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Abstract: Snow accumulation on surfaces exposed to adverse weather conditions has been studied
over the years due to a variety of problems observed in different industry sectors, such as aeronautics
and wind and civil engineering. With the growing interest in autonomous vehicles (AVs), this
concern extends to advanced driver-assistance systems (ADAS) . Weather stressors, such as snow and
icing, negatively influence the sensor functionality of AVs, and their autonomy is not guaranteed by
manufacturers during episodes of intense weather precipitation. As a basis for mitigating the negative
effects caused by heavy snowfall, models need to be developed to predict snow accumulation over
critical surfaces of AVs. The present work proposes a framework for the study of snow accumulation
on road vehicles. Existing icing and snow accretion models are reviewed, and adaptations for
automotive applications are discussed. Based on the new capabilities developed by the Weather on
Wheels (WoW) program at Ontario Tech University, a model architecture is proposed in order to
progress toward adequate snow accretion predictions for autonomous vehicle operating conditions,
and preliminary results are presented.

Keywords: weather; autonomous vehicles; ADAS; snow; navigation systems; weather mitigation;
modelling; weather precipitation; road safety

1. Introduction

With the evident advancement in the development of autonomous vehicles (AVs),
attention is being paid to the risks associated with their road operation [1,2]. Efforts have
been made to increase the performance of existing navigation systems by improving the
sensitivity of sensors and the accuracy of image recognition models. Moreover, research
work in this field also focuses on enhancing the robustness of these systems and enabling
their operation in various adverse weather conditions. Recent works have been dedicated
to evaluating the performance of advanced driver-assistance system (ADAS) devices,
such as RADAR, LiDAR,cameras, and ultrasonic sensors, exposed to adverse weather
conditions, such as fog, heavy precipitation, sandstorms, and low light [3,4]. As cited by
Vargas et al. [5], raindrops, depending on their size, can attenuate electromagnetic signals
emitted by navigation systems, generate false alarms, and mask real targets in front of
sensors due to Mie scattering [6]. In addition, snow can degrade the quality of images
and videos by generating sharp variations in light levels, as camera-based recognition
systems rely on the brightness of the surroundings to determine the intensity of the pixels.
Despite these issues, there is a noticeable shortfall in research focusing specifically on snow
accumulation on the surfaces of a moving vehicle, impacting the use of these systems. Work
related to this topic has focused on the field of aviation, as icing has proved to be the cause of
numerous incidents [7]. Given the relative gap in studying snow accumulation on a moving
vehicle’s surfaces, as well as the relation of accumulation with visibility, this type of research
deserves attention. Recently, Jokela et al. [8] conducted studies in Finland and Sweden to

Atmosphere 2024, 15, 548. https://doi.org/10.3390/atmos15050548 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos15050548
https://doi.org/10.3390/atmos15050548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0009-0001-7521-3014
https://orcid.org/0009-0007-9353-2274
https://orcid.org/0009-0001-1795-2142
https://orcid.org/0000-0002-8433-5953
https://doi.org/10.3390/atmos15050548
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15050548?type=check_update&version=1


Atmosphere 2024, 15, 548 2 of 17

assess LiDAR functionality, especially regarding snow swirls generated by leading vehicles.
Norouzian et al. [9] explored the impact of snowfall on radar performance, observing
increased signal attenuation with higher snowfall rates, particularly with wet snow, due
to its greater water content and larger snowflake size. In a field study conducted by
Hong et al. [10], the RadarSLAM system’s outdoor trials aimed to evaluate its performance
in adverse weather, such as fog and snow, and at night. The main objective was to test
the system’s positional accuracy and its capacity to produce precise maps despite the
environmental obstacles caused by bad weather. Based on the observations in this study,
substantial snow accumulation was observed on cameras, LiDAR, and RADAR, which
posed significant operational challenges.

