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Abstract: Addressing the constraints inherent in traditional primary Air Quality Index (AQI) forecast-
ing models and the shortcomings in the exploitation of meteorological data, this research introduces
a novel air quality prediction methodology leveraging machine learning and the enhanced modeling
of secondary data. The dataset employed encompasses forecast data on primary pollutant concen-
trations and primary meteorological conditions, alongside actual meteorological observations and
pollutant concentration measurements, spanning from 23 July 2020 to 13 July 2021, sourced from
long-term air quality projections at various monitoring stations within Jinan, China. Initially, through
a rigorous correlation analysis, ten meteorological factors were selected, comprising both measured
and forecasted data across five categories each. Subsequently, the significance of these ten factors
was assessed and ranked based on their impact on different pollutant concentrations, utilizing a
combination of univariate and multivariate significance analyses alongside a random forest approach.
Seasonal characteristic analysis highlighted the distinct seasonal impacts of temperature, humidity,
air pressure, and general atmospheric conditions on the concentrations of six key air pollutants. The
performance evaluation of various machine learning-based classification prediction models revealed
the Light Gradient Boosting Machine (LightGBM) classifier as the most effective, achieving an accu-
racy rate of 97.5% and an F1 score of 93.3%. Furthermore, experimental results for AQI prediction
indicated the Long Short-Term Memory (LSTM) model as superior, demonstrating a goodness-of-fit
of 91.37% for AQI predictions, 90.46% for O3 predictions, and a perfect fit for the primary pollutant
test set. Collectively, these findings affirm the reliability and efficacy of the employed machine
learning models in air quality forecasting.

Keywords: air quality; machine learning; statistical analysis; secondary modeling; prediction model

1. Introduction

With the rapid development of industrialization and urbanization, people are paying
increasing attention to air quality [1,2]. As an important application field, air quality predic-
tion can provide real-time air pollution information, which is convenient for government
environmental protection departments and ordinary citizens [3]. Since air pollution has
reached a critical concentration over an extended period of time, it has begun to endanger
human health and life, as well as the ecological environment. The air quality index (AQI)
is a key indicator in air quality evaluation [4]. The main factors affecting the AQI are
meteorological factors [5]. Research on pollution prevention and control practices has
shown that establishing an air quality forecasting model, knowing the possible air pollution
process in advance, and the implementing corresponding control measures are effective
ways to reduce the harm caused by air pollution to human health and the environment and
improve the ambient air quality [6].
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At present, mainstream air quality prediction models mainly include statistical [7],
numerical weather prediction [8] and potential prediction [9] models.

(1) Potential forecasting methods have been proposed. By summarizing weather condi-
tions during past pollution events, mathematical methods can be used to quantita-
tively describe the possibility of certain changes in future weather conditions [10]. It
is often used in severe weather forecasting and weather modification operations [11].
While these methods offer convenience and simplicity, their outcomes are exclusively
dictated by weather conditions and meteorological parameters. This implies that the
influence of actual emissions on the forecasts is disregarded, leading to a compromise
in forecast accuracy.

(2) Regression statistical models require a large number of analyses to establish a complex
linear or nonlinear relationship between identified impact factors and pollutant con-
centration [12]. Future trends can be inferred through the input and output patterns
related to air pollution. However, it is difficult to describe this relationship with a
definite mathematical model. Although these methods are characterized by low input
data requirements, the predicted outcomes typically pertain to point air quality data,
which fall short of elucidating the underlying causes of pollution.

(3) Numerical weather predictions are quantitative and objective predictions based on
physicochemical processes. Numerical predictions can clearly reflect the air quality
of all grid points in a certain region, determine the pollution causes, and have strong
interpretability [13]. The precision of numerical forecasting is contingent upon the es-
tablishment of a relatively accurate numerical model, necessitating the employment of
high-performance computing resources and comprehensive data on the emission param-
eters from pollution sources, as well as detailed meteorological information. Fulfilling
these prerequisites is challenging, and the associated analysis costs are substantial.

In recent years, research on air pollutant prediction based on neural network technol-
ogy has developed. Researchers have shown that artificial neural networks can achieve
a better performance than traditional regression models. Azid et al. [14] combined prin-
cipal component analysis and a neural network to establish a prediction model for the
Malaysian air pollution index (API). Mishraet al. [15] used multiple linear regression anal-
ysis and artificial neural networks to predict PM2.5 concentrations in New Delhi, India,
and the experiments proved that the prediction results with neural networks were better.
Su et al. [16] established an AQI prediction model based on genetic algorithms and BP
neural networks in 2020, which provides certain guidance for the predictive study of AQI.
Currently, the academic community utilizes mainstream machine learning models such as
neural networks, support vector machine regression, and random forests for air quality
prediction [17–19]. These models could make relatively accurate predictions of air quality.
However, the prediction accuracy of each model varies under the same trend, especially
when there is a sudden change in air quality data within a specific time frame, resulting in
significant differences in model prediction performance.

