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Abstract: Sand-cemented bodies (SCBs) are naturally distributed in some interdune corridors in
the central Taklimakan Desert, northwest China. In this study, field-collected SCB particles were
used as the experimental material, and wind tunnel experiments were conducted with different sand
supplies, wind velocities, and SCB coverages to evaluate SCB wind erosion efficiency and vertical
mass flux. The results showed that wind erosion efficiency decreased as SCB coverage increased.
When the SCB coverage was above 40%, sand deposition processes occurred only under saturated
sand flow, while sand transport remained unaffected by increases in SCB coverage under unsaturated
sand flow. Under saturated flow, the highest concentrations of transported sand were found at 0–6 cm
above the surface, and the main sand bed process was deposition. The sand bed process changed
from aeolian erosion to deposition with increasing SCB coverage and tended to remain stable until
the SCB coverage exceeded 40%. By contrast, under unsaturated sand flow, the sand bed process
was primarily aeolian erosion, and the highest concentrations of transported sand were found at
0–4 cm above the surface. At high SCB coverage levels (more than 40%), a general balance between
aeolian erosion and deposition processes was reached. In summary, increasing SCB coverage had
a significant impact on surface wind erosion processes. Thus, SCBs can be used as a novel sand
retention material.

Keywords: wind tunnel; sand-cemented bodies; coverage; wind erosion efficiency; sand supply;
vertical mass flux

1. Introduction

Wind erosion is a major cause of environmental hazards in arid and semi-arid regions.
The Taklamakan Desert is located deep within Asia and is characterized by its aridity,
frequent sandstorms, fine-grained surface materials, and significant wind erosion hazards.
Wind erosion, resulting in the detachment, transportation, and redeposition of soil particles,
degrades soil productivity through removing the fertile topsoil, leading to serious farmland
deterioration [1,2]. Aeolian erosion, transportation, and deposition are the basic processes
on wind-blown sand beds, and these processes directly represent the differentiation of
wind-sand flow structures. The underlying surface conditions are the most important factor
that influences the erosion–deposition status of the bed, causing different variations in
wind-sand flow structures [3,4].

Various conservation measures have been used in both the laboratory and field to com-
bat wind erosion [5,6]. The control methods include mechanical, chemical, and biological
approaches. Mechanical control measures include the construction of barriers, such as straw
checkerboard barriers and sand fences, to prevent the movement of sand [7]. Chemical
control involves forming a crust on the soil surface with various chemicals, such as bitumen
or latex [8]. Biological control measures involve planting vegetation as windbreaks [9,10].
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Mechanical and biological controls such as barriers, sand fences, and windbreaks can im-
prove the wind speed threshold for soil loss through absorbing the partial wind momentum
and decreasing the aerodynamic forces on the erodible particles [11]. However, due to their
limited capacity to fix sand and the need for regular maintenance, these methods can be
used on desert roads and in gas/oil fields only as a temporary and auxiliary means of sand
control. Chemical control measures should only be used to fix the sand issue, not the flow
issue. In addition, the issue of secondary environmental pollution must be considered [6].
Implementation of the aforementioned measures presents several challenges in preventing
wind erosion.

The underlying surface conditions are the most important factor influencing the
erosion–deposition status of the bed, which also cause variations in wind-sand flow struc-
tures [12]. In recent decades, many scholars have conducted research on the feedback
mechanism of the variations in aeolian erosion–deposition and blowing-sand structures
on gravel beds. This research has focused on both wind tunnel simulations and field ob-
servations [13–16]. Zhang et al. [17] reported that an exponential decrease in wind erosion
on an erodible bed could be achieved in wind tunnel simulations through increasing the
gravel cover. Tan et al. [18], comparing the same surface without the tested gravels, showed
that gravel beds can obviously reduce sand transport, and increasing the gravel size also
helped to reduce it. The utilization of gravel mulch not only reduces surface wind erosion
intensity but can also effectively minimize the release of surface sand and dust. When
placed on sand, gravel mulch is non-erodible and enhances surface roughness, increasing
surface resistance. Therefore, gravel helps to protect topsoil from wind erosion, similar
to straw checkerboard barriers or sand fences [15,16]. In addition, gravel mulch has been
widely used in various applications, such as sand fixation, roadside erosion protection, and
slope stabilization, due to its low cost and easy availability compared to chemical control
measures.