These studies aimed to directly investigate the impacts of weather conditions (herein
snow) on various navigation systems but did not attempt to model the driving parameters
of the problem, which, in this case, is snow deposition. In order to generate such a
model, precipitation measurements are needed in a pre-defined parametric space for the
problem. Precipitation measurements may seem simple: water lands in a collector and
the observer gauges the depth, volume, or weight, either manually or through automated
methods. For rain, this is mostly accurate, barring minor errors like wetting loss and
evaporation. However, gauging snowfall and snow depth is a far more complex process.
The environment significantly influences snow measurements compared to rain. For
instance, local wind conditions have a greater impact on the accuracy of snowfall sensors, as
lighter, slower-falling snow hydrometers are more susceptible to wind-induced turbulence
around the gauge, leading to significant systematic errors in the precipitation rate output.
In addition, snow depth is subject to unique challenges due to factors such as redistribution,
the transfer or displacement of snow from a specific location to another, and metamorphosis,
i.e., the change in snow crystals or granules over time, in the measurement environment.
These factors lead to significant variability both spatially and temporally [11].

The density of freshly fallen snow is a crucial physical attribute of deposited snow,
which undergoes changes upon reaching a surface. For windless conditions, the snowfall
density is believed to be primarily influenced by hydrometeor types and dimensions.
Snowpack moisture content determines the type of snow particle [12–15]. Characterized by
a low density that seldom surpasses 100 kg/m 3, dry snow gathers under low-wind-speed
conditions, generally below 2 m/s, and at sub-zero temperatures. In such circumstances,
the fraction of liquid water is under 5%, and over 70% of the total volume consists of air
bubbles. Typically, wet snow is produced when dry snowflakes, formed at below-freezing
temperatures, undergo a swift transformation in supercooled clouds. This snowfall crosses
the 0 ◦C isotherm, entering a layer of atmospheric air with a positive temperature. The
longer these snowflakes remain in this warmer layer, the higher their stickiness becomes due
to the water layer that is formed on their surface. In general, denser snow is more cohesive
and sticks better to the underlying layers. Another variable that contributes to the adhesion
force between a given surface and wet snow is the liquid water content (LWC), which refers
to the percentage of the total weight of wet snow that is water. This has been the subject
of various research works aimed at investigating snow morphology [16–19], forecasting
wet snow avalanches, and predicting melt-water runoff. There is a lack of research into
how the liquid water content in snow behaves on a moving car under different weather
conditions. Snow density is also linked to other factors, like the structure of snowflakes.
By understanding the LWC and density, among other factors, such as wind speed, hourly
precipitation, temperature, and solar radiation, it is possible to predict, with some accuracy,
the accumulation of snow on moving surfaces.

Over the past few decades, much work has been carried out on the numerical predic-
tion of snow accretion. Many of these studies are oriented towards static bodies such as
buildings and structures. Loading caused by snow on roofs was studied by Zhang et al. [20]
using data from experiments and numerical simulations. A numerical model for snow
melt and accumulation was proposed using energy and mass balance principles [21,22].
Qiang et al. [23] expanded upon this work by employing this numerical model for snow
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accumulation on steel roof structures subjected to snow loading using a probabilistic
Monte Carlo approach. In CFD models, the amount of snow build-up is commonly calcu-
lated using dynamic mesh [24–27] or through surface contour plots [28].

Models of snow accretion on structures generally aim to estimate ice loads that can
be generated during storms. Most of these works focus primarily on modelling snow
accumulation on power cables, as this is the major cause of structural problems observed
on transmission towers [29–31]. Because of this, the existing models deal with the issue ex-
clusively on cylindrical geometries and calculate the total snow load per unit length [32,33].
Other studies used wind tunnel and in situ observations to understand the microphysics
of wet snow and the thermodynamics of heat exchanges, as well as the mechanisms of
snow accretion on cylindrical objects. Mohammadian et al. [34] investigated wet snow
accumulation on torsional rigid inclined cylinders, such as bridge cables, correlating the
snow density and thickness of inclined cylindrical surfaces with outdoor weather condi-
tions. Recently, Davalos et al. [35] developed a model for predicting ice loads on power
lines by combining wind and precipitation data from weather stations distributed across a
mountainous region of British Columbia, Canada. To estimate ice accretion in locations not
easily accessible, they drew correlations between data obtained at nearby stations using
machine learning. For the spatial estimation of wind speed, they used an artificial neural
network (ANN) model [36], while K-Nearest Neighbour Imputation (KNNI) was employed
for predictions of the precipitation rate [37].