Neural networks possess robust nonlinear fitting capabilities, enabling them to model
complex nonlinear relationships. Nonetheless, with an increase in the number of layers
within a neural network, the gradient descent algorithm may tend toward convergence
at a local minimum, leading to suboptimal outcomes in comparison to those achieved by
shallower networks [20,21]. At the same time, neural networks also have shortcomings, e.g.,
they are prone to overfitting and have poor generalizability and slow convergence speed.
Recently, the rapid development of artificial intelligence, machine learning, deep learning,
and other technologies as a branch of artificial intelligence has led to their wide use in many
fields for product technology innovation and upgrading. For example, computer vision is
used for face recognition [22], damage detection [23,24], image segmentation [25,26], etc.
Traditional air quality prediction methods mainly use empirical models, the accuracy of
which is limited. In addition, these methods have difficulty adapting to changing envi-
ronments; thus, machine learning has gradually become an effective means of air quality
prediction [27,28]. By interpreting complex nonstructural data, the internal relationships
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between the AQI and various pollutant factors as well as meteorological conditions such
as temperature, humidity, and wind speed are determined. Then, a complex calculation
model between the AQI and various influencing factors is established to train an effective
machine learning model to predict air quality. As a result, some researchers have begun to
apply machine learning to air quality prediction [29,30].

Liu et al. [31] proposed a method based on sample selection rules and an optimized
backpropagation neural network (BPNN) to predict the concentrations of PM10, NO2, and
SO2 and achieved good prediction results. Zhu et al. [32] combined an autoregressive
integrated moving average model (ARIMA) with a BPNN optimized by a multipopulation
genetic algorithm (MPGA) to predict PM2.5 concentrations and obtained more accurate
prediction results. Pardo et al. [33] used a long short-term memory network (LSTM) to
effectively predict NO2 concentrations in Madrid. Later, Du et al. [34] predicted PM2.5
concentrations by combining a convolutional neural network (CNN) with a bidirectional
LSTM hybrid deep learning model and achieved good results. The above models have
played a role in improving air quality prediction to varying degrees, but the source of
the dataset and method of data feature extraction are still the determining factors of the
prediction accuracy. Since actual meteorological conditions have a great influence on air
quality and the change in the measured pollutant concentration data has a certain reference
value for air quality prediction, secondary forecast data should also be considered in the
prediction model.

To overcome the constraints of conventional primary air quality forecasting models
and the shortcomings in meteorological data exploitation, this study conducts an analysis of
the hierarchical impact of various meteorological factors on air quality utilizing a random
forest (RF) model. Subsequently, sophisticated data mining techniques, encompassing
machine learning algorithms, neural networks, and various regression-based prediction
models, are deployed to delineate the interrelations among primary weather forecast data,
actual meteorological measurements, and air pollutant concentrations. In the concluding
phase, leveraging the predictive performance and evaluative metrics of the established
models, a comparative analysis is undertaken to highlight the merits, limitations, and
contextual applicability of each model, thereby providing a nuanced understanding of their
operational efficacy in air quality prediction.

2. Methods and Models
2.1. Data Source and Processing

To conduct secondary modeling for air quality prediction, basic long-term air quality
forecast data at monitoring points in Jinan, China, including primary pollutant concen-
tration forecast data, primary meteorological forecast data, actual meteorological data,
and actual pollutant concentration data were obtained from the China Air Quality Online
Monitoring and Analysis Platform. The time span of the forecast and measured data was
from 23 July 2020 to 13 July 2021.

2.1.1. Data Cleaning

Pollutant concentration and meteorological data were obtained from air quality moni-
toring points. During the forecasting process, servers may be affected by long-term outages
due to external power supply problems, leading to the loss of forecast data on some dates.
When building a prediction model, low-quality data may affect the prediction results.
Therefore, it is necessary to clean the original data by eliminating noise and improve the
data quality to improve the prediction accuracy.

For missing data, direct deletion or interpolation is applied according to the nature
of the data. In this model, pollutant concentration and meteorological data are closely
related to time and have strong time series characteristics. Therefore, the missing data are
interpolated and filled with the mean value calculated from the data within a certain time
range before and after each missing data point.
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2.1.2. Data Normalization

Data normalization scales values from various ranges to [0, 1], eliminating the impact
of data with different orders of magnitude and avoiding the problem of large values
dominating small values [35,36]. Moreover, normalization can increase the solution speed
and improve the convergence efficiency. The normalization formula is shown in Equation
(1), where x and xi

′ represent the original and normalized values, respectively. xmax and
xmin represent the minimum and maximum values in the dataset, respectively.

x′i =
xi − xmin

xmax − xmin
(1)

2.1.3. Data Preprocessing

(A) Test for normal distribution

First, for the concentration data of six pollutants in the study time range, the frequency
distribution of each straight square was established. Then, for the twenty independent
variables of meteorological conditions, distribution histograms of the respective variables
were constructed. The abbreviations are listed in Table A1 (Appendix A).

(B) Autocorrelation analysis of variables

SPSS 2021 software was used to calculate the relationship between each dependent
variable and independent variable, and the Pearson correlation coefficient was obtained.

2.2. Classification and Characteristic Analysis of Meteorological Conditions

Ten meteorological factor variables were initially screened using the normal distribu-
tion test and Pearson correlation coefficient analysis (Figure 1). Then, the significance of
these variables with the concentrations of pollutants was analyzed via univariate and mul-
tivariate analysis. In addition, the multivariate importance ranking method based on the
RF model was used to classify and rank the ten meteorological factor variables according
to their effects on different pollutant concentrations. Given the seasonal distributions of the
concentrations of the six pollutants, the correlations between the ten meteorological factors
and the pollutants in different seasons were analyzed. The seasonal characteristics of the
meteorological conditions and their impact on pollutant concentrations were also analyzed.
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Figure 1. Flowchart for analysis of meteorological conditions and characteristics.