Aeolian erosion, transportation, and deposition are the basic processes of wind-blown
sand beds and can directly represent the differentiation of wind-sand flow structures.
In recent decades, there have been more studies on the mutual feedback mechanism
between bed erosion and sand flow. However, the structural changes in sand flow and
bed erosion caused by the sand supply degree and wind speed have not been thoroughly
investigated [18–20]. The sand supply abundance determines the saturation degree of
the wind-sand flow and the erosion it causes on gravel beds. Hence, the sand supply
plays an important role in the various bed processes that form with the wind-sand flow.
The sediment input from the bed is one of the important indices used to judge whether
sand bed processes are primarily associated with erosion or deposition [21–23]. Zhang
et al. [23] pointed out that the environmental conditions in the aeolian region, especially
the surface material composition and sand source abundance, have significant impacts on
near-surface sand transport and wind-sand flow structures. According to Wilcock et al. [21],
the total transport rate and gravel transport rate are highly dependent on the sand content.
Zhang et al. [24] reported that the use of mechanical sand barriers in different sand supply
environments further affects bed processes in the area where mechanical sand barriers are
deployed.

Sand-cemented bodies (SCBs) are naturally dispersed in multiple interdune corridors
of the central Taklimakan Desert in northwestern China. SCBs consist of diverse sand
particle sizes and possess a firm texture resembling gravel, and their average specific
gravity (2.486–2.534 g cm−3) is equal to that of natural gravel (2.652–2.751 g cm−3). SCBs
are very irregular, difficult to separate, and scattered in the interdune corridors of the
region, which has resulted in a large granular layer of coarse sand lying on top of the sand
surface, similar to gravel mulch beds (see Figure 1).
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Figure 1. SCBs from the sandy surface in the central Taklamakan Desert region: (a) close view of the 
SCBs marked by red arrows; (b) SCB shapes under stereo-microscope (magnification: ×50); (c) SCB 
micro-morphology (magnification: ×50); (d) SCB micro-morphology (magnification: ×100). 
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erosion in arid desert regions has become a new challenge in the northwest of China. Pre-
vious studies have documented that gravel mulch can be used to combat wind erosion 
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it is necessary to consider their application as a natural wind-resistant material in sandy 
areas. The objects of this study were as follows: (1) to evaluate the erosion efficiency effect 
under different SCB coverages and sand supplies; and (2) to reveal the influence of the 
sand supply on sand transport and wind-sand flow structure under different SCB cover-
ages. The results of this study provide further information on the use of SCBs in aeolian 
geomorphology and blown-sand control engineering. In addition, this study may provide 
a theoretical basis for the exploitation and application of SCBs as a natural sand-fixing 
material. 

2. Materials and Methods 
2.1. Materials 

For this study, sandy soil was collected from the shifting dune surface of the 
Taklimakan Desert in the center of the Tarim Basin, Xinjiang Uygur Autonomous Region, 
China (39°05′99″ N, 83°64′04″ E). Particle size (Figure 2) analysis was performed using a 
laser particle size analyzer (Malvern MS-2000, Brighton, Britain). The chemical composi-
tion of soluble matter of SCBs collected from interdune corridors in the central Taklimakan 
Desert (39°04′90″ N, 83°64′14″ E) is shown in Table 1.  

Figure 1. SCBs from the sandy surface in the central Taklamakan Desert region: (a) close view of the
SCBs marked by red arrows; (b) SCB shapes under stereo-microscope (magnification: ×50); (c) SCB
micro-morphology (magnification: ×50); (d) SCB micro-morphology (magnification: ×100).

