed a novel ZTD forecasting model
based on the Informer model, which employs a ProbSparse Self-attention Mechanism to
capture the global features of ZTD, effectively reducing the average time of the predic-
tion model while maintaining an accuracy comparable to that of Transformer [40]. The
authors utilized the predicted ZTD as an a priori constraint for PPP, which greatly enhances
the speed of vertical convergence across all four seasons. The Informer model efficiently
extracts key information from large time series datasets, accurately capturing long-term
trends while significantly reducing computational complexity. However, it struggles to
respond promptly to subtle short-term fluctuations and faces challenges related to incom-
plete information extraction and the neglect of short-term dependencies in the series [41].
Scholars have achieved promising results by employing ML methods to build ZTD predic-
tion models. However, a single neural network prediction model often has limitations that
can restrict the accuracy of ZTD forecasts [42,43].

Due to the limitations of a single prediction model, scholars often turn to ensemble
learning to improve the model’s prediction accuracy [44–46]. For example, Shi et al.
(2024) introduced an integrated prediction model based on Transformer and LSTM. The
model first uses LSTM to capture the dependency of input sequences and then utilizes
the self-attention mechanism of Transformer to extract sequence information [47]. While
this method improves the accuracy, it does face challenges related to high computational
complexity and low sequence processing efficiency. Additionally, the assembly does not
fully consider the limitations of LSTM when working with long-time series. Yuan et al.
(2024) proposed a CNN–Informer combination model. In this model, CNN is utilized
to extract the features of the sequences, and then the Informer model is employed to
establish the relationship between inputs and outputs, resulting in strong performance [48].
However, this model may encounter issues related to missing information and overlooking
short-term dependencies within sequences. Wang et al. proposed an LSTM–Informer
model that employs a serial ensemble learning strategy. This approach first utilizes a
low-level LSTM model to preprocess the data and then incorporates a top-level Informer
model for prediction [49]. The combination method described has some issues, such as
gradient explosion, which can occur in LSTM models when handling long time series, and
the Informer may overlook short-term data dependencies.

The integrated models are designed to leverage the strengths of different models
and enhance overall forecasting performance by utilizing their respective advantages
through a serial approach. However, a combined model that utilizes serial ensemble
learning often employs a method known as model stacking. This approach creates a strong
dependency between individual models, meaning that the limitations of one model can
negatively impact the performance of subsequent models. As a result, it does not effectively
address the shortcomings of individual models or take full advantage of their strengths,
leaving room for improvement in the prediction performance of the combined model.
In contrast, some researchers have proposed that combined models based on a parallel
ensemble learning strategy can achieve higher prediction accuracy and better generalization
abilities [50]. The parallel ensemble learning model reduces the dependencies between
individual models by training multiple independent models simultaneously. Each sub-
model in this parallel approach can leverage its unique strengths to handle both long and
short-term dependencies independently. This synergy among the sub-models ultimately
enhances the performance of the overall model [51].
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Based on the progress described above, this paper presents a novel approach that
combines the LSTM model with the Informer model to create a hybrid prediction model
called the Informer–LSTM Hybrid Prediction Model. This model employs a parallel
ensemble learning strategy and is applied to long-term predictions of ZTD. Unlike existing
models that integrate LSTM and Informer using a serial ensemble learning approach [49],
our model allows the Informer and LSTM to function independently. We utilize LSTM
to capture the short-term dependencies and dynamic changes in the ZTD time series.
This helps to address the limitations of the Informer model, which may not fully extract
information or adequately consider the short-term dependencies present in the series.
Simultaneously, we employed the Informer model to extract global features from the ZTD
time series, which helps improve issues related to information loss and gradient explosion
that LSTM may encounter when processing long time series. We input the data into the
LSTM and Informer models to generate feature vectors, which were then combined using a
fully connected layer. This integration allowed us to utilize Informer’s global information
extraction and LSTM’s local temporal modeling, effectively capturing both the long-term
and short-term dependencies in the ZTD sequences. As a result, we enhanced the accuracy
and robustness of long-term predictions for ZTD.

The major contributions of this paper are summarized as follows: 1. This paper
introduces an Informer–LSTM Hybrid Prediction Model that utilizes a parallel ensemble
learning strategy based on the LSTM and Informer models. This hybrid model combines
the strengths of both the Informer and LSTM in capturing long-range dependencies in
lengthy time series tasks, addressing the limitations of each model in prediction tasks. As
a result, it enables a more comprehensive capture of data features. 2. We evaluated its
performance against existing models, including an LSTM-Informer model based on serial
ensemble learning, Informer, Transformer, LSTM, and a GPT3 empirical ZTD model, to
showcase its superior effectiveness in ZTD long-time forecasting. 3. This paper offers a
new perspective and methodology for ZTD forecasting, which has significant implications
for improving GNSS positioning accuracy and enhancing meteorological predictions.

2. Study Area and Data
The study area is defined as the region in Europe that lies between 40◦ N and 70◦ N

latitude and between 5◦ E and 35◦ E longitude. To train the model, we utilized the ZTD
time series from 11 International GNSS Service (IGS) stations located within this region.
The selected IGS stations are KIRU, METG, POLV, BUCU, GRAZ, GANP, PTBB, ZIM2,
TLSG, MAD2 and MORP. Figure 1 illustrates the distribution of these IGS stations, while
Table 1 provides specific information about each of them.

