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Abstract: Biogenic volatile organic compounds (BVOCs) are key compounds in atmospheric chemistries,
but difficult to measure directly. In this study, a pre-concentration unit combined with gas chromatography-
mass spectrometry (GC-MS) was developed for the quantitative analysis of 18 BVOCs in ambient air.
The analytes are trapped on an empty silonite-coated tube, which is cooled by a thermoacoustic cooler
to cryotrap at −150 ◦C, and then desorbed by rapid heating to 200 ◦C. The set-up involves neither the
exchange of solid adsorbents nor any further condensation or refocusing steps. Reliable operation is
ensured by the thermoacoustic cooler, which neither contains a liquid refrigerant nor requires refilling
a cryogen. The pre-concentration unit parameters such as water removal temperature, desorption
temperature and desorption time were optimized. All compounds had correlation coefficients that
were better than 0.95, and the detection limits were 0.005–0.009 ppbv when the injection volume is
400 mL. The repeatability ranges were 0.9–5.8%. The recoveries were ranged from 81.8% to 93.2%.
This new method was applied for the first time to measure ambient BVOCs in suburb Guangzhou
in summer 2022. Isoprene concentrations ranged from 0.375 ppbv to 2.98 ppbv. In addition, several
extremely low-level monoterpenes (e.g., α-pinene, β-pinene, and D-limonene) were also detected by
the method.

Keywords: BVOCs; online analysis; empty-tube enrichment; cryotrap

1. Introduction

Biogenic volatile organic compounds (BVOCs) include many chemical compounds
emitted by plants into the atmosphere, contributing to 75–90% of the total global non-
methane VOC emissions in the troposphere [1]. BVOCs play a significant role in influencing
the oxidative capacity of the atmosphere at both regional and global scales [2,3]. These
compounds react rapidly with the main oxidants, namely hydroxyl (·OH), nitrate (·NO3)
radicals, and ozone (O3), contributing to the formation of tropospheric O3 when sufficient
nitrogen oxides are present [4–9]. O3 is a greenhouse gas that is harmful to both human
health and ecosystems [10,11]. Additionally, BVOCs can form low-volatility compounds
and contribute to the creation of secondary organic aerosols (SOA) [12–15], impacting
Earth’s radiative budget [16,17]. Indeed, measurements of ·OH reactivity indicate that
a significant fraction of reactive BVOCs in ambient air remain unidentified [18,19]. As
such, further instrumental developments to increase the chemical diversity and spatiotem-
poral resolution of BVOCs observations are fundamental to obtaining a more in-depth
understanding of these compounds in atmospheric processes that influence air quality
and climate.
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Analyzing BVOCs is challenging due to their rapid reactivity and low concentrations,
often measured in parts per trillion (ppt). Consequently, a pre-concentration step is essential
to detect these compounds effectively. Traditional methods involve collecting BVOCs
on solid adsorbents such as porous organic polymers (e.g., Tenax adsorbent) [20–23] or
carbon-based materials (e.g., Carbotrap adsorbent) [24–27] for 2–3 h. The analytes are
then thermally desorbed into a gas chromatography (GC) instrument and detected using a
flame ionization detector (FID) or a mass spectrometer (MS) to quantify individual terpene
isomers in the laboratory. However, the resolution of sample analysis may not accurately
capture the dynamics of BVOC concentration changes in ambient air. The online sorbent
sampling coupled with TD-GC or GC-MS methods are rarely reported [27,28]. Furthermore,
the use of solid adsorbents can result in measurement errors and interfere with accurate
determination [29,30], potentially also posing a risk of penetration [28].