Wind-blown sand occurs frequently and damages agricultural infrastructures, desert
traffic trunks, and gas and oil fields. Therefore, effective and scientific control over wind
erosion in arid desert regions has become a new challenge in the northwest of China.
Previous studies have documented that gravel mulch can be used to combat wind ero-
sion [12,25–28]. Given the similarity between SCBs and gravel and the lack of research on
SCBs, it is necessary to consider their application as a natural wind-resistant material in
sandy areas. The objects of this study were as follows: (1) to evaluate the erosion efficiency
effect under different SCB coverages and sand supplies; and (2) to reveal the influence of
the sand supply on sand transport and wind-sand flow structure under different SCB cov-
erages. The results of this study provide further information on the use of SCBs in aeolian
geomorphology and blown-sand control engineering. In addition, this study may provide
a theoretical basis for the exploitation and application of SCBs as a natural sand-fixing
material.

2. Materials and Methods
2.1. Materials

For this study, sandy soil was collected from the shifting dune surface of the Takli-
makan Desert in the center of the Tarim Basin, Xinjiang Uygur Autonomous Region, China
(39◦05′99′′ N, 83◦64′04′′ E). Particle size (Figure 2) analysis was performed using a laser
particle size analyzer (Malvern MS-2000, Brighton, Britain). The chemical composition of
soluble matter of SCBs collected from interdune corridors in the central Taklimakan Desert
(39◦04′90′′ N, 83◦64′14′′ E) is shown in Table 1.

Table 1. Chemical composition of the soluble matter of SCBs.

Mineral Composition (%) Average
Conductivity
(m·Scm−1)

Average
pHCaSO4 NaCl CaCl2 MgCl2 KCl Mg(HCO3)2

79.67 6.87 6.20 5.62 1.22 0.42 2.57 7.40
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Figure 2. Distribution of sand particle size, black line is the average (sand samples consisted primarily
of fine sand and very fine sand).

2.2. Experimental Design

Wind tunnel simulations were conducted at the Environmental Wind Tunnel Lab-
oratory (direct current blowing wind tunnel) of the Xinjiang Institute of Ecology and
Geography, Chinese Academy of Sciences. The wind tunnel was 16 m in length, with an
8 m experimental section (cross section: 1 × 1.3 m). The wind velocity was controlled
continuously (0–25 ms−1), and the boundary layer thickness could be set to 15–25 cm [22].

Sand tables with different SCB coverages were prepared (0% = CK, 2%, 5%, 8%, 10%,
20%, 40%, and 80%). The wind velocity was measured using a hot wire anemometer in
front of the experimental section at a distance of 40 cm from the side wall (Figure 3). Wind
speeds of 8 ms−1 (10 min), 10 ms−1 (5 min), and 15 ms−1 (3 min) were replicated three times
for each treatment combination under different sand supplies (saturated and unsaturated
sand flows). The saturated sand flow was a 5 cm thick bed of sand placed in the center of
the test section with a cross section of a 1.0 m width and 2.0 m length (Figure 3, sandy bed).
The unsaturated sand flow was only pure wind.
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Figure 3. The experimental layout.

To quantify sand erosion efficiency, we set a sand table of 75 × 50 cm in the center of
the experimental section. In addition, to determine the blowing-sand flux variation with
height, a vertical sand trap was used to measure the sand transport at various heights along
the lee side of the sand tray. The vertical sand trap was divided into openings of 1 × 1 cm
to collect the blowing sand at 20 levels. The vertical sand trap was wind-tunnel-verified
and captured over 90% of the moving sand.
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2.3. Wind Erosion Efficiency

Wind erosion efficiency (R) (kg cm−2 min−1) was calculated by measuring the amount
of sand (kg) transported by the wind from a certain area (cm2) and at a certain time (min),
determined as follows:

R = (Wa − Wb)/(S × T) (1)

where Wa and Wb are the overall masses (kg) of the sand tables. Prior to and after blowing,
S is the sand table area (cm2) and T is the blowing duration (min). A Wb greater than Wa
indicates that the SCB mulch bed process is deposition, and a Wa greater than Wb indicates
that the SCB mulch bed process is erosion.