Table 1. Basic information of IGS stations used in this study.

IGS Stations Latitude Longitude Elevation (m) Data Integrity Rate

KIRU 67.857 20.968 390.9 93.05%
METG 60.242 24.384 59.7 88.94%
POLV 49.603 34.543 178.1 88.94%
BUCU 44.464 26.126 143.2 91.57%
GRAZ 47.067 15.493 538.3 91.35%
GANP 49.035 20.323 746 92.22%
PTBB 52.296 10.460 130.2 92.28%
ZIM2 46.877 7.465 956.5 93.10%
TLSG 43.550 1.485 208.7 77.29%
MAD2 40.429 −4.250 829.5 89.22%
MORP 55.213 −1.685 144.5 88.12%
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GNSS-derived ZTD was extracted from 11 IGS stations, with the selected observation 
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2.2. ERA5-Derived ZTD 

ERA5 data represents the fifth generation of reanalysis products from the European 
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2.1. GNSS-Derived ZTD

Based on the observations from global GNSS stations, the IGS center has been releasing
products in the form of IGS_ZPD files daily since 1998. Users can access these files on the
following website (https://cddis.gsfc.nasa.gov/archive/gnss/products/troposphere/zpd/,
accessed on 10 October 2024). The IGS_ZPD files provide information on station locations,
observation details and GNSS-derived ZTD, along with associated observational errors, gradient
north of the total troposphere and gradient north of the total troposphere. In this study, GNSS-
derived ZTD was extracted from 11 IGS stations, with the selected observation period ranging
from 1 January 2016, to 31 December 2020, and a temporal resolution of 6 h.

2.2. ERA5-Derived ZTD

ERA5 data represents the fifth generation of reanalysis products from the European
Centre for Medium-Range Weather Forecasts (ECMWF). This pressure level dataset spans
from 1940 to the present and has a spatial resolution of 0.25◦ × 0.25◦ with a temporal
resolution of 1 h. It includes data at 37 different pressure levels. The dataset used in
this study can be accessed at the following website (https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-pressure-levels, accessed on 13 October 2024). The variables
employed for calculating the ERA5-derived ZTD in this study include geopotential height,
relative humidity and temperature.

3. Methods
3.1. Data Processing

The ZTD products provided by the IGS are internationally recognized as the high-
est precision observational data currently available, owing to their relatively low un-

https://cddis.gsfc.nasa.gov/archive/gnss/products/troposphere/zpd/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels
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certainty [52–55]. However, continuous observations from GNSS stations can often be
disrupted by extreme weather conditions and equipment-related issues. This study interpo-
lated the raw dataset to address the limitations posed by missing GNSS-derived ZTD data.
Previous research has shown that the accuracy of ERA5-derived ZTD, computed from ERA5
reanalysis data, is comparable to that of GNSS-derived ZTD [56,57]. Building on this, our
study utilized ERA5 data in conjunction with GNSS to calculate the ERA5-derived ZTD and
applies interpolation to the GNSS-derived ZTD series. Specifically, first, we obtained the
longitude, latitude, and elevation of the IGS stations. Using the ERA5 reanalysis data along
with the station information, we then calculated the ERA5-derived ZTD for each station.
The details of this calculation process will be described later. After that, we interpolated the
GNSS-derived ZTD sequence for each site over a time scale. The goal was to use the calcu-
lated ERA5-derived ZTD to fill in the gaps in the GNSS-derived ZTD sequence, thereby
creating a complete ZTD dataset. We refer to this interpolated data as GNSS-interpolation
ZTD. These data were used to construct the Informer–LSTM hybrid ZTD prediction model
and served as the reference for evaluating the model’s prediction accuracy.

The ERA5 reanalysis data are recognized for their high spatiotemporal resolution,
offering comprehensive historical ZTD data for GNSS stations located throughout a three-
dimensional spatial area. In this study, using an integral method, we utilized the ERA5
layered pressure reanalysis product to compute the zenith tropospheric wet delay (ZWD)
for GNSS stations at varying heights. Additionally, we calculated the zenith tropospheric
dry delay (ZHD) for the layer above the highest GNSS station using the Saastamoinen
model. Combining these two components results in the ERA5-derived ZTD [58].

The specific calculation processes are given by Equations (1) and (2):

ZWD = 10−6
∫

Nds = 10−6
n−1

∑
i
(Ni + Ni+1)× (hi+1 − hi)/2 (1)

ZHD = 0.0022793 ×
[P1 + (0.05 + 1255

T )e1]

f (φ, H)
(2)

N = k1(P − e)/T + k2 × e/T + k3 × e/T2 (3)

e = q × P/0.622 (4)

f (φ, H) = 1 − 0.00266 cos(2φ)− 2.8 × 10−7H (5)

In these equations, n represents the total number of layers included in the reanalysis
data above the GNSS station. The refractive index constants are k1 = 77.604 (K/hPa),
k2 = 64.79 (K/hPa), and k3 = 3,754,630 (K2/hPa). P denotes atmospheric pressure (unit:
hPa), e represents water vapor pressure (unit: hPa), and T indicates temperature (unit: K).
The values of these three variables can be obtained from the ERA5 reanalysis data. φ is the
latitude corresponding to the GNSS station (unit: ◦), while P1, e1 and H correspond to the
atmospheric pressure, water vapor pressure, and elevation above sea level (units: m) at
the site.