2.2.1. Univariate Significance Analysis

One-way analysis of variance (ANOVA) in SPSS software (one of many software tools
available for performing ANOVA) was used to preliminarily explore the relationships
between predictor and response variables. When the sample size was not large, some
irrelevant predictor variables could be removed by one-way analysis [37].

2.2.2. Ranking of Variable Influence Degree Based on a Random Forest Model

In the feature selection method for independent variables, a random forest model was
used to measure the importance of features and select features with greater importance [38].

First, the number of leaves and the number of trees in the random forest model were
optimized, and the initial values ranged from 5 to 500. Figure 2 was obtained by running
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the environment appendix code in MATLAB. The line with the lowest mean squared error
(MSE) is shown in red. From this figure, the use of approximately five leaf nodes was found
to be appropriate. In each subset, the improvement plateaued at approximately 200 trees.
Thus, the number of trees was set to 200. The subsequent procedure is as follows:

(1) The importance of each meteorological condition factor was calculated and sorted in
descending order.

(2) Based on the feature importance ranking in (1), the factor proportions of the inde-
pendent variables to be eliminated were determined, and a new feature set was
obtained.

(3) The above process was repeated with the new independent variable features until
there were m remaining features (m is the set value).

(4) According to each feature set obtained in the above process and the corresponding
out-of-pocket error rate of the feature set, the feature set with the lowest out-of-pocket
error rate was selected.
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Figure 2. The process of determining the optimal numbers of leaf nodes and trees for the importance
of the independent variables in random forest prediction.

2.2.3. Analysis of the Seasonal Characteristics of Pollutant Concentrations and
Meteorological Conditions

After obtaining the classification and ranking results of the influence degree of meteo-
rological factors corresponding to the concentration of pollutants, the time period change
trends of the six pollutants and their change characteristics in different seasons were ana-
lyzed. The data within one year were divided into four seasonal periods: summer (23 July
2020–31 August 2020; and 1 June 2021–12 July 2021), autumn (1 September 2020–30 Novem-
ber 2020) and winter (1 December 2020–28 February 2021). SPSS 2021 software was used to
obtain the Pearson correlation coefficients between the ten meteorological factors and six
pollutant concentrations in different seasons.

To deepen the examination of the dynamics between diverse meteorological condi-
tions and their impact on pollutant concentrations, this study selected ten meteorological
variables for analysis. It aimed to establish the patterns of interaction between these vari-
ables and the concentrations of various pollutants across different seasons. This approach
facilitated a nuanced understanding of how seasonal variations in weather conditions can
significantly influence air quality, providing insights into the complex interplay between
meteorological factors and pollutant levels.
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2.3. Air Quality Prediction Using a Presiciton Model with Mixed Monitoring Sites
2.3.1. Data Preprocessing

The AQI is a dimensionless index that quantitatively describes air quality. The indi-
vidual AQI (IAQI) refers to the AQI of a single pollutant [39]. Primary pollutants are the
air pollutants with the largest IAQI when the AQI exceeds 50.

Based on the secondary prediction and classification model of air quality established in
this section and the analysis results of pollutant concentrations and meteorological factors,
the daily average concentrations of the six pollutants monitored at monitoring points A, B,
and C from 23 July 2020 to 13 July 2021 were first used for the analysis of the subsequent
prediction model.

2.3.2. Multiclassification Model of Primary Pollutants Based on Machine Learning

With the aim of accurately predicting primary pollutants at monitoring points A, B, and
C, seven categories of primary pollutants were combined: “No primary pollutants”, “SO2”,
“NO2”, “PM10”, “PM2.5”, “O3”, and “CO”. Four kinds of machine learning classification
prediction models in Table 1 were applied using the paddle environment and the Python
3.7 language environment: the weighted regression model, light gradient boosting machine
(LightGBM) model, logistic regression (LR), model and RF model. The basic principles of
the four models are as follows:

(1) Weighted model: multiple weighted regression prediction model [40].
(2) LightGBM model: This model is a distributed lightweight gradient boosting frame-

work based on the gradient boosting decision tree algorithm [41]. The LightGBM has
the advantages of simple operation, strong expansibility, high accuracy, and strong
robustness.

(3) LR model: This model is used to express the likelihood of a target time [42]. The LR
model is also used for discrete variable classification and probability prediction.

(4) RF model: The RF model is a supervised learning algorithm based on a decision
tree, and the selection of random features is further considered [43]. Classification
prediction is achieved based on N decision tree classifications, and the final result is
obtained through voting.

Table 1. Analysis of the advantages and disadvantages of several models.

Model Highlights Advantages Disadvantages

Weighted model Essentially a non-parametric
learning algorithm The data itself exhibit good adaptability Requires a large amount of

computation

LightGBM model Adopted a leaf-wise splitting
strategy

Supports parallel learning, enabling
more efficient processing of large

datasets

Consumes a substantial amount
of memory

LR model Essentially a linear classifier The model is clear and has probabilistic
significance

Yields inferior predictive
performance

RF model Introduced stochastic feature
selection

Typically converges to a lower
generalization error

Inferior initial performance and
prone to overfitting

The primary pollutant concentration is the multiclassification target in this study, and
the dependent variable is used to classify and predict this concentration using the above
four classification prediction models. A hyperparameter search, “hyperparamter_tune:
bool <True, False>”, was conducted for each classification model [44], and the results of
LightGBMClassifier model hyperparameter search are shown in Table 2:
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Table 2. Results of the LightGBM classifier model hyperparameter search.