2.4. Sand Flux Profile

The sand flux profile was used to measure the amount of sand transported in a
specified airflow layer, calculated as the amount of transported sand per unit of width
perpendicular to the blow direction and per unit of time:

qz = q0 exp(−kz) (2)

where qz is the mass sand transport at vertical height (z) (cm), and q0 is the creep mass
(g cm−2s−1) sand transport at the surface (z = 0), where k is the decay factor.

3. Results and Discussion
3.1. Wind Erosion Efficiency Variation with Different Sand Supplies and SCB Coverages

Under saturated sand flow conditions, wind erosion efficiency was highly sensitive
to SCB coverage but had little effect on wind speed at the sand surface, as illustrated in
Figure 4a, which was mainly due to increases in SCB coverage and sand supply, which in-
creased the particle collision kinetic energy, resulting in enhanced sand transport. Nickling
and Neuman [29] noted that wind–bed interaction intensity is the main cause of elastic
collisions between bed roughness elements and sand particles, and an increase in elastic
collisions directly leads to an increase in sand transport rate.
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sand flow; (b) unsaturated sand flow (positive values indicate that the SCB mulch bed process was
deposition, and negative values indicate that the SCB mulch bed process was erosion).

Under saturated sand flow, the higher the wind speed, the less effective the wind
erosion, and the sand surface process shifted from erosion to accumulation. At an SCB
coverage of 8% under 8 ms−1, the bed surface started to produce wind accumulation (the
wind erosion was −0.033 kg cm−2 min−1, indicating that the SCB mulch bed process was
deposition), and when the SCB coverage was 20–80% of the bed, the sand had essentially
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been deposited. Li et al. [30] revealed that gravel trapping has an important effect on the
amount of sand available for transport.

Sand deposition occurs in areas of reduced shear behind gravel. As the gravel coverage
increases (the space shrinks), the shear stress distribution causes sand deposition in the
spaces between gravel particles, further reducing the amount of sand available for transport.
This explains the sand particle deposition on the bed under saturated wind flow, while
under unsaturated flow, the bed surface stabilized with over 40% SCB coverage, resulting
in a wind erosion efficiency below 0.0018 kg cm−2 min−1 at any velocity. The SCBs in
the mulch bed prevented wind erosion and accumulation (Figure 4b). Li et al. [30] and
Al-Awadhi and Willetts [31] demonstrated that sand transport remained unchanged when
the gravel coverage reached 50% or more.

Cai et al. [22] demonstrated that sand supply abundance can significantly reduce the
wind erosion rate so that under saturated wind-sand flow conditions, the sand bed surface
shows a stable sand accumulation state. The bed process was mainly deposition when
controlled by saturated sand flow (Figure 5a). The accumulated amount of sand increased
with increasing wind velocity and decreased with increasing SCB coverage. When the wind
velocity was 8 ms−1, the bed process was slight aeolian erosion at 0 and 5% SCB coverage,
and it was deposition at the other coverage levels. When the wind velocity was 15 ms−1, the
deposition process occurred only within the SCB coverage range of 40–80%, while aeolian
erosion dominated in the other SCB coverage ranges. The accumulated sand amount
decreased with the increase in SCB coverage. When the SCB coverage exceeded 40%, the
bed process was complete deposition at all wind velocities. When the SCB coverage was
from 8% to 20%, the bed process was deposition at low wind velocities and changed to
aeolian erosion as the wind velocity increased.
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Figure 5. Wind erosion efficiency with wind velocities at different SCB coverage levels: (a) under
saturated sand flow, the bed process was full deposition with higher coverage; (b) under unsaturated
sand flow, the bed process was complete erosion.