Since GNSS stations typically do not align with the grid points of the ERA5 reanalysis
data and their elevations do not match the model layer elevations in the reanalysis, to begin
with, we unified the elevation reference system of IGS stations with ERA5 reanalysis data.
We then applied the EGM2008 model to convert the geodetic elevations of the IGS stations
into positive elevations [59]. Next, we obtained the necessary meteorological parameters for
Equations (1) to (4) through interpolation. The specific steps to calculate the ERA5-derived
ZTD using the ERA5 reanalysis data are as follows:
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1. Based on the coordinates of the IGS station, we identified the four nearest grid points.
We performed linear interpolation of the meteorological parameters corresponding to
these four grid points, ensuring that the elevation matches that of the GNSS station.

2. We applied the two-dimensional linear interpolation method to estimate the meteo-
rological parameters at the location of the IGS station based on the values obtained
from the four grid points in Step 1.

3. We used the two-dimensional linear interpolation method again to compute the
meteorological parameters for the layers above the IGS station, ensuring that both the
latitude and longitude coordinates aligned with the station coordinates and that the
heights corresponded to those of the layers.

4. We calculated the ZWD and ZHD using Equations (1) and (2), respectively, and then
summed the two results.

During the same time period and at the same time resolution, we used ERA5-derived
ZTD to interpolate the GNSS-derived ZTD. This process allowed us to obtain the GNSS-
interpolation ZTD time series for each IGS station in the study area. By comparing the box
plots of the ZTD data before and after interpolation (refer to Figure 2), we observed that
the two datasets exhibited strong similarities. This included their central tendency, degree
of dispersion, and behavior of outliers. These findings suggest that the datasets share
similar characteristics overall. For example, the GNSS-interpolation ZTD for the KIRU,
GANP, POLV and TLSG stations was analyzed, as shown in Figure 3. The results indicate
that using ERA5-derived ZTD to interpolate GNSS-derived ZTD effectively fills the data
gaps. This approach achieves high precision in matching with GNSS-derived ZTD while
adequately capturing its trends and periodic variations. By analyzing the characteristics
of GNSS-interpolation ZTD, we found that values are generally higher in summer and
lower in winter [60]. This pattern indicates significant annual periodicity and observable
seasonal traits. Additionally, the local dynamic changes within the data series are sharp
and irregular, highlighting notable instability and contributing to the challenges associated
with ZTD prediction. Therefore, this study utilized an Informer–LSTM Hybrid Prediction
Model to address these issues to develop a long-time predictive model for ZTD.
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meteorological parameters relies on the assumption that these parameters change linearly 
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Figure 3. GNSS-interpolation ZTD from 2016 to 2020 for the selected IGS stations in this study. Panels
(a), (b), (c), and (d) represent the stations KIRU, GANP, POLV and TLSG, respectively.

During the data preprocessing stage, we addressed the issue of missing data in GNSS-
derived ZTD through interpolation. However, this approach may still introduce some
uncertainties. For instance, the GNSS-interpolation ZTD may have inherent limitations
and may not fully account for all possible atmospheric conditions and geographic changes.
Additionally, the use of two-dimensional linear interpolation for meteorological parameters
relies on the assumption that these parameters change linearly in space. In reality, varia-
tions in meteorological parameters are not always linear, which can lead to discrepancies
between the interpolated results and the actual values. This, in turn, can affect the accuracy
of predictions made by subsequent models that are based on GNSS-interpolation ZTD.
Therefore, we will carefully consider these factors in our future studies to enhance the
reliability and generalizability of our model.

3.2. The Forecasting Model of This Study
3.2.1. LSTM

The LSTM model effectively retains important historical information and discards irrelevant
information through the control of gating units and the state transmission of memory units [34].
In the Informer–LSTM Hybrid prediction model, we leveraged LSTM to capture the sequential
data’s short-term dependencies and the dynamic variation present in the sequential data.

The structure of the LSTM model is shown in Figure 4, in which Ct represents the state
of the LSTM memory cell, which is transmitted across time steps and serves to preserve the
long-term memory of the network. ft denotes the forget gate, it denotes the input gate, and
Ot denotes the output gate. The mathematical formulas are as follows:

ft = σ(W f · [ht−1, xt] + b f ) (6)

it = σ(Wi · [ht−1, xt] + bi) (7)

Ĉt = tanh(WC · [ht−1, xt] + bC) (8)

Ct = ft · Ct−1 + it · Ĉt (9)

Ot = σ(Wo · [ht−1, xt] + bo) (10)

ht = Ot · tanh(Ct) (11)
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First, ft determines which information to delete from the cell state Ct−1. This process
is represented by Equation (6), where W f denotes the weights, σ represents the sigmoid
activation function, and [ht−1, xt] indicates the concatenated column vector of ht−1 and xt,
while b f is the bias term. Next, it decides which new information to add to the cell state.
After determining what information to update based on ht−1 and xt, a candidate state Ĉt is
generated using a tanh activation function. The historical cell state Ct−1 is then updated to
the new cell state Ct. This updating process is represented by Equations (7)–(9), where the
different subscripts of W and b correspond to the respective weight matrices and bias terms.
Finally, based on the inputs ht−1 and xt, Ot is used to determine which features of the cell
state should be output, and the output result ht is computed. This process is represented
by Equations (10) to (11), where Wo and bo are the weights and biases for Ot and ht is the
output result. When an LSTM processes a sequence of data, it sequentially repeats the steps
from the beginning to the end of the sequence at each time step. This allows the model to
continuously update the state of the memory cells based on the information from the input
sequence. As a result, it produces corresponding hidden states that are ultimately used for
making predictions. This process effectively captures and manages both long-term and
short-term dependencies in the sequence data.
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Although the LSTM model offers several advantages, it encounters challenges when
handling long sequence data. These challenges include difficulties in capturing long-term
dependencies as well as issues related to vanishing or exploding gradients, which restrict
its effectiveness in long-term time series prediction scenarios.