Ultra-low temperature focusing is a technique for capturing VOCs in ambient air that
eliminates the need for solid absorbents, thus reducing the potential for measurement errors.
Cryogens such as liquid nitrogen (LN2) [31] or orgon (LAr) [32] offer a lager cooling capacity
to trap BVOCs, but they may not be available in rural or remote areas owing to safety
restrictions and supply demand. Compression coolers [33,34] offer less cooling capacity
in terms of heat lift than liquid nitrogen. However, coolers operating within the range of
350 W–380 W tend to have high operating costs and require liquid cryogens (CFCs), posing
a potential leakage risk. Stirling coolers [35] without refrigerants are small in shape; their
lowest cold temperature can reach the temperature of liquid nitrogen, but the lateral forces
caused by the reciprocating motion of the drive piston can cause seals to wear out, thereby
shortening the overall service life of the machine. Thermoacoustic coolers are a perfect
solution that is well suited for maintenance-free remote operation [36,37]. Similar to Stirling
coolers, they only require electrical power and do not contain any potentially hazardous
working fluids or refrigerants to reach the same temperature as liquid nitrogen, and the
absence of any mechanical moving parts in the heaters prevents the losses and associated
maintenance of Stirling heaters due to mechanical friction. Thus, they can be considered
an energy-saving and environmentally friendly refrigeration method. These advantages
make thermoacoustic coolers applicable in many industries, such as power plants [38]
and liquefaction of natural gases [39]. We are the first to use thermoacoustic coolers for
the cryotrapping of VOCs in ambient air. The design of a cryogen-free pre-concentration
unit combined with GC-MS/FID instruments has been demonstrated to be suitable for
the online monitoring of VOCs, such as alkanes, alkenes, aromatic hydrocarbons, and
halogenated hydrocarbons [40–42]. Neither a detailed description nor characterization of
the pre-concentration unit has been discussed in previous publications.

In this study, we developed a novel enrichment trap for a pre-concentration unit
combined with GC-MS/FID for the determination of 18 BVOCs. We also described a general
instrument and discussed the pre-concentration parameters. The analytical figures of merit
of method were also determined, including the quantification limits and intermediate
precision for the target species. The sample methodology was applied to analyze BVOCs in
Guangzhou to demonstrate the versatility and reliability of the set-up parameters.

2. Materials and Methods
2.1. Materials
2.1.1. Standard Gas Preparation

Individual standards of 18 BVOCs (Table S1) were prepared and diluted with methanol
to a concentration of approximately 0.2 to 1 µg µL−1 of the stock solutions. Aliquots of
100~800 µL of each stock solution were combined into a new, dry glass volumetric flask.
The mixture was then diluted to reach a final concentration of approximately 0.02 µg
µL−1 of the working solution. A SS Swagelok tee was connected to a clean canister
(15 L, Silco-Can, Restek, Bellefonte, PA, USA) equipped with a dynamic dilution system
(Nutech 2202B, Plano, TX, USA). The canister was heated to approximately 80 ◦C. A
precision microliter syringe (Hamilton, Reno, NV, USA) was used to inject 2–40 µL of the
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BVOC mixture working solution from the septum on the SS Swagelok tee into the canister.
Subsequently, 0.2 µL of ultrapure water was added to create a wet standard gas mixture at
a relative humidity of 50%. After 5 min, the canister was flushed to a set pressure value
(29.4 psi) using high-purity nitrogen at a flow rate of 2000 mL min−1 through the standard
dilution port [43,44]. The calculated concentration range for each target compound is about
~0.015–6 ppbv.

To evaluate the analytical system, a mixture of 57 non-methane hydrocarbons and
a mixture of oxygenated BVOCs (Linde Electronics and Specialty Gases, Danbury, CT,
USA) were used in this work as standards for quantitative comparisons, which included
the most representative BVOC-emitting species, i.e., isoprene. The VOCs detected by
FID were quantified by the external standard method. The components detected by MS
were quantified using four internal standards (bromochloromethane, 1,4-difluorobenzene,
chlorobenzene-d5, and 4-bromofluorobenzene) [45]. Calibration curves were plotted for
two standard gases in the 0.1–8 ppbv range. The VOC species, detection limits (DL) and
average concentrations measured by GC-MD/FID are listed in Table S2.