At SCB coverages below 8%, the sand accumulation due to wind speed was significant
(see Table 2; mean slope (b): 0.50). Therefore, the wind velocity caused significant changes
in sand transport. When the SCB coverage level was between 10% and 20%, the curve
slope became lower (slope (b), change from 0.32 to 0.15; Table 2). Correspondingly, surface
SCB coverage began to play an important role in sand transportation. The increasing wind
velocity caused the proportion of transportable and wind-blown sand to increase, and
the transportation process was controlled by saturated flow. When the SCB coverage was
above 40%, sand accumulation decreased as wind speed increased, as shown in Table 2
(slope (b): 0.036). The varying accumulated sand amounts at higher SCB coverage showed
that sand accumulation and transportation can be managed effectively if the SCB coverage
is maintained above 40%. Earlier studies reported that an equilibrated surface should have
a gravel coverage from 40% to 80% [32–35], and our results supported this conclusion.
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Table 2. Linear regression (y = a + bx) between wind velocity and accumulated sand amount at
varying SCB coverage levels under saturated sand flow.

SCB Coverage (%) a (Intercept) b (Slope)

0 −0.447 0.662
2 −0.449 0.650
5 −0.534 0.652
8 −0.428 0.507
10 −0.293 0.324
20 −0.191 0.155
40 −0.089 0.036
80 −0.041 0.058

As shown in Figure 5b, the bed processes consisted entirely of erosion and transport
when controlled by unsaturated sand flow. Evidence of aeolian erosion was present in
all beds, and the amount of wind-eroded sand increased with increasing wind speed. At
lower SCB coverage levels, the increase in accumulated sand amount with wind velocity
was greater. The results indicated that the accumulated sand amount was more affected
by wind speed at low SCB coverage levels. To illustrate this further, Figure 5b presents
the curve slopes indicating the correlation between sand accumulation amount and wind
speed under different SCB coverages. When the SCB coverage was below 10%, there was a
significant increase in the accumulated sand amount as the wind velocity increased (mean
slope, b = 0.55; Table 3).

Table 3. Linear regression (y = a + bx) between wind velocity and accumulated sand amount at
varying SCB coverage levels under unsaturated sand flow.

SCB Coverage (%) a (Intercept) b (Slope)

0 2.596 0.397
2 0.435 0.508
5 −1.460 0.547
8 −3.285 0.629
10 −4.184 0.683
20 −1.933 0.278
40 −0.281 0.032
80 −0.086 0.011

Thus, in this situation, intense changes in sand transport were likely to occur due to
variations in wind velocity, illustrating that sand transport was influenced by wind speed
even at low SCB coverage levels. However, when the SCB coverage reached 20%, the curve
slope began to decrease (b = 0.28; Table 3), indicating that the amount of sand collected was
affected by SCB coverage on the sand bed.

Higher SCB coverage resulted in increased surface roughness and drag, which likely
improved the erosion resistance of the sand by reducing the airflow momentum. In this
study, the sand accumulation amount due to wind speed was not significant. With an SCB
coverage above 40%, the accumulated sand amount changed slightly with wind speed
(very small mean slope, b = 0.03; Table 3). The change in the accumulated amount of sand
was stable with high SCB coverage and reached a general balance between aeolian erosion
and deposition.

Dong et al. [14] concluded that the maximum aerodynamic roughness length occurred
between 40% and 75% gravel coverage, indicating that even partially gravel-covered, wind-
eroded sand surfaces may become stable. This helps to explain why the accumulated sand
amount decreased minimally as the SCB coverage exceeded 40%.
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3.2. Horizontal Mass Flux Vertical Profiles at Different SCB Coverages and Sand Supplies

The sand transport rate reflects the amount of sand transported, which is influenced
by wind velocity and sand supply. Based on the results from the wind tunnel experiments
of the horizontal mass flux vertical profile being controlled by saturated sand flow, all of the
mass flux profiles exhibited almost exponential decreases in qz (Equation (2)) with height
(see Figure 6), similar to the findings of Zheng et al. [36], who found that the mass flux at
the sand surface exponentially decreased with height.
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At a low wind velocity (8 ms−1), the sand particles mostly crept along the surface, with
few saltated to higher layers. As the wind velocity increased, the saltating sands increased
further. For instance, when the wind velocity was 8 ms−1, the saltation height only reached
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6 cm, while at the 15 ms−1 wind velocity, a small part of the sand saltation reached 10 cm or
higher, indicating that at heights of 0–6 cm, the horizontal mass flux vertical profile varied
with increasing wind speed.