3.2.2. Informer

To address challenges such as the difficulties LSTM models face with gradient solving
in long-time series, we propose the Informer–LSTM Hybrid Prediction Model. This model
utilizes Informer to capture global features and long-term dependencies of the input data,
enabling it to work in tandem with the LSTM model. This collaboration enhances the overall
processing capabilities and prediction accuracy of the hybrid model for long-time series data.
Firstly, the Informer model significantly reduces time complexity by incorporating the Prob-
Sparse Self-Attention mechanism. In conventional self-attention models, the computational
load increases dramatically with longer sequence lengths, leading to decreased efficiency
when handling extended data sequences. The ProbSparse Self-attention mechanism adopts a
probabilistic approach, actively ignoring those weights that have a relatively small impact on
the final result. Its expression is shown in Equation (12):
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A(Q, K, V) = so f tmax(
QKT
√

d
)V (12)

In this context, Q, K, and V are three matrices of the same size obtained through linear
transformations of the input data with hidden features. Here, d represents the feature dimen-
sion of the input data and So f tmax is the normalization exponential function. Q is a matrix of
the same size as Q, which includes only the attention weights that significantly impact the
predictions compared to Q. The Informer model also uses a self-attention distillation process
to downsample the data features. In addition, the information model downsamples data
features through a self-attention distillation mechanism. The expression for the distillation
mechanism from layer j to layer j + 1 in the network is given by Equation (13):

Xt
j+1 = MaxPool(ELU(conv1d([Xt

j ]AB
))) (13)

In this context, conv1d denotes the one-dimensional convolution operation on the
sequence, ELU(·) is the activation function, and MaxPool represents the downsampling
process of the max pooling layer. Through distillation operations, the informer reduces
the complexity of the data and reduces the cumulative error in the delivery of long series.
Finally, the informer understands long-term trends and seasonal patterns in the data by
adding timestamp information [39].

The structure of Informer is shown in Figure 5, which is mainly composed of two parts:
an encoder and a decoder. The encoder’s primary role is to transform the input data into
intermediate features, while the decoder generates the forecast sequence based on these
features produced by the encoder. Initially, the encoder employs a Prob-Sparse Self-attention
mechanism combined with a feed-forward neural network to process the input data and
extract key feature information. Following this, the decoder works to reconstruct the output
data from the intermediate features. It produces final features by integrating the Multiple
Self-attention mechanism, the Mask Self-attention mechanism, and another feed-forward
neural network. The resultant features are then mapped to the final prediction outcomes via
a fully connected layer. In the decoder, the input comprises both the hidden intermediate
features generated by the encoder and the original input vectors. To prevent the model from
relying on past information, the values intended for prediction are set to zero. This strategy
allows the model to concentrate on forecasting future locations effectively.
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The Informer model excels in long-term time series forecasting but has some limita-
tions. First, the ProbSparse Self-attention Mechanism improves computational efficiency
but may not fully capture all significant dependencies in some situations. Second, while
the Informer can identify long-term trends, it may struggle to learn dynamic changes in
scenarios where the time series patterns shift rapidly.

3.2.3. Informer–LSTM Hybrid Prediction Model

As previously mentioned, both the informer and LSTM models have limitations in
processing time series data. However, the Informer model demonstrates strong capabilities
in handling long-time series. It excels at extracting global features and capturing long-term
dependencies while minimizing computational resource consumption, making it highly
applicable to various tasks. In contrast, LSTM models have a significant memory effect
that enables them to effectively capture short-term dependencies and dynamic changes,
resulting in impressive performance in data regression tasks. To harness the strengths of
both the LSTM and Informer models and effectively capture both long-term and short-term
dependencies in the data, this paper proposes an Informer–LSTM Hybrid Prediction Model
that combines the features of both models. The overall structure of the proposed model is
illustrated in Figure 6.
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The model is implemented using parallel learning with two branches: LSTM and
Informer. Initially, the data is separately input into both the Informer and LSTM models.
The Informer utilizes its strong capability in modeling long-term dependencies to extract
global features. It employs the ProbSparse Self-attention Mechanism to capture the long-
term trends in the sequence, compressing these features through a Self-attention distilling
mechanism that ultimately generates the global feature hi in the decoder. Meanwhile,
LSTM leverages its memory effect to extract short-term dependencies and dynamic changes
in the data. It retains useful information through three gating units and generating hL.
Subsequently, the model stacks and fuses hi and hL to integrate the feature representations
from both the Informer and LSTM to create a unified feature representation, denoted as h,
for the Informer–LSTM Hybrid Prediction Model. Finally, a fully connected layer maps
these features to produce the final prediction results. The process of feature fusion is
illustrated in Expressions (14) and (15):
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hcombine = concat(hi, hL) (14)

h = projection(hcombine) (15)