Parameters Num
Leaves

Boosting
Type

N
Estimators

Max
Depth

Learning
Rate

Colsample
by Tree

Reg
Alpha

Reg
Lambda Subsample

Values 4402 dart 185 3 0.410088 0.92867 2.5477 4.63762 0.5363

In this study, 1058 groups of data from the monitoring points A, B, and C were used
as datasets, among which 100 groups were selected as test sets for evaluation.

2.3.3. Air Quality Regression Prediction Model Based on a Neural Network

(1) The BP neural network algorithm carries out gradient back propagation on the error
obtained by the objective function calculation of the feedforward neural network and
adjusts the network parameters by calculating the error between the output layer
value and the expected value to reduce error [45]. The structure of the BP neural
network is divided into three layers: an input layer, a hidden layer, and an output layer.
Each network layer only affects the next layer. If the prediction result is too different
from the expected value, the parameters are adjusted through back propagation, and
the most appropriate parameters are obtained to establish the model.

(2) The LSTM model is a variant of the recurrent neural network (RNN) that was proposed
to improve on the RNN. LSTM can change the weight of self-loops by adding an
input gate, a forget gate and an output gate, alleviating the problems of gradient
disappearance and gradient explosion during model training [46]. In addition, LSTM
has excellent advantages in dealing with nonlinear time series data.

For the BP neural network model, the air quality conditions of monitoring points
are predicted through the pollutant concentration primary forecast data, meteorological
primary forecast data, meteorological measured data, and pollutant concentration measured
data. The structure diagram is shown in Figure 3. This structure contains 16 input layers
and 7 output pollutant concentration values.
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As presented in Figure 4, the numbers of input layers and nodes were determined.
The number of nodes in the hidden layer is H = (16 + 6)1/2 + a, where a is 10. Then, the
sigmoid function was used as the activation function behind the hidden layer, accelerating
the convergence of the model.

The LSTM neural network model is shown in Figure 5. By adding input, output,
and forget gates and then changing the self-loop weights, the problems of gradient disap-
pearance and explosion that may occur in the process of model training can be effectively
alleviated [47]. In addition, the LSTM model has obvious advantages in nonlinear regres-
sion prediction.
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Figure 5. Network structure of the LSTM work.

In this study, the number of hidden layers was set to 20, the training time was set to
1000, and the learning rate was set to 0.2.

2.3.4. Evaluation Indices

The MSE, root mean square error (RMSE), mean absolute value error (MAE) and
goodness-of-fit (R2) were selected to evaluate the effect of the prediction models [48]. The
calculation formulas of the four indicators are listed below, where m represents the sample
number, whilst yi, ŷi, and ӯi, respectively, represent the actual value, the predicted value,
and the mean of the actual values.

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (2)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (3)

MAE =
1
m
|yi − ŷi| (4)

R2 = 1 −

m
∑

i=1
(yi − ŷi)

2

m
∑

i=1
(yi − yi)

2
(5)

3. Results and Discussions
3.1. Data Preprocessing Result
3.1.1. Test for Normal Distribution

The frequency distribution histograms of the concentrations of the six pollutants are
shown in Figure 6. Several groups of data were generally negatively skewed.

Figure 7 displays the distribution histograms for the variables. The complexity of the
20 meteorological factors’ histogram prompted the further analysis and calculation of the
skewness and kurtosis for the six pollutants’ concentration distributions using SPSS 2021.
Additionally, a Shapiro–Wilk normality test (for sample sizes under 2000) was conducted
at α = 0.05, with the results in Table 3.
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Table 3. LightGBM classifier model hyperparameter search results.

Factor Analysis
of Independent

Variables

Data Distribution Normality Test

Statistical Analysis Shapiro–Wilk Test

Skewness Standard Error
of SKEWNESS Kurtosis Standard Error

of Kurtosis
Statistic
p-Value

Degree of
Freedom Significance

T −0.69 0.13 −0.10 0.26 0.949 352 0.000
H −0.99 0.13 1.32 0.26 0.933 352 0.000

AP 0.22 0.13 −0.85 0.26 0.975 352 0.000
WS 0.98 0.13 1.49 0.26 0.945 352 0.000
WD 0.20 0.13 −0.69 0.26 0.983 352 0.000
T1p −0.72 0.13 −0.14 0.26 0.938 352 0.000
K1p −0.64 0.13 −0.30 0.26 0.944 352 0.000

SH1p −0.34 0.13 −0.65 0.26 0.755 352 0.000
H1p −1.26 0.13 2.28 0.26 0.916 352 0.000

WS1p 0.42 0.13 0.31 0.26 0.988 352 0.004
WD1p −0.11 0.13 −0.70 0.26 0.981 352 0.000

R1p 4.37 0.13 29.02 0.26 0.521 352 0.000
C1p −0.03 0.13 −1.02 0.26 0.971 352 0.000

BP1p −0.09 0.13 −0.25 0.26 0.996 352 0.509
AP1p 0.11 0.13 −0.98 0.26 0.972 352 0.000

SHF1p −0.12 0.13 −0.77 0.26 0.984 352 0.001
LHF1p −0.09 0.13 −1.19 0.26 0.957 352 0.000
OLR1p −0.74 0.13 −0.29 0.26 0.916 352 0.000
SWR1p −0.47 0.13 0.32 0.26 0.978 352 0.000
SSR1p −0.69 0.13 −0.10 0.26 0.949 352 0.000
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Figure 6. Histogram distribution of the concentration of the six pollutants.
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Figure 7. Histogram distribution of the 20 meteorological conditions.