2.1.2. Sample Pre-Concentration

Figure 1a shows the flow scheme of the gas flow during sampling pre-concentration.
The sampling tube was a custom-made 3 m stainless steel silonite-coated tube (1/8 OD)
heated to 120 ◦C [46] for ozone removal purposes. A Teflon filter (0.25 µm pore size, 47 mm
OD, Millipore Sigma, Burlington, MA, USA) was fitted on the front of the ambient air
sampling tube to prevent the migration of particles. Ambient air was sampled and pumped
into the pre-concentration unit at a flow rate of 40 mL min−1 during the second 10-min
period of each hour. A six-port stream selection valve (Valve 1; Valco Instruments, Houston,
TX, USA) was used to direct ambient air and standard gases into the pre-concentration
unit. Air samples were then drawn into two parallel channels using a pump for water
removal and VOC enrichment. Each channel was equipped with a water trap (H2O trap,
a stainless steel hollow tube with 1/8 inch OD and 2.1 mm ID), an enrichment trap, and
a mass flow controller (MFC). The water trap temperatures for Channels 1 and 2, were
set at −60 ◦C and −20 ◦C, respectively, using Stirling coolers (Cryo S100, China Stirling,
Rizhao, China) capable of reaching a minimum temperature of −100 ◦C. The CO2 trap in
channel 1 was a glass tube (approximately 164 mm with an inner diameter of 4 mm) filled
with ascarite CO2 adsorbent (sodium hydroxide-coated silica, 20–30 mesh, Sigma, Livonia,
MI, USA). The enrichment trap for Channel 1 was a porous layer open tubular (PLOT)
stainless steel tube with a 0.5 mm ID and a 30 cm length that was designed to trap C2-C4
hydrocarbons, whereas Channel 2 used an empty stainless steel tube (30 cm, 0.76 mm ID)
to trap BVOCs and other VOC species in air samples. The temperatures of the enrichment
traps for both channels were set at −150 ◦C [47], and the details of the enrichment trap are
described in the next section. In the injection/GC analysis stage, the downstream pump
was turned off, the in-port of Valve 1 was switched to S1, and Valve 2 was switched to
position B (Figure 1b). The concentrated VOCs in the enrichment traps were volatilized by
thermal desorption at 200 ◦C and were injected into the GC system by helium carrier gas
through the transmission tube into the FID column from valve position 4-5-2-3 in channel 1
and into the MS column from valve position 9-8-11-10 in channel 2. After each injection,
the pre-concentration unit was blown back for 8 min to remove the residue from the gas
tubes. The process was set as follows: the water management trap and enrichment trap
of channel 1 and channel 2 were individually heated to 120 ◦C for 2 min consecutively.
Subsequently, the two water traps were heated to 120 ◦C for 2 min. At the same time,
the nitrogen carrier gas passed through V1, the enrichment trap, the CO2 trap, the water
management trap, V4, and V3 at a flow rate of 180 mL min−1, and was discharged through
the pump. After the back-blowing stage, the pre-concentrator returned to the idle state
again. The sample analysis cycle time was about 1 h, and full autosampling was performed.
Customized control software automatically operates the pre-concentrator, which controls
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system parameters such as water and enrichment trap temperature by cooling and heating
with system states such as pre-concentration and desorption.
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Figure 1. Flow scheme showing the gas flow. (a) Position A in Valve 2, sampling pre-concentration
sate; (b) Position B in Valve 2, sampling injection state. The green line shows the gas path. S1–S6
denote the positions of Valve 1. The number of Valve 2 denote the Valve positions. V1, V2, V3, V4
denote solenoid valves.

2.1.3. Enrichment Trap and Cooling Technique

Figure 2 shows a technical drawing of the enrichment trap and coldhead. The en-
richment trap consists of trapping tubes embedded in a concave pool, which in turn are
attached to an insulating sheet, heat-insulating sheet, and aluminum cold-conducting
block, which is attached to the cooler coldhead. The coldhead cools the trap tube via
cold-conducting block, thus realizing low-temperature VOC trapping. Desorption heating
is implemented by pulsing a direct current to the trapping tube. To reduce the heat flowing
into the coldhead, in the heating state of the trap tube, we used a drive motor to lift the
concave pool of the trap tube away from the coldhead of the cooler and then drop the cold
end until the trap tube is heated. The most significant advantage of this structure is that
the thermal desorption temperature of the trap tube can reach 260 ◦C without affecting the
normal refrigeration of the cooler, which is conducive to the analysis of low volatile BVOC.
Typical cooling and heating cycles are shown in Figure 3 for the sample trap and coldhead.
The cooling time from 200 to −150 ◦C was ~34 min. After the enrichment trap reached its
initial set point of −150 ◦C, the sample trapping cycle began.