First, the feature representations hi and hL are concatenated to obtain hcombine, where hi

represents the feature representation extracted by the Informer with a dimension of (B, T, D1)
and hL represents the feature representation extracted by the LSTM with a dimension of (B,
T, D2). Here, B denotes the batch size, T denotes the time steps, and D1 and D2 represent
the feature dimensions of the Informer and LSTM, respectively. The concatenated feature
representation hcombine thus has a dimension of (B, T, D1 + D2). This process aims to preserve
the data features extracted by both and capture more fully the long-term and short-term
dependencies of the time series data. Next, through a linear projection layer, hcombine is
projected to produce the final feature representation h, with an output dimension of (B, T,
Dout). This process aims to combine the feature representations of Informer and LSTM to
address periodic trends and dynamic changes in the sequence data. Ultimately, the predicted
value is derived from calculations performed by a fully connected layer. The parallel ensemble
learning strategy enhances the limitations of both LSTM and Informer in predicting long time
series while also improving the accuracy and robustness of the predictions.

Both LSTM and Informer possess unique strengths in time series forecasting. This
strategy acknowledges the periodic trends and dynamic changes present in the sequential
data, enabling a more thorough capture of both long-term and short-term dependencies. By
integrating the characteristics of both models, we can overcome their individual limitations
and improve prediction accuracy. This approach also enhances the model’s robustness and
generalization ability, making it more reliable and practical for real-world applications.

3.3. Construction of ZTD Forecast Model

In this research, we propose a ZTD prediction model by employing the Informer–
LSTM Hybrid Prediction Model. The model is built upon GNSS-interpolation ZTD data,
which possess a temporal resolution of 6 h and cover a time span from 1 January 2016 to
31 December 2020. These data were collected for each of the 11 IGS stations. For model
training, we utilized ZTD data from each IGS station from 2016 to 2019, which constitutes
approximately 80% of the dataset, while the remaining data served as the test set. The
inputs to our model from each station comprised its historical GNSS-interpolation ZTD
data along with the corresponding temporal information, allowing the model to learn the
ZTD’s temporal patterns. We designated one year as the prediction horizon, enabling us to
forecast ZTD data for each station for the year 2020. In addition, for the ZTD prediction
process, we used the method of forecasting by sliding window. We used the ZTD data of
the past t calendar elements at each IGS station to forecast the ZTD data at the moment of
t + 1 calendar elements. After completing one prediction, the ZTD value obtained from
the new prediction was updated into the ZTD sequence and then continued to carry out
the next round of prediction with the updated sequence in accordance with the same
sliding-window method, and so on and so forth, continuously updating the ZTD sequence,
thus realizing the long-term prediction of ZTD.

The model was constructed based on the PyTorch 1.13.1 framework. The initial
learning rate of both the Informer and LSTM was set to 0.0003, the dropout rate was 0.1, the
Batch-Size was set to 64, the GELU activation function was adopted, the Loss function was
set to Mean Root Square, the number of epochs was set to 80 and the Adaptive Moment
Estimation (ADAM) optimizer was used. In terms of the model architecture, the number of
Encoder Layers in the Informer part was set to 2, the number of Decoder Layers was set
to 1, the number of Multi-head was set to 8, the Encoder Input Length was set to 72, the
Decoder Label Length was set to 48, the number of Hidden Layers was set to 2048 and the
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number of Hidden features was set to 512. For the LSTM part, the number of layers was
set to 3, the hidden size was set to 1000, and the input size was set to 1. To compare the
prediction performance of the model in this paper with that of the contrast models, we also
implemented the LSTM–Informer model, the Informer model, the Transformer model and
the LSTM model in PyTorch. The device used was 1 NVIDIA GeForce RTX 4060 GPU. The
device we used was a Lenovo Legion Y9000p laptop, which was manufactured by Lenovo
Ltd. in Beijing, China.

Figure 7 illustrates the forecasting workflow of the proposed model. The steps are
outlined as follows: First, ERA5-derived ZTD was used to interpolate GNSS-derived
ZTD, resulting in GNSS-interpolation ZTD. Second, this GNSS-interpolation ZTD was
standardized, and the data were divided into training and test sets at an 80:20 ratio. Finally,
the model was trained, and the regression results from the trained model were evaluated
against the known data, producing the prediction-fitting results.
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3.4. Methods for Comparison

LSTM–Informer [49]: This model integrates LSTM and Informer through a strategy
of serial ensemble learning. LSTM is utilized for processing time series data at the lower
layer, while Informer is employed for feature extraction at the upper layer. The model
demonstrates strong prediction performance.

Informer [39]: This model is a supervised learning framework based on the Trans-
former architecture. It utilizes a ProbSparse Self-Attention Mechanism for efficient global
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feature extraction. It can generate prediction values in a single step, making it well-suited
for long-term time series forecasting. It has achieved solid results in ZTD prediction tasks.

Transformer [61]: The Transformer model introduces a self-attention mechanism that has
significantly advanced developments across various fields. In time series forecasting, this mecha-
nism allows the model to dynamically adjust attention weights based on different parts of the
input sequence, enabling it better to capture important features and patterns within the data.