The distributions of various factors significantly differ, often deviating from the stan-
dard positive distribution, necessitating normalization over standardization.

3.1.2. Autocorrelation Analysis of the Dependent Variables

SPSS software was used to calculate the relationships between the dependent variables
and the Pearson correlation coefficients between the six air pollutants. In addition, Python
was used to construct a heatmap of the correlations between the six pollutants, as shown
in Figure 8. Several variables are not strongly correlated; only PM2.5, PM10, and NO2 are
strongly correlated.
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3.1.3. Autocorrelation Analysis of the Independent Variables

SPSS software was also used to calculate the relationships among the respective vari-
ables and the Pearson correlation coefficients between the twenty meteorological conditions.
At the same time, Python was used to construct a heatmap of the correlations between
them, as shown in Figure 9.

The correlation coefficient alone cannot be used to completely evaluate the correlations
between variables. In this paper, based on the results in which the correlation coefficient
exceeded 0.8 between two variables (the correlation is preliminarily considered strong),
only one of the variables was chosen to represent them. Ten indicators that have poor
correlation with each other were preliminarily selected. Then, collinearity was further
evaluated for several variables with strong correlations in each group, and the results are
shown in Tables 4 and 5. If the condition index and variance inflation factor (VIF) were
greater than 10 and the eigenvalues were close to 0 (all multidimensional dimensions
are close to each other), the multicollinearity problem can be solved. Therefore, the ten
following indicators were selected to analyze the impact degree of air pollutants: T, H, AP,
WS, WD, WD1p, R1p, C1p, BP1p, and SHF1p.
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Table 4. The collinearity diagnostics results among the grouped independent variables.

Preliminary
Screening

Index

Strong Correlation
Indicators (r > 0.8)

Collinearity Diagnostics (Take O3 as an Example)

Collinearity Statistics Collinearity Diagnostics

Model Tolerance VIF Model Eigenvalue Condition Index

T
T1p (r = 0.98)

LHF1p (r = 0.88)
OLR1p (r = 0.88)

constant 1 4.938 1.000
T 0.034 29.374 2 0.048 10.111

T1p 0.016 63.686 3 0.012 20.686
LHF1p 0.215 4.655 4 0.002 46.873
OLP1p 0.093 10.788 5 0.000 110.910

H
H1p (r = 0.93)

OLP1p (r = 0.82)

constant 1 3.966 1.000
H 0.153 6.536 2 0.025 12.490

H1p 0.197 5.068 3 0.006 25.954
OLP1p 0.463 2.159 4 0.003 36.456

AP
AP1p (r = 1.00)
K1p (r = 0.98)

SH1p (r = 0.91)

constant 1 4.857 1.000
AP 0.013 79.543 2 0.143 5.829

AP1p 0.011 87.110 3 0.000 208.564
K1p 0.151 6.635 4 3.065 × 10−6 1258.909

SH1p 0.217 4.617 5 2.312 × 10−7 4582.906

WS WS1p (r = 0.82)
constant 1 2.922 1.000

WS 0.384 2.604 2 0.058 7.075
WS1p 0.384 2.604 3 0.020 12.097
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Table 4. Cont.

Preliminary
Screening

Index

Strong Correlation
Indicators (r > 0.8)

Collinearity Diagnostics (Take O3 as an Example)

Collinearity Statistics Collinearity Diagnostics

Model Tolerance VIF Model Eigenvalue Condition Index

SHF1p

LHF1p (r = 0.91)
SSR1p (r = 0.90)
SWR1p (r = 0.90,

eliminate)

constant 1 3.935 1.000
SHF1p 0.137 7.315 2 0.047 9.151
LHF1p 0.212 4.723 3 0.012 18.160
SSR1p 0.240 4.175 4 0.006 26.284

WD None

None
WD1p None

R1p None
C1p None

BP1p None

Table 5. The collinearity statistics results of each dependent variable.

Model Di-
mension

Eigenvalue Condition
Index

Proportion of Variance (%)

Constant T H AP WS WD WD1p R1p C1p BP1p SHF1p

1 9.50 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.84 3.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00
3 0.28 5.85 0.00 0.00 0.00 0.00 0.03 0.06 0.05 0.04 0.16 0.00 0.00
4 0.16 7.63 0.00 0.00 0.00 0.00 0.05 0.23 0.00 0.02 0.27 0.01 0.01
5 0.11 9.19 0.00 0.00 0.01 0.00 0.15 0.39 0.05 0.14 0.10 0.00 0.00
6 0.04 14.92 0.00 0.00 0.04 0.00 0.21 0.00 0.15 0.01 0.30 0.00 0.03
7 0.03 18.43 0.00 0.01 0.00 0.00 0.31 0.27 0.52 0.03 0.01 0.07 0.12
8 0.02 23.52 0.00 0.00 0.63 0.00 0.11 0.02 0.03 0.12 0.09 0.13 0.04
9 0.01 26.75 0.00 0.31 0.00 0.00 0.10 0.01 0.01 0.05 0.01 0.00 0.45