In order to design an analytical model for automotive applications, it is necessary
to consider a larger range of parameters more in line with the operating conditions of
autonomous vehicles, such as local particulate flux and varying relative wind direction,
surface inclination, and surface roughness. Once such models are developed, they can be
complemented with spatial and temporal correlation analysis to allow for snow accumula-
tion predictions on various surfaces of a moving vehicle. Downstream, these models can
be linked with visibility models predicting where and when sensors on AVs are affected in
relation to driving safety criteria. Finally, these models need to be experimentally validated.

The challenge of simulating snow environments in wind tunnels, in contrast to rain,
limits the controlled data support needed to drive the accretion models, restricting progress
in this field [3]. Snow accretion studies in wind tunnels are different from those under in
situ conditions when a moving object is involved due to both particulate injection methods
(ranging from snow guns to ice shaving methods) and the aerodynamic differences [38].

Recent studies have concentrated on in situ snow conditions on moving car surfaces.
Carvalho and Hangan [39] developed a method based on unsupervised machine learning
to classify snowfall events. The model clusters particle size distribution samples obtained
from full-scale weather measurements in order to identify recurring precipitation pat-
terns in southern Ontario. The proposed method enables realistic snowfall simulations
both numerically and in climatic wind tunnels.

In conclusion, while snow accumulation on static bodies or surfaces with applications
to buildings and structures has been widely studied over the years, there is still an important
gap regarding this accumulation on moving bodies with applications to vehicles. This
paper proposes an analytical model for snow accretion on moving surfaces, which can
serve as the basis for a network of low-cost meteorological towers for monitoring the
impact of heavy snowfall on autonomous vehicles on nearby roads. Some preliminary
results are presented, and future validation is planned through both wind tunnel and
full-scale measurements.

2. Snow Accretion Model

As observed by Kobayashi [40], snow deposits occur under specific weather conditions.
Dry snow, for example, represents a reduced risk in terms of accumulation, as the particles
tend to bounce when they hit a surface. When accumulation occurs due to the low relative
velocity between the given surface and the precipitation, there is no adhesion between the
particles within the snow cover. To maintain cohesion between particles, they must be
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covered by a layer of water, as in the case of wet snow. Because of this, before estimating
the snow cover growth rate, Makkonen [30] defined criteria for wet snow formation, where
the heat flux on the snow particles surface must be positive. The mathematical formulation
is as follows:

QC + Qe > 0 (1)

The two major terms of the heat flux equation between the air and the snow particles
are the convective heat,

QC = h(ta − ts) (2)

and the evaporative heat,

Qe =
hεLS
cp p

[e(ta)− e(ts)] (3)

where h is the convective heat transfer coefficient, ta is the air temperature and ts is the
snow surface temperature, ε is the ratio of the molecular weights of water vapour and dry
air, Ls is the latent heat of sublimation, cp is the specific heat of air, and p is the atmospheric
pressure. The water vapour pressure in the air and at the surface of the snow particle is
represented by e(ta) and es(ts), respectively. Also, the relative humidity can be written
as RH = e(ta)

es(ta)
. Therefore, by considering the temperature at the surface of the particles

ts = 0 and the melting temperature of the snow and inserting Equations (2) and (3) into
Equation (1), the condition for wet snow formation takes the form:

ta >
εLS
cp p

[e(ta)− RHes(ta)] (4)

which means that the occurrence of wet snow can be described as a function of temperature
and relative humidity. Wet snow forms at different temperatures according to different
viewpoints. According to Admirat [41], wet snow occurs only at temperatures between
0 ◦C and 2 ◦C. The heat transfer calculations of Makkonen [30] have also shown that wet
snow accumulates at wet bulb temperatures greater than zero. Afterward, he adapted his
claim to values greater than −0.2 ◦C [42]. Finstad [43] proposed that wet snow occurs in
conditions where the air temperature is in the range of −2 ◦C < ta < 5 ◦C, which was later
verified by Mohammadian et al. [34], and a threshold percent relative humidity:

RH = 85.1− 5.3ta (5)

As wet snow presents higher density values than dry snow due to its water content,
long-lasting wet snowstorms place a greater risk of collapse on structures such as electricity
transmission lines and bridge cable supports. Wet snow is also critical for accumulation on
moving body surfaces. It is therefore critical to establish a reliable criterion for the occur-
rence of wet snow based on real-time on-site weather data. From full-scale measurements
conducted at GM’s McLaughlin Advanced Technology Track (MATT) in Oshawa, Canada,
throughout the winter of 2021–2022, relative humidity and ambient temperature were as-
sessed specifically for tests conducted under snow precipitation conditions to ascertain the
above-mentioned wet snow criteria. This experiment was carried out using a test vehicle
equipped with weather sensors, as described by Carvalho and Hangan [39]. Figure 1 illus-
trates that the experimental data closely align with both criteria, most noticeably the one
from Makkonen [30]. The scatter of data points from the two test days differs, indicating
that on March 15th, when temperatures were higher, the snow exhibited greater wetness
compared to the snow on March 7th.
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Figure 1. Wet snow criteria for outdoor data gathered at GM’s McLaughlin Advanced Technology
Track (MATT) in Oshawa, Canada, throughout the winter of 2021–2022.

Once the criterion is met, the model describing the growth of the snow layer over the
surface is a linear equation, as defined by Makkonen [30]:

I = αW|V| (6)

where I is the growth rate of the snow mass, α is the sticking efficiency, |V| is the speed
magnitude at which the particles reach the surface, and W is the concentration of the snow
mass in the air. When dealing with AVs, the values of the resulting particle speed vary
as the vehicle modifies its trajectory and the wind speed and direction change. Because
of this, Carvalho and Hangan [44] proposed a model to estimate the rainfall/particulate
intensity perceived by moving vehicles. The aim of the work was to analyze the level of
precipitation on surfaces with different angles and nonlinear trajectories. For this, the flux
of precipitation Φ, in kg/s, of precipitation particles with the velocity v on a given surface
S is computed:

Φ = −ρNdV
∫

v · dS (7)

Equation (7)’s negative sign comes from flux equations of electromagnetism. The
model is inspired by the work of Bocci [45], who simulated rainfall levels on moving objects
with complex geometries. In the adapted equation for rain flux, ρ is the water density in
kg/m3, Nd is the concentration number with the unit m−3, and V is the total volume of
the particles. These parameters quantify the mass of precipitation impacting the surface.
The total volume can be approximated by considering the particles as spheres [46], and the
concentration number Nd can be obtained through disdrometer data [47]:

Nd =
1

|vn|S∆t

k

∑
i=1

Ni (8)
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where Ni is the number of particles of each diameter bin of the particle size distributions.
The particles’ average velocity |vn| can be computed from speed distributions also gen-
erated by optical disdrometers. The integral term contained in Equation (7) represents
the projection of the resulting particle speed, which is the sum of wind speed and particle
terminal velocity, on the vector normal to the surface. For more details on the implemen-
tation of the precipitation flux model, see Carvalho and Hangan [44]. A parallel between
Equations (6) and (7) can be drawn, and the model for the snow cover growth rate, in kg/s,
can be written as follows:

dM
dt

= −αρNdV
∫

v · dS (9)

The α coefficient is introduced to model the effective growth rate of the snow layer
and will be discussed next. In the case of snowfall, estimating the density of the particles is
a more complex task, as it depends on their LWC [16,48]. For this reason, empirical models,
such as the one proposed by Best [49], have been established to assess the concentration of
snow particles in the air:

W = 67p0.846
i (10)

with W in kg/m3 and pi being the recorded precipitation rate in mm/h. Admirat [41]
proposed another concentration model based on the assumption that snow density is
influenced by both the precipitation intensity at ground level and the terminal velocity
of snowflakes.

W =
P

3.6× 103vs
(11)

where P is the precipitation rate at the ground in mm/h of water equivalent, and vs
is the terminal velocity of snow