LSTM [62]: LSTM is a classical algorithm for time series forecasting, employing memory
cells to store and retain crucial information for current predictions. This capability allows LSTM
to effectively capture short-term dependencies and dynamic characteristics in time series data.

GPT3 [24]: The GPT3 model can estimate temperature and pressure near the Earth’s
surface by utilizing the coordinates of observation stations and data over the years. This
functionality allows for the calculation of ZTD. As an empirical model for ZTD prediction,
GPT3 demonstrates good performance.

3.5. Accuracy Evaluation Indicators

In this study, we utilized the coefficient of determination (R2), root mean square
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) to
compare the accuracy of different models. R2 indicates how closely the prediction model
results approximate the reference data. The closer R2 is to 1, the better the independent
variables explain the dependent variable in the regression analysis, representing strong
predictive performance. RMSE measures the total deviation between the predicted values
and the reference values. At the same time, MAE represents the average absolute deviation
of each measurement, providing insight into the actual situation of ZTD prediction errors.
MAPE ranges from [0, +∞], a MAPE of 0% indicates a perfect model, whereas a MAPE
greater than 100% suggests a poor model. Smaller RMSE, MAE, and MAPE values indicate
better predictive performance of the model. The calculation methods for each indicator are
shown in Equations (16)–(19):

R2 = 1 − SSE
SST

= 1 − ∑N
i (ZTDi − ZTDpre

i )
2

∑N
i (ZTDi − ZTDi)
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where ZTDi and ZTDpre
i represent the GNSS-interpolation ZTD and the ZTD predictions

output by the Informer–LSTM Hybrid Prediction Model, respectively, and ZTDi is the
mean value of the GNSS-interpolation ZTD.

4. Results and Discussion
In this study, we conducted ZTD prediction experiments at 11 IGS stations in Europe,

using data from 2016 to 2019 as the training set to predict ZTD for 2020. We utilized
the GNSS-interpolation ZTD data from 2020 for accuracy validation. We compared our
approach with other models, including the LSTM–Informer based on the serial ensemble
learning model, popular machine learning models (Informer, Transformer, and LSTM
models) and the GPT3 empirical model to verify the superiority of our model in ZTD
prediction modeling. In this section, Informer–LSTM refers to the Informer–LSTM Hybrid
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Prediction Model proposed in this study, while LSTM–Informer is the comparison model
based on a serial ensemble learning strategy. Each comparison model performs ZTD
prediction under the same experimental conditions, including identical dataset division.
Both models utilize data from 2016 to 2019 for training and validation using 2020 data,
ensuring consistency in the data format and preprocessing methods. This setup allows for
an objective comparison of accuracy between the method presented in this paper and the
comparison models in the context of ZTD long-term series prediction.

Figure 8 and Table 2 present the statistical accuracy metrics of the different models. The
statistical results indicate that the Informer–LSTM Hybrid Prediction model has the smallest
average RMSE compared to the LSTM–Informer, Informer, Transformer, LSTM, and GPT3
models, with improvements in prediction accuracy of 6.37%, 7.72%, 6.83%, 23.91%, and
44.2%, respectively. It also achieves the lowest average MAE, with corresponding accuracy
improvements of 6.45%, 8.23%, 7.05%, 27.86%, and 47.3%. The metrics R and MAPE also
show significant improvements.

Table 2. Average Accuracy Comparison Among Different ZTD Prediction Models. In the table,
Informer–LSTM refers to the Informer–LSTM Hybrid Prediction Model proposed in this study, while
LSTM–Informer is the comparison model.

RMSE (cm) MAE (cm) MAPE R

Informer–LSTM 1.91 1.45 0.60 0.916
LSTM–Informer 2.04 1.55 0.66 0.905

Informer 2.07 1.58 0.68 0.901
Transformer 2.05 1.56 0.67 0.902

LSTM 2.51 2.01 0.87 0.841
GPT3 3.42 2.75 1.19 0.713
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The numerical results from all stations indicate that our Informer–LSTM Hybrid pre-
diction model (shown as Informer–LSTM in the charts) achieved an average RMSE of
1.91 cm, an average MAE of 1.45 cm, an average MAPE of 0.60, and an average R of 0.916,
all of which are the best among all models evaluated. This demonstrates our approach’s
advantage and the parallel ensemble learning strategy’s effectiveness in constructing ZTD
prediction models. The LSTM–Informer based on the serial ensemble learning model
exhibited prediction accuracy comparable to the Informer and Transformer models but
did not achieve ideal predictive performance. This may be attributed to the serial en-
semble learning strategy’s inability to address the Informer model’s incomplete feature
extraction limitations fully. Additionally, the prediction accuracy of the Transformer model
was slightly higher than that of the Informer model, which may be related to the incom-
plete information extraction of the Informer model. The average RMSE for LSTM was
2.51 cm, higher than that of other comparable machine learning models, demonstrating
the superiority of the attention mechanism in long-term sequence prediction. In contrast,
the prediction accuracy of GPT3 was relatively low, likely due to the empirical model’s
difficulty in capturing the nonlinear characteristics of ZTD. This highlights the advantages
of machine learning algorithms in constructing ZTD prediction models.