In addition, the sand transport rate became higher with increasing wind speed. For
example, when the SCB coverage was 2%, the sand transport rates were 6.46, 13.58, and
23.34 cm−1min−1 at 8, 10, and 15 ms−1, respectively, indicating that the horizontal mass
flux vertical profile was well-developed with increasing wind velocity. As the SCB coverage
ranged from 0 to 10%, the sand transport near the surface increased with increasing SCB
coverage and reached the maximum value of 23.34 g cm−1min−1 at 2% SCB coverage. This
increase was mainly due to the increase in strong elastic collisions between the saltating
sands and SCBs, which eventually transferred some of the momentum to the intervening
sand beds. As the coverage reached 20%, the horizontal mass flux vertical profile near the
surface had a higher curvature. For example, at 15 ms−1, the near-surface sand transport
rate was 17.98 g cm−1min−1 at 20% SCB coverage, which was higher than that at 0%
coverage (15.99 g cm−1min−1), indicating that the bed process began to switch to deposition
at 20% SCB coverage. When the SCB coverage exceeded 40%, the sediment deposition
process tended to stabilize, and there was no change in the curvature of the sand transport
vertical profile.

The maximum sand transport rates at 40% and 80% SCB coverage were 14.35 and
13.62 g cm−1min−1 at 15 ms−1, respectively, which were less than those of the other kinds
of SCB mulch beds. This was mainly because as the SCB coverage increased, the non-
erodible particles (SCBs) present on the erodible sand surface absorbed some of the wind
momentum flux [37]. Li et al. [30] pointed out that the distribution of shear stress causes
the deposition of sand in the spaces between the gravel, further reducing the amount of
sand available for transport.

Wu et al. [38] reported that, at similar heights, the amount of sand transported in near-
surface sand beds increased with the increasing amount of sand transported at different
wind velocities. Similarly, in this study, the amount of sand transported near the surface
sand bed (at 0–6 cm) increased significantly with increasing wind speed (Table A1).

As the wind velocity increased, more than 90% of sand transport occurred at 0–6 cm
because of the fence effect of the SCBs on the surface bed. By contrast, at 6–15 cm, the
transported sand amounts at different coverage levels and wind velocities were relatively
small. For example, when the sand bed had 5% coverage and the wind velocity was 8 ms−1,
the sand transport amounts above the surface at 0–2, 2–4, 4–6, and 6–15 cm were 9.31, 1.38,
0.46, and 0.14 g cm−1min−1, respectively. However, when the wind velocity was 15 ms−1,
the sand transport amounts above the surface at 0–2, 2–4, 4–6, and 6–15 cm were 33.65,
19.24, 8.14, and 4.45 g cm−1min−1, respectively (3.6, 14, 17, and 31 times those at 8 ms−1,
respectively).

With the increase in SCB coverage, there was a decrease in aeolian erosion and deposi-
tion on the SCB beds.

However, there was no reduction in the amount of sand transported within 6 cm from
the surface sand bed, even at the same wind velocity. For example, at 8 ms−1, when the
bed had 10% SCB coverage, the sand transport amounts at 0–2, 2–4, and 4–6 cm above the
surface were 7.78, 1.42, and 0.59 g cm−1min−1, respectively. By contrast, when the bed had
80% SCB coverage, the sand transport amounts were 7.48, 1.72, and 0.69 g cm−1min−1 at
0–2, 2–4, and 4–6 cm above the surface, respectively. At 15 ms−1, when the bed had 10%
SCB coverage, the sand transport amounts at 0–2, 2–4, and 4–6 cm above the surface were
28.29, 16.51, and 7.86 g cm−1min−1, respectively. By contrast, the transport amounts at 0–2,
2–4, and 4–6 cm above the surface were 24.99, 13.13, and 8.99 g cm−1min−1, respectively,
when the bed had 80% SCB coverage (Table A1), which was mainly due to the increasing
SCB coverage protecting the surface bed through absorbing the wind momentum, thereby
decreasing aeolian erosion. However, under saturated flow, the interaction increased on
the SCB mulch beds. In addition, the collision between sand particles and SCBs increased,
and the sand particles could take off at higher wind speeds [18].
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Sand supply abundance is a key factor in identifying sand stream saturation. The sand
supply abundance influenced the horizontal mass flow vertical profile and also affected
the aeolian erosion and deposition properties of the SCB coverage beds [23]. As shown
in Figure 7, under unsaturated flow conditions, the sand transport curve still followed an
exponential function, and the SCB coverage increase resulted in decreases in the curvature
of the horizontal mass flux vertical profile and sand transport rate. For example, with an
SCB coverage below 10%, no significant modification in the curve occurred, and the effect
of the coverage on the sand transport profile was marginal. With SCB coverages ranging
from 10% to 40%, the sand transport profile decreased rapidly with height, particularly
at the base of the sand cloud at low wind speed (8 ms−1). With an SCB coverage above
40%, there was no sand transport at low wind speed, and the sand transport profile was
only slightly reduced (8 ms−1), implying that the cover mainly affected the sand transport
profile near the cloud base.