Thermoacoustic coolers used for cooling offer the advantage of requiring only elec-
trical power while providing a relatively large cooling capacity at very low minimum
temperatures at −196 (77 K), without using cryogens (e.g., liquid nitrogen) and refrigerants
(e.g., freon). The cooler should maintain a defined the trapping tubes temperature at
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−150 ◦C for VOC enrichment. After thermodesorption, a certain amount of heat flows
from the heated trap into the coldhead as the pre-concentration trap is kept directly inside
with only a tiny amount of insulation. The excess heat taken by the cooler from the cold
header must be released into the surrounding air through the air-fin exhaust heat to quickly
reach the cooling state.
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2.2. GC-MS/FID Conditions

The traps was rapidly heated to transfer the BVOCs to the GC-MS/FID (7890B GC,
5977B MSD, Agilent Technologies Inc., Santa Clara, CA, USA). BVOCs and other com-
pounds were separated on a semi-polar column (DB-624, 60 m × 0.25 mm ID × 1.4 µm,
Agilent Technologies Inc., Santa Clara, CA, USA) and quantified using a quadrupole MS
detector. C2–C4 hydrocarbons were separated on a PLOT-AL2O3 column (15 m × 0.32 mm
ID × 3 µm, Agilent Technologies Inc., Santa Clara, CA, USA) and measured using the FID
channel. The GC was programed as follows: 35 ◦C for 3 min, then increased to 150 ◦C
at a rate of 5 ◦C min−1, then at a rate of 10 ◦C min−1 up to 250 ◦C and maintained for
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7 min; and carrier gas (He, 99.999%). The MS detector settings were ionization mode-EI
(70 eV), ion source temperature (230 ◦C), MSD transfer line temperature (240 ◦C), and total
ion chromatogram mass window (40–300 m/z). Retention times were determined by the
direct injection of individual BVOC liquid standards into the GCMS. Ion fragmentation
was assessed through full scan mode (SCAN) and the NIST (2014) library, as indicated in
Table 1. Qualitative and quantitative measurements of BVOCs and other compounds in
the air samples were carried out simultaneously using SCAN mode and selected ion scan
(SIM) mode. The chromatographic separation process took approximately 43 min.

Table 1. List of 18 target compounds for ambient measurement, evaporation and freezing points, and
quantifier m/z and qualifier m/z values in SIM mode.

Compounds Evaporation
Point (◦C)

Freezing
Point (◦C)

Retention
Time (min)

Quantifier
m/z

Qualifier
m/z

Isoprene 34.1 −146.0 8.8 67 68
α-Pinene 156.1 −62.5 26.1 93 91
Camphene 159.5 52.0 26.9 93 121
Sabinene 163.7 - 27.6 93 91
β-Myrcene 167.0 −10.0 27.8 93 69
β-Pinene 166.0 −61.0 27.8 93 69
2-Carene 167.5 25.0 28.4 93 121, 138
3-Carene 170.2 25.0 28.7 93 91, 79
D-limonene 176.5 −74.0 29.3 93 93, 67
p-Cymene 177.1 −67.9 29.4 119 134, 91
Ocimene 184.1 −27.0 29.6 93 91, 79
Cineole 176.4 1.50 29.7 81 108, 71
γ-Terpinene 182.0 −59.0 30.1 93 91, 136
Isolongifolene 256.0 - 37.7 161 105, 91
Longifolene 257.8 - 38.1 161 94, 91
α-Cedrene 262.0 - 38.1 119 93, 105
β-Caryophyllene 264.0 <25.0 38.2 93 133, 91
α-Caryophyllene 268.0 <25.0 38.9 93 80, 121

- No data.

3. Results and Discussion
3.1. Optimization of Pre-Concentration Unit Conditions

Different conditions were evaluated to increase BVOC enrichment efficiency. All these
conditions were tested at a sample volume of 400 mL, and a mixture of approximately
3–5 ppbv of each BVOC was generated at 50% RH using the dilution system described
in the Experimental section. The trap temperature was set at −150 ◦C, which effectively
removed atmospheric moisture during sampling to prevent ice blockage in the trap. During
gas chromatography analysis, the water trap was further purged with 180 mL min−1 of
dry nitrogen gas for 2 min and heated to 120 ◦C to reduce the adsorption of the target
compounds in the CO2 and water traps. We tested three different temperatures: 0 ◦C,
−20 ◦C, and −40 ◦C. The desorption temperature was set to 200 ◦C. As shown in Figure 4a,
the peak areas of monoterpenes increased with decreasing temperature, while the peak
areas of sesquiterpenes decreased with decreasing temperature. The peak areas of cineole
decreased slightly, which was caused by the variation in molecular weight and boiling
point of the target compounds. Generally, the most volatile compound will be the first to
break through the water trap; the larger the molecular weight, the more likely it is to lose a
part in the water trap. To reduce the interception of sesquiterpenes and cineole, −20 ◦C
was chosen as the water temperature for this experiment.
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The desorption temperature was tested at 150, 200, and 250 ◦C. For each experiment, a
mixture of approximately 3–5 ppbv of each BVOC was generated at 50% RH and sampled
using the instrument. Desorption was performed twice at the same temperature. The first
chromatogram was obtained from standard gas collection, followed by enrichment traps
before GC analysis. Subsequently, without additional operations such as back-flushing or
sampling, the trap tubes were directly heated to analyze the targets and generated a second
chromatogram. Three replicates were performed for each temperature. Three replicates
were performed at each temperature. The desorption efficiency was evaluated at each
temperature from Equation (1):