Figure 9 and Table A1 compare the prediction accuracy between this paper’s model
and the comparison model at 11 IGS stations. It is obvious from the bar charts that
this paper’s model outperforms the comparison model at all stations, and this re-
sult fully reflects the advantages of this paper’s model in terms of prediction ability
and robustness.
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Figure 10 shows the prediction effect of this paper’s model at the different locations
of the stations. We chose the KIRU and GRAZ stations with higher prediction accuracy
and the METG and MORP stations with lower accuracy for demonstration. Through
comparison, it can be found that this paper’s model fits the ZTD time series better, not only
successfully capturing the long-term trend and cyclic changes of ZTD but also performs
well in fitting the local dynamics, which further verifies that the parallel ensemble learning
strategy of this model gives full play to the respective advantages of the Informer model
and the LSTM model.
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Many studies have been conducted in the field of ZTD prediction, and the results 
vary from one study to another due to the differences in the data, models and 
experimental setups used. For example, in the study conducted by Hu et al. in 2024, they 
used the Informer model to predict ZTD for nine GNSS stations in China. After counting 
the overall 24 h prediction ZTD accuracies of all the GNSS station models in 2022, the 
average RMSE is about 2.21 cm and the average MAE is about 1.66 cm. The average 
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Many studies have been conducted in the field of ZTD prediction, and the results vary
from one study to another due to the differences in the data, models and experimental
setups used. For example, in the study conducted by Hu et al. in 2024, they used the
Informer model to predict ZTD for nine GNSS stations in China. After counting the
overall 24 h prediction ZTD accuracies of all the GNSS station models in 2022, the average
RMSE is about 2.21 cm and the average MAE is about 1.66 cm. The average RMSEs of
the comparative models, namely Transformer and LSTM in this study, are 2.15 cm and
3.65 cm, respectively [39]. In comparison, our proposed Informer–LSTM Hybrid Prediction
Model obtains an average RMSE of 1.91 cm and an average MAE of 1.45 cm, which are
significantly better than the results of this previous study in terms of accuracy metrics. This
is partly due to our innovative parallel integrated learning combination strategy, which
gives full play to the respective advantages of the Informer model and the LSTM model; on
the other hand, it may also be related to the pre-processing method of the ZTD data we
selected and the spatial and temporal coverage of the experimental data.

To further analyze the variations in accuracy of the Informer–LSTM Hybrid Prediction
Model proposed in this study, we examined its global spatial distribution. Figure 11
illustrates the overall distribution of accuracy metrics for the Informer–LSTM Hybrid
Prediction model. Our spatial distribution analysis of the RMSE reveals that prediction
accuracy is relatively low at the MORP, METG, and TLSG stations. In contrast, the IGS
stations in inland areas demonstrate significantly higher prediction accuracy than coastal
regions. We speculate that this phenomenon may be attributed to the higher water vapor
content at coastal stations, which increases the impact of ZWD on ZTD, complicating the
model’s ability to learn the characteristics of ZTD. Additionally, we observed that KIRU
exhibited the highest prediction accuracy, with a correlation coefficient R approaching 0.957.
However, even some inland stations that were less affected by water vapor did not achieve
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ideal prediction accuracy. This leads us to believe that latitude may also play a role in
influencing the prediction accuracy of the stations.
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Since accurate prediction of ZTD is of great significance to improving the accuracy of
GNSS positioning. Our proposed Informer–LSTM Hybrid Prediction Model, with its high
prediction accuracy, is able to provide more reliable atmospheric delay correction infor-
mation for PPP. This capability significantly enhances the accuracy of positioning results.
Additionally, the variation of ZTD can reflect regional meteorological characteristics and
water vapor dynamics processes. Our model can accurately capture the long-term trends,
cyclic changes, and local dynamics of ZTD. Based on the prediction results, meteorologists
can further invert the atmospheric water vapor distribution and trends, which is potentially
valuable for short-term weather prediction, climate monitoring, and early warning of
meteorological disasters.

In addition, while the Informer–LSTM Hybrid Prediction Model proposed in this
study yields satisfactory prediction results for the data from 11 IGS stations in the European
region, certain limitations may arise when extending its use to other regions or different
datasets. Firstly, the significant variations in atmospheric, topographic, and climatic condi-
tions across different areas can lead to distinct ZTD characteristics. Consequently, when
applying the model to regions with considerable climatic differences, it may struggle to
accurately capture the local ZTD’s changing patterns due to mismatched data characteris-
tics, ultimately affecting the prediction accuracy. Secondly, our model is trained optimally
based on a specific structure and parameter settings tailored to European regional data. As
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we promote its application, inherent characteristics of the model could limit its generaliz-
ability. To enhance the model’s performance, several improvements can be made. Firstly,
expanding and enriching the training dataset by collecting more samples from various
regions and types can facilitate better learning of diverse ZTD change patterns, thereby
improving the model’s adaptability to different data characteristics. Secondly, conducting
model fine-tuning or re-training for particular regions allows for the optimization and
adjustment of hyperparameters based on specific climate and terrain information, ensuring
a better fit with local data characteristics.

5. Conclusions
Aiming at the limitations of a single neural network in ZTD prediction, an Informer–

LSTM Hybrid Prediction Model based on parallel ensemble learning was proposed and
applied to ZTD long-time series prediction. We utilized the Informer to extract global
features of ZTD data and employed LSTM to capture the dynamic variations of the ZTD
data. We obtained a more comprehensive representation of ZTD features by adopting a
stacked fusion approach. This model effectively compensates for the shortcomings of both
LSTM and Informer in ZTD predictions, enabling us to better capture the long-term and
short-term dependencies of ZTD data, thereby enhancing the accuracy of ZTD predictions.