Under unsaturated sand flow, saltating sands developed closer together than those
under saturated sand flow, which may be due to the fact that more momentum is transferred
to the intervening sand beds under saturated flows, resulting in stronger elastic collisions
between saltating particles and increased surface roughness elements [29].

For the same SCB coverage, the sand transport rate increased with wind speed. The
increase extent became smaller, and the main concentration of the transported sand amounts
occurred at 0–4 cm above the surface (Table A2). For example, when the SCB coverage was
5%, the amounts of transported sand at 0–4 cm were 1.93, 9.39, and 17.17 g cm−1min−1

at 8, 10, and 15 ms−1, respectively (95%, 88%, and 80% of the transported sand amount
above the bed, respectively). As the SCB coverage reached 10%, the transported sand
amounts at 0–4 cm above the surface were 0.65, 6.45, and 16.79 g cm−1min−1 at 8, 10, and
15 ms−1, respectively (94%, 93%, and 86% of the transported sand amount above the bed,
respectively) indicating that, as the wind velocity increased, the creeping and saltating
sand amounts both increased.

In contrast to the those under saturated sand flow, the saltating sand particles reached
up to 4 cm or less above the surface, as only the wind momentum was transferred to the SCB
particles and saltating sand. For example, at 5% SCB coverage, the amounts of transported
sand at 0–4 cm were 1.93, 9.39, and 17.17 g cm−1min−1 at 8, 10, and 15 ms−1, respectively
(95%, 88%, and 80% of the transported sand amount above the bed, respectively).

With the same wind speed, the sand transport rate was reduced with SCB coverage
and, thus, the decreasing transported sand amount trend became less clear (Table A2).
For instance, when the sand bed had 40% SCB coverage, the transported sand amounts
at all heights were 0 at 8 ms−1 and 0.65, 0.24, 0.14, and 0.06 g cm−1min−1 at 0–2, 2–4, 4–6,
and 6–10 cm above the surface, respectively. When the wind velocity was 8 ms−1, the
transported sand amounts at 0–2, 2–4, 4–6, and 6–10 cm above the 5% SCB coverage were
1.61, 0.32, 0.08, and 0.01 g cm−1min−1, respectively; however, they were 0.54, 0.11, 0.03, and
0 g cm−1min−1, respectively, when the SCB coverage was 10%. As the SCB coverage further
increased, the aeolian erosion action over the SCB mulch beds was dramatically weakened.
The horizontal mass flux vertical profile was primarily concentrated at 0–2 cm above the
surface. When the sand bed had 40% SCB coverage, the transported sand amounts at
all heights were 0 at 8 ms−1 and 0.65, 0.24, 0.14, and 0.06 g cm−1min−1 at 0–2, 2–4, 4–6,
and 6–10 cm above the surface, respectively (Table A2). These results suggested that the
bed’s aeolian erosion process began to balance at higher SCB coverage levels (i.e., more
than 40%).