10 0.01 34.68 0.00 0.16 0.30 0.00 0.00 0.02 0.06 0.09 0.02 0.78 0.35

Correlation
Partial part

of
zero-order

0.21 −0.21 −0.05 −0.31 −0.05 0.13 −0.25 −0.36 0.17 0.12
0.31 −0.32 0.09 −0.37 −0.10 −0.09 −0.18 −0.15 −0.05 0.07
0.25 −0.25 0.07 −0.30 −0.08 −0.07 −0.14 −0.11 −0.04 0.06

Collinearity statistics tolerance 0.15 0.46 0.14 0.58 0.66 0.28 0.55 0.63 0.30 0.28
statistics 6.85 2.18 7.23 1.71 1.51 3.56 1.82 1.60 3.35 3.61

3.2. Classification and Analysis of Meteorological Conditions
3.2.1. Univariate Significance Analysis

The between-subject effect test results of the meteorological condition variables and
pollutant concentrations are shown in Table 6. The results of the univariate and multivariate
significance analysis showed that, when the significance value between the independent
variable and the dependent variable was less than 0.05, a significant difference was ob-
served; otherwise, the opposite was true. As not all the aforementioned variables were
statistically nonsignificant, none of the indicators could be excluded.

Table 6. Test results of between-subject effects between meteorological condition variables and
pollutant concentrations.

Variables T H AP WS WD WD1p R1p C1p BP1p SHF1p

SO2

R2 0.273 0.49 0.258 0.233 0.334 0.362 0.132 0.284 0.329 0.405
F 1.191 2.966 1.074 1.286 1.498 2.359 1.374 1.149 1.58 2.132

Significance 0.151 0 0.331 0.084 0.008 0 0.084 0.201 0.003 0

NO2

R2 0.521 0.419 0.443 0.437 0.31 0.431 0.142 0.315 0.555 0.536
F 3.46 2.22 2.454 3.293 1.34 3.15 1.492 1.333 4.025 3.619

Significance 0 0 0 0 0.04 0 0.041 0.042 0 0

CO
R2 0.556 0.367 0.532 0.37 0.292 0.352 0.207 0.265 0.443 0.417
F 3.98 1.787 3.504 2.493 1.233 2.262 2.351 1.045 2.564 2.237

Significance 0 0 0 0 0.105 0 0 0.388 0 0
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Table 6. Cont.

Variables T H AP WS WD WD1p R1p C1p BP1p SHF1p

O3

R2 0.293 0.393 0.225 0.243 0.271 0.166 0.128 0.364 0.252 0.266
F 1.317 1.996 0.896 1.363 1.114 0.828 1.324 1.661 1.085 1.135

Significance 0.053 0 0.722 0.045 0.257 0.823 0.111 0.001 0.31 0.226

PM2.5

R2 0.558 0.386 0.482 0.432 0.338 0.284 0.248 0.263 0.439 0.456
F 4.014 1.939 2.863 3.228 1.528 1.653 2.977 1.037 2.523 2.625

Significance 0 0 0 0 0.006 0.003 0 0.405 0 0

PM10

R2 0.361 0.253 0.331 0.163 0.277 0.232 0.184 0.331 0.253 0.227
F 1.797 1.042 1.524 0.826 1.144 1.254 2.03 1.436 1.092 0.917

Significance 0 0.395 0.006 0.825 0.21 0.106 0.001 0.015 0.299 0.676

3.2.2. Ranking of the Variable Influence Degree Based on the Random Forest Model

Following the steps in Section 2.2.2, the importance ranking scores of the ten meteo-
rological factor variables on the six pollutants were obtained from July 2020 to June 2021
(twelve months). After running the MATLAB code, the importance values were read, and
the influence degrees of the ten meteorological factors on the six pollutant concentrations
were determined using the drawing software, as shown in Figure 10.
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Figure 10. The ranking results of the impact of meteorological conditions on pollutant concentration
based on random forest.
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The ranking of the influence degree of the meteorological conditions on the pollutants
obtained from the random forest model are shown in Table 7.

Table 7. Ranking results of the importance of the meteorological conditions on the six pollutants.

Pollutant Sources Order of Influence Degree of Meteorological Conditions

SO2 H > WD1p > WS > SHF1p > T > R1p > AP > BP1p > WD > C1p
NO2 WS > SHF1p > WD1p > T > AP > BP1p > H > R1p > C1p > WD
CO WS > AP > SHF1p > T > H > BP1p > C1p > R1p > WD > WD1p
O3 H > WS > T > C1p > SHF1p > BP1p > AP > R1p > WD > WD1p

PM2.5 WS > AP > H > SHF1p > T > R1p > WD1p > BP1p > C1p > WD
PM10 T > R1p > WD1p > SHF1p > AP > BP1p > WS > C1p > H > WD

3.2.3. Analysis of the Seasonal Characteristics of Pollutant Concentrations and
Meteorological Conditions

Figure 11 illustrates the seasonal variation trends of six pollutants, showing lower concen-
trations in spring and summer than in autumn and winter, with minimal fluctuations. PM10,
PM2.5, and SO2 exhibit consistent seasonal trends, with summer levels lower than winter, but
spring and autumn show slight differences. Winter concentrations typically decrease due to
enhanced intermolecular diffusion and surface convection in summer. Conversely, in winter,
weaker air convection and diffusion, coupled with peak electric heating use, lead to slower
pollutant dispersion and more sources of pollution. Unlike the other pollutants, O3 peaks in
summer due to secondary chemical reactions catalyzed by strong ultraviolet light.
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Figure 11. The variation trends of the concentrations of the six pollutants in a one-year cycle (four
seasons).