We initially utilized the GNSS source ERA5-derived ZTD to interpolate GNSS-derived
ZTD, resulting in what we called GNSS-interpolation ZTD. Building on this, we developed
the Informer–LSTM Hybrid ZTD Prediction model. This model was then applied to forecast
ZTD variations at the 11 IGS stations in Europe in 2020.

To evaluate the predictive performance of our model, we compared it with several
benchmark models, including the LSTM–Informer based on serial ensemble learning, In-
former, Transformer, LSTM, and empirical ZTD models. The quantitative analysis results
indicate significant improvements in our algorithm’s average RMSE, MAE, MAPE, and
R2. When compared to LSTM–Informer, Informer, Transformer, LSTM, and GPT3, the
Informer–LSTM Hybrid Prediction model achieved the lowest average RMSE, with predic-
tion accuracy improvements of 6.37%, 7.72%, 6.83%, 23.91%, and 44.2%, respectively. It also
exhibited the lowest average MAE, with prediction accuracy improvements of 6.45%, 8.23%,
7.05%, 27.86%, and 47.3%, respectively. The proposed Informer–LSTM Hybrid Prediction
model not only surpasses individual ML models and empirical ZTD models in prediction
accuracy but also outperforms LSTM–Informer based on serial ensemble learning, thor-
oughly validating the effectiveness and superiority of our approach. Additionally, through
spatial distribution analysis of accuracy metrics, we concluded that prediction accuracy is
higher in high-latitude regions compared to low-latitude regions, and inland areas show
greater prediction accuracy than those near the ocean.

The accuracy of ZTD prediction significantly impacts GNSS positioning accuracy. Our
proposed Informer–LSTM Hybrid Prediction Model demonstrates high accuracy in ZTD
predictions, which can positively influence GNSS positioning outcomes. By leveraging the
precise ZTD predictions from this model, we anticipate a reduction in positioning errors,
leading to improved reliability and accuracy of the positioning results. This advancement is
expected to provide robust technical support for the high-quality development of industries
that depend on precise positioning.

In addition, considering the significant differences in atmospheric conditions, water
vapor changes, and ZTD characteristics across various climate regions, we plan to apply the
Informer–LSTM Hybrid Prediction Model to a broader range of climatic zones for further
testing in future research. By conducting experiments in diverse climatic environments, we
can more comprehensively evaluate the generalization ability of the model and identify
potential challenges it may face in dealing with different atmospheric conditions. This



Atmosphere 2025, 16, 31 20 of 23

approach will allow us to optimize and adjust the model, enhancing its adaptability for a
wider array of application scenarios.
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Appendix A. Prediction Metrics Among Different Models for
IGS Stations

Table A1. Comparison of prediction accuracy indicators of different ZTD prediction models for each
station (cm). In the table, Informer–LSTM refers to the Informer–LSTM Hybrid Prediction Model
proposed in this study, while LSTM–Informer is the comparison model.

Site Accuracy Informer–LSTM LSTM–Informer Informer Transformer LSTM GPT3

KIRU
RMSE 1.48 1.67 1.59 1.71 2.53 3.67
MAE 1.10 1.27 1.21 1.31 2.03 3.01

METG
RMSE 2.25 2.33 2.30 2.26 2.56 3.83
MAE 1.72 1.78 1.77 1.73 2.00 3.12

POLV
RMSE 1.83 1.87 1.99 1.95 2.73 3.03
MAE 1.34 1.38 1.50 1.43 2.19 2.46

BUCU
RMSE 1.77 1.78 1.87 1.84 2.34 3.10
MAE 1.36 1.35 1.44 1.40 1.85 2.46

GRAZ
RMSE 1.62 1.78 1.79 1.90 2.22 3.00
MAE 1.18 1.35 1.34 1.44 1.78 2.37

PTBB
RMSE 1.97 2.30 2.39 2.30 2.78 3.52
MAE 1.62 1.72 1.81 1.73 2.21 2.80

ZIM2
RMSE 1.58 1.68 1.91 1.76 2.38 3.04
MAE 1.22 1.28 1.52 1.39 1.92 2.43

https://cddis.gsfc.nasa.gov/archive/gnss/products/troposphere/zpd/
https://cddis.gsfc.nasa.gov/archive/gnss/products/troposphere/zpd/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-pressure-levels
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Table A1. Cont.

Site Accuracy Informer–LSTM LSTM–Informer Informer Transformer LSTM GPT3

TLSG
RMSE 2.13 2.20 2.18 2.21 2.55 3.78
MAE 1.63 1.73 1.70 1.74 2.07 3.06

MAD2
RMSE 2.06 2.31 2.18 2.19 2.21 3.30
MAE 1.55 1.78 1.67 1.68 1.73 2.64

MORP
RMSE 2.52 2.58 2.62 2.68 2.96 4.42
MAE 1.87 1.91 1.95 2.00 2.32 3.59

GANP
RMSE 1.82 1.96 1.90 1.93 2.34 2.94
MAE 1.37 1.48 1.48 1.45 1.89 2.31
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