ED(%) =
A f irsti

A f irsti + Asecondi
× 100 (1)

where ED (%) denotes the desorption efficiency. A f irsti is the peak area of compound i
from the first chromatogram, and Asecondi is the peak area of compound i from the second
chromatogram. Figure 4b shows the peak areas observed for each compound after the
first desorption. The desorption efficiency of each compound at various temperatures
is shown in Figure 4d. The response increased as the desorption temperature increased,
with the monoterpenes peaking at 200 ◦C and remaining stable at higher temperatures. In
contrast, sesquiterpenes and cineole reached peak responses at 250 ◦C. The response of
sesquiterpenes increased by approximately 10%, 16%, 22%, 28%, 29%, and 30% (isolongifo-
lene, longifolene, α-cedrene, β-caryophyllene, α-caryophyllene) from 200 to 250 ◦C. These
results may be attributed to the differences in the molecular weight and the boiling point
of the individual compounds. Compared to sesquiterpenes, monoterpenes have lower
molecular weight and boiling points; therefore, they were desorbed at lower temperatures.
Based on these results, a temperature of 200 ◦C was considered effective, provided there
was sufficient cooling time at the coldhead of the traps.
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After the water trap temperature was selected, the desorption time of the trap tubes
was optimized from 1 min to 7 min, achieving the highest responses at 200 ◦C. The results
reported in Figure 4c indicate that monoterpenes reached the highest efficiency at 3 min,
whereas sesquiterpenes reached the highest efficiency at 5 min, mainly because the boiling
point of sesquiterpenes is higher than that of monoterpenes, and the resolution time was
longer. To ensure a high efficiency, the desorption time was set to 5 min. Detailed optimiza-
tion results for target analytes are presented in Table S3 in the Supplementary Materials.

3.2. Overall Performance

To evaluate the overall performance of the optimized method, a mixture of 17 BVOCs
was analyzed using a pre-concentrator combined with GC-MS. Isoprene was included in
the PAMS mixed standard gas; the chromatographic peak of isoprene and other 17 BVOCs
were not in the same chromatogram. Their performances are listed in Table S2. A total of
17 BVOC peaks were separated, as depicted in Figure 5, except for the peaks of myrcene
and β-pinene, which belong to the hump described in a previous report [28]. Furthermore,
the peaks of longifolene and α-cedrene were co-eluted at 18.1 min Fortunately, the MS
quantification ion fragment of longifolene was 161, while that of α-cedrene was 119, allow-
ing for the quantification of these two components based on different fragments. Thus, MS
is the best choice for complex isomers and the qualitative quantification of co-eluted peaks.
It should be noted that more attention should be paid to the qualitative quantification of
these components in complex environmental samples.
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Figure 5. Separation of BVOCs using a DB-624 column. VOC mixing ratios were approximately
2 ppbv. The peaks in order from left to right were: 1. α-Pinene, 2. Camphene, 3. Sabinene,
4. β-Myrcene, 5. β-Pinene, 6. 2-Carene, 7. 3-Carene, 8. D-limonene, 9. p-Cymene, 10. Ocimene,
11. Cineole, 12. γ-Terpinene, 13. Isolongifolene, 14. Longifolene, 15. α-Cedrene, 16. β-Caryophyllene,
17. α-Caryophyllene.