Atmosphere 2024, 15, 553 17 of 23

Figure 12 reveals that the ten meteorological conditions and their impact on pollutant
concentrations vary significantly across seasons and pollutants, with temperature, humid-
ity, air pressure, and wind speed greatly influencing the six pollutants’ concentrations.
Specifically, air temperature shows a negative correlation with pollutant concentrations
in summer and winter, but a positive one in spring. Humidity negatively correlates with
pollutant concentrations due to the condensation of water droplets that absorb fine particles,
reducing pollutant diffusion. Air pressure’s impact is inverse to that of temperature due to
their negative correlation.
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Figure 12. Correlation distributions between the six pollutants and ten kinds of meteorological factors
in different seasons.

3.3. Air Quality Secondary Forecast Results
3.3.1. Multiclassification Prediction of Primary Pollutants Based on Machine Learning

The evaluation results of the four classification models are shown in Table 8. The
LightGBM classifier model achieved the best classification effect.
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Table 8. Test results of the four classification models.

Model Precision (P) Accuracy Recall Rate ® F1 Score

LGBMClassifier 97.5% 92.5% 89.5% 93.3%
WEIGHTEDClassifier 95.6% 91.5% 87.5% 91.4%

LRClassifier 96.5% 91.4% 87.5% 88.2%
RFClassifier 95.6% 85.8% 81.8% 83.5%

An extensive analysis was performed on each evaluation index using the optimal
classification model, identified from previous data processing steps and calculations, which
determined ozone (O3), nitrogen dioxide (NO2), particulate matter with a diameter of
10 µm or less (PM10), and particulate matter with a diameter of 2.5 µm or less (PM2.5) as the
primary pollutants. For each of these pollutants, both the receiver operating characteristic
(ROC) curve and the precision–recall (P-R) curve were meticulously constructed, with the
results showcased in Figure 13.
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Remarkably, for cases without a primary pollutant present, the classification model
achieved a perfect accuracy rate of 100%. This model demonstrated exceptional predictive
capabilities, especially for O3, a secondary pollutant historically known for its prediction
challenges, achieving a classification accuracy of 99.25%. For PM10 and NO2, the model’s
classification accuracies were commendably high, ranging between 70 and 80%, reflecting
a strong ability to accurately identify these pollutants. However, the model encountered
challenges with PM2.5, where the classification accuracy was notably lower, at only 57.14%.

Despite these challenges, the application of a Weighted classifier presented an im-
provement in performance for PM2.5, boosting the classification accuracy to 72.73%. This
indicates that while the base model struggled with PM2.5, adjustments and the integration
of weighted mechanisms could enhance its predictive accuracy.

Overall, the application of machine learning-based classification models to the task
of predicting the presence of primary pollutants demonstrated promising results. These
models, through rigorous testing and refinement, have shown a commendable capacity to
accurately classify various air pollutants, albeit with some variations in effectiveness across
different types. The insights gained from this analysis not only underscore the potential
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of machine learning in environmental monitoring but also highlight the areas for further
improvement, particularly in the prediction of finer particulate matter such as PM2.5.

3.3.2. Air Quality Prediction Based on Machine Learning

According to the requirements of the AQI and primary pollutant analysis, after the
above modeling and analysis processes were completed, 20 sets of data were randomly
selected for testing to make predictions for the six pollutants, i.e., “SO2”, “NO2”, “PM10”,
“PM2.5”, “O3”, and “CO” (see Table A1 for details). Then, according to the calculation codes
for the AQI and primary pollutants established in Problem 1, the corresponding AQI values
and primary pollutant types were obtained. According to Equations (2)–(5), the predicted
and actual AQI values for the seven models with three methods were analyzed. The MAE,
MSE, RMSE and R2 were used for evaluation, and the prediction accuracies of the primary
air pollutants in the test data were tested. The results are shown in Table 9.

Table 9. Test results of the four classification models on data from monitoring point A.

Prediction Results of Key
Indicators

LSTM
Model

RF
Model

ARIMA
Model

WEIGHTED
Model

LR
Model

BP Neural
Network

LGBM
Model

Prediction
results of AQI

MAE 5.4473 7.0214 7.7041 7.5150 8.4125 9.9681 10.5125
MSE 51.0266 69.5979 65.7058 79.4924 75.9084 90.6030 118.1841

RMSE 7.1433 8.3425 8.1059 8.9159 8.7125 9.5186 10.8713
R2 91.37% 88.25% 84.53% 79.54% 77.51% 72.31% 68.12%

Prediction
results of O3

MAE 11.2485 13.5961 16.0979 20.9681 24.0815 28.8185 27.5191
MSE 273.0674 363.1590 573.9719 833.4249 1153.2884 1083.6276 1164.8501

RMSE 16.5248 19.0567 23.9577 28.8691 33.9601 32.9185 34.1299
R2 90.46% 85.33% 82.18% 77.54% 76.51% 75.58% 64.33%

Prediction of major pollutant 20
(100%)

18
(90%)

15
(75%)

16
(80%)

16
(80%)

15
(75%)

15
(75%)

The LSTM neural network model emerged as the top performer in predicting air qual-
ity indices and primary pollutants, outpacing all other models in accuracy and reliability.
Specifically, for the AQI, the LSTM model achieved an impressive R2 value of 91.37%,
indicating a high level of prediction accuracy closely matching the observed data. Similarly,
in predicting O3 levels, the model recorded an R2 value of 90.46%, further demonstrating
its robust predictive capability in environmental monitoring.