Previous studies have recommended that gravel coverage from 40 to 80% provides
an equilibrated surface [32–35]. Our results demonstrated that SCB mulch may provide a
similar advantage to gravel mulch in controlling surface sediment movement and, thus,
could be a viable sand retention material.
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4. Conclusions

SCBs could be a feasible sand retention material. SCB coverage strongly affected wind
erosion efficiency through influencing the interaction between the wind and sand bed under
both saturated and unsaturated sand flows. The saturated sand flow process was mainly
characterized as deposition, whereas the unsaturated flow process was characterized as
aeolian erosion. When the SCB coverage exceeded 40%, the transported sand amount
remained constant, and a general balance between erosion and deposition processes was
reached, which was stable.
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The horizontal mass flux vertical profile decayed exponentially on the SCB mulch sand
surface under both saturated and unsaturated sand flow conditions. The horizontal mass
flux vertical profile under saturated sand flow resembled the sand surface, with increased
curvature near the top layer. The bed characteristics mainly involved transportation and
deposition processes. The horizontal mass flux vertical profile under saturated sand
flow was similar to that at the sand surface, and the profile curvature increased near the
surface. The bed processes were mainly transport and deposition processes. Maximum sand
transport occurred at 0–6 cm above the surface due to the increasing interaction between the
wind-sand flow and wind-sand bed under low SCB coverage. Vertical particle movement
was more responsive to changes at higher SCB coverage levels (10–40%) compared to that
at lower SCB coverage levels (below 10%). However, when the SCB coverage exceeded 40%,
sand transport still occurred under saturated wind and sand flows, but the bed surface
became saturated and wind erosion or accumulation phenomena were not observed on the
bed surface. Under unsaturated sand flow, sand transport was essentially impenetrable.
The saltating sand particles could reach up to 4 cm or less above the surface, as only the
wind momentum was transferred to the SCB particles and saltating sand.
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Appendix A

Table A1. Vertical distribution of wind-blown sand flow over SCB mulch beds with different
coverages and wind velocities under saturated sand flow.

Coverage 0 5% 10% 20% 40% 80%

Wind
Velocity
(ms−1)

8 10 15 8 10 15 8 10 15 8 10 15 8 10 15 8 10 15

0–2 cm 10.16 18.31 35.31 9.31 20.62 33.65 7.78 18.88 34.19 7.61 9.98 32.16 7.22 14.11 25.92 7.48 15.23 24.99
2–4 cm 1.94 9.84 19.45 1.38 6.58 19.24 1.42 6.01 16.51 1.28 3.38 16.12 2.05 7.31 16.55 1.72 7.04 13.13
4–6 cm 0.80 4.86 6.89 0.46 2.81 8.14 0.59 2.94 7.86 0.53 1.66 9.55 0.95 3.83 9.42 0.68 3.97 8.99

6–15 cm 0.45 2.52 6.05 0.14 1.81 4.45 0.25 2.17 5.89 0.29 1.13 7.55 0.69 3.96 7.18 0.36 2.52 6.28
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Table A2. Vertical distribution of wind-blown sand flow over SCB mulch beds with different
coverages and wind velocities under unsaturated sand flow.

Coverage 0 5% 10% 20% 40% 80%

Wind
Velocity
(ms−1)

8 10 15 8 10 15 8 10 15 8 10 15 8 10 15 8 10 15

0–2 cm 3.10 8.35 11.13 1.61 6.48 10.66 0.54 4.83 11.50 0.10 1.54 4.25 0 0.30 0.65 0 0.03 0.17
2–4 cm 1.45 5.53 8.36 0.32 2.91 6.51 0.11 1.62 5.29 0.02 0.44 1.92 0 0.08 0.24 0 0.02 0.07
4–6 cm 0.35 2.21 5.07 0.08 0.98 3.34 0.03 0.37 2.01 0 0.14 0.72 0 0.04 0.14 0 0.00 0.02

6–10 cm 0.05 0.36 1.17 0.01 0.23 0.76 0 0.11 0.57 0 0.05 0.33 0 0.01 0.06 0 0.00 0.01
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