Calibration curves were constructed for each BVOC in the concentration range
0.020~2.75 ppbv. The R2 values from the scatter plot of the instrument response ver-
sus the compound concentration were higher than 0.95 for all of the compounds (Table 2).
The repeatability and recovery were evaluated from seven replicates using a mixture of
0.5 ppbv of the target compounds at 50% RH, and the results are reported in Table 2. The
repeatability was fairly good for all compounds lower than 6% under conditions. The
recoveries of cineole and cedrene were 81.8% and 84.4%, respectively. Other compounds
ranged from 85.2% to 93.2%. The results meet the requirements of analysis. The memory
effect was also evaluated by recording a chromatogram of zero air immediately after the
chromatogram of the standard gas (3–5 ppbv). The results are reported in Table 2 and were
always lower than 2.0% for all compounds. Detection limits were determined for each
compound as 3 times the signal-to-noise ratio value. As presented in Table 2, the DL values
ranged from 0.005 to 0.009 ppbv when the sampling volume was 400 mL. These values
were comparable to the method detection limits for monoterpenes and sesquiterpenes
reported in previous TD-GC-MS studies [48,49].
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Table 2. The internal standard used for each compound, linear range, calibration equation, linearity
(R2), detection limits (DL), repeatablity, recovery, and memory effect.

Order Compound Internal
Standard

Linear
Range
(ppbv)

Calibration Equation R2 DL
(ppbv) Repeatability Recovery Memory

Effect

1 α-Pinene IS-3 a 0.022~2.63 y = 14766x − 2005 0.989 0.006 3.8% 85.2% 0.1%
2 Camphene IS-4 b 0.022~2.63 y = 1736x − 56 0.999 0.007 2.2% 92.8% 1.6%
3 Sabinene IS-4 0.022~2.63 y = 20215x − 3487 0.974 0.006 3.5% 88.2% 0.1%
4 β-Myrcene IS-4 0.022~2.63 y = 20051x − 3509 0.973 0.007 4.0% 89.7% 0.1%
5 β-Pinene IS-4 0.022~2.63 y = 20194x − 3466 0.974 0.008 3.7% 88.2% 0.1%
6 2-Carene IS-4 0.022~2.63 y = 25584x − 4126 0.984 0.009 3.0% 91.3% 0.1%
7 3-Carene IS-4 0.022~2.63 y = 47647x − 7274 0.988 0.007 2.7% 92.8% 0.1%
8 D-limonene IS-4 0.022~2.63 y = 14587x − 2606 0.977 0.008 5.3% 92.8% 1.0%
9 p-Cymene IS-4 0.023~2.75 y = 185674x − 23335 0.995 0.006 2.0% 88.6% 0.1%
10 Ocimene IS-4 0.018~2.10 y = 19435x − 2559 0.983 0.007 2.9% 93.2% 0.1%
11 Cineole IS-4 0.016~1.85 y = 42588x − 6874 0.999 0.006 0.9% 81.8% 0.1%
12 γ-Terpinene IS-4 0.022~2.63 y = 39384x − 5649 0.987 0.005 4.9% 86.7% 0.1%
13 Isolongifolene IS-4 0.018~2.10 y = 39203x -2170 0.998 0.007 2.3% 85.6% 0.8%
14 Longifolene IS-4 0.015~1.75 y = 20635x − 1156 0.997 0.006 1.6% 85.6% 1.0%
15 α-Cedrene IS-4 0.015~1.75 y = 51656x − 3322 0.996 0.008 3.2% 84.4% 1.0%
16 β-Caryophyllene IS-4 0.015~1.75 y = 8529x − 892 0.988 0.007 5.2% 86.1% 0.6%
17 α-Caryophyllene IS-4 0.017~2.00 y = 6580x − 1005 0.975 0.009 5.8% 86.1% 0.7%

a Chlorobenzene-d5. b 4-Bromofluorobenzene.