Remarkably, when applied to the prediction of primary pollutants within the test set,
the LSTM neural network model achieved a perfect prediction accuracy rate of 100%, the
highest among all the models evaluated. This unparalleled performance underscores the
LSTM model’s exceptional ability to capture and predict complex temporal dynamics and
dependencies in air quality data, making it an invaluable tool for environmental scientists
and policymakers alike.

In comparison, the RF and ARIMA models also showed commendable performance,
with R2 values reaching 88.25% and 84.53%, respectively. These results indicate that, while
these models possess good predictive capabilities, they fall short of the LSTM model’s
superior accuracy and efficiency in forecasting air quality metrics.

However, it was noted that the prediction efficacy of other models on the concentration
of air pollutants did not meet expectations, highlighting a significant gap in performance
compared to the LSTM, RF, and ARIMA models.

The comprehensive analysis of prediction comparison results across several models
clearly illustrates the LSTM model’s distinct advantages in key evaluation indices and the
accuracy of primary pollutant predictions. Its success in this domain can be attributed to its
advanced architecture, which is specifically designed to handle sequential data, making it
especially suitable for time-series forecasting tasks such as air quality prediction. This finding
encourages the further exploration and application of LSTM neural networks in environmental
monitoring and predictive analysis, aiming to enhance the accuracy of air quality forecasts
and inform better decision-making for pollution control and public health protection.



Atmosphere 2024, 15, 553 20 of 23

4. Conclusions

This paper introduces a novel methodology for the secondary modeling and forecast-
ing of air quality, leveraging both machine learning and statistical analysis techniques. The
study’s findings are pivotal, offering new insights into air quality prediction. The following
conclusions can be drawn from this study.

(1) Through univariate and multivariate significance analysis, alongside a random forest-
based method for multivariate importance ranking, we categorized and prioritized ten
meteorological variables based on their impact on various pollutant concentrations.
This approach enables a nuanced understanding of environmental factors influencing
air quality.

(2) We examined the seasonal distribution patterns of six key pollutants and analyzed
the relationships between these pollutants and ten meteorological factors across dif-
ferent seasons. Our analysis uncovered that temperature, humidity, air pressure, and
atmospheric conditions have a significant seasonal influence on pollutant concentra-
tions, highlighting the necessity of incorporating seasonal dynamics into air quality
forecasting models.

(3) The evaluation of machine learning-based classification prediction models revealed
the superior performance of the LightGBM classifier, achieving an accuracy of 97.5%
and an F1 score of 93.3%. This finding underscores the effectiveness of the LightGBM
model in air quality classification tasks.

(4) In terms of AQI prediction, the LSTM model emerged as the most effective, demon-
strating a high goodness-of-fit. The model achieved a 91.37% fit for AQI prediction,
90.46% for O3 prediction, and a perfect 100% for forecasting concentrations of pri-
mary pollutants in the test set. These results highlight the LSTM model’s potential in
providing accurate air quality forecasts.

This study acknowledges the limitation of using a constrained dataset, suggesting that
future research could explore secondary air quality prediction modeling that accounts for
the joint characteristics of spatial and temporal distribution. This direction holds promise
for developing more sophisticated and accurate air quality prediction tools.
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Appendix A

Table A1. Explanation of the meanings of some abbreviations used in this study.

Acronyms Meanings Acronyms Meanings

T Measured temperature R1p The first forecast of rainfall
H Measured humidity C1p The first forecast of cloud amount

AP Measured air pressure BH1p The first forecast of the boundary layer height
WS Measured wind speed AP1p The first forecast of the air pressure
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Table A1. Cont.

Acronyms Meanings Acronyms Meanings

WD Measured wind direction SHF1p The first forecast of the sensible heat flux

T1p
The first temperature forecast of 2 m

near the ground LHF1p The first forecast of the latent heat flux

K1p
The first forecast of the land surface

temperature OLR1p The first forecast of the long-wave radiation

SH1p
The first forecast of the specific

humidity SWR1p The first forecast of the shortwave radiation

H1p
The first forecast of the specific

humidity SSR1p The first forecast of the surface solar radiation

WS1p
The first wind speed forecast of 2 m

near the ground SO2(1p) The first forecast of hourly mean SO2 concentration

WD1p
The first wind direction forecast of 2

m near the ground NO2(1p) The first forecast of hourly mean NO2 concentration

O3(1p)
The first forecast of hourly mean O3

concentration PM2.5(1p) The first forecast of hourly mean PM2.5 concentration

CO1p
The first forecast of hourly mean CO

concentration PM10(1p) The first forecast of hourly mean PM10 concentration
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