3.3. Real Sample Application

The online cryogen-free GCMS system analyzed BVOCs in ambient air at a site ap-
proximately 12 m above the ground on the Laboratory of Institute of Environment and
Climate in Jinan University in Guangzhou of China (23◦01′ N, 113◦24′ E) from 13th to
20th June 2022. Ambient samples were collected at 40 mL min−1 for 10 min, resulting in
a total sample volume of 400 mL. The dominant plants on the campus are trees, such as
eucalyptus and ficus microcarpa with high isoprene emission potential, and magnolia denudata
with high monoterpene emission potential [50]. Figure 6 shows the time series resulting
from continuous observations. The average isoprene concentration (1.15 ppbv) was lower
than the corresponding values in forest park of Guangzhou in summer [51], and consistent
with findings from other locations [32,52–54]. The isoprene concentration level was very
high during 12:00–16:00, up to 2.98 ppbv, which was consistent with typically diurnal char-
acteristics relating to variations of light and temperature [55,56]. The main monoterpenes
were α-Pinene, β-Pinene, and D-limonene. Mixing ratios of α-Pinene ranged from 0.021
to 0.854 ppbv, with a mean concentration of 0.105 ppbv, accounting for 79% of the total
monoterpenes. The average concentrations of β-Pinene and D-limonene were 0.016 ppbv
and 0.013 ppbv, accounting for 12% and 9% of the total monoterpenes. Table S4 summarizes
the average mixing ratios of BVOCs measured in Guangzhou and other sites in China. In
general, the monoterpene concentration was lower than that in Guangzhou Forest Park [51],
on a mountain in Xi’an [54], or in an urban park in Hong Kong [32]. However, they were
higher than those observed using offline canister-sampling measurements in Guangzhou in
autumn [52] and in an urban of Beijing [53]. Monoterpenes had the highest concentrations
at night (23:00–07:00) and the lowest ones occurred during the daytime, consistent with
previously reported results [53,57]. Unlike isoprene, monoterpenes are emitted not only
directly by plants’ synthesis under light but also by pool storage. Sesquiterpenes were not
detected throughout the monitoring period, which can be explained by the extremely low
concentrations in ambient air and the rapid transformation of its higher activity [58,59].
The top ten VOCs measured in this study are presented in Table S5 for comparison with
those from cities in China. In general, the average concentrations of the top ten VOCs fell
within the ranges reported for other Chinese cities [42,52,60–64]. Levels of iso-pentane
and n-pentane, which are important indicators of oil evaporation, were higher than the
previous results in a suburb of Guangzhou. This can be explained by the strong intensity of
pollution emissions. Through comparison with other studies, it is evident that this method
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overcomes the limitations of offline sampling in capturing highly reactive and short-lived
terpene compounds.
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4. Conclusions

A novel cryogen pre-concentration unit was developed and successfully combined
with GC-MS/FID to establish and optimize a method for analyzing 18 BVOCs. This method
also allows for the simultaneous analysis of other C2-C12 VOCs in the atmosphere with a
time resolution of 60 min. The linear ranges of BVOCs were 0.020–2.75 ppbv with linear
correlation coefficients (R2) all above 0.95. Detection limits ranged from 0.005 ppbv to
0.009 ppbv with an injection volume of 400 mL, whlie repeatability fell within the range of
0.9–5.8%. The recoveries of BVOCs ranged from 81.8% to 93.2%.

The first measurements using the newly developed method were carried out in the
summer of 2022 in Guangzhou. α-Pinene was the most abundant monoterpenes present,
with concentrations ranging between 0.021 ppbv and 0.854 ppbv. The 7-day field mea-
surements demonstrated the excellent performance of the methodology with respect to
providing speciated BVOC concentration measurements to further investigate atmospheric
BVOC reactivity. The set-up has proven to- quantitatively trap and desorb a wide range of
trace gases, potentially including hydrocarbons.

The pre-enrichment unit offers several key advantages. Firstly, it eliminates the need
for exchanging adsorption tubes, thus removing artifacts associated with the use of solid
adsorbents for air sample concentration. Secondly, the split trap structure design allows
for a resolution temperature of 200 ◦C, enhancing the efficiency of resolving BVOC while
maintaining the cooler’s normal functionality. Thirdly, the unit utilizes a thermoacoustic
cooler to achieve low temperatures, eliminating the need for refrigerant and enabling
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long-term observations in remote locations. Fourthly, silonite-coated stainless steel or PFA
tubes are employed in the sample gas path and centrally heated to minimize wall losses.
Additionally, the pre-concentration unit is compact, easy to set up, energy-efficient, and
suitable for mobile monitoring. Lastly, the unit can collect BVOC substances with high
activity and short lifespans. Overall, the setup is cost-effective, with the thermoacoustic
cooler being the most expensive component.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos15050587/s1, Table S1: List the chemical properties of target
species for ambient measurements. Figure S1. A drawing of thermoacoustic cooler which is used in
this device. Table S2: detection limit (DL), repeatability and their mixing ratios (mean concentration
± standard deviation) (ppbv) of measured VOC compounds in the air of the Guangzhou site in June
2022; Table S3: The optimization results for water trap temperature, desorption temperature and
desorption time of target analytes. Table S4: Comparisons of the average mixing ratios of BVOCs
measured in Guangzhou and other sites in China. Table S5: Comparisons of VOCs with high levels
in Guangzhou with other cities in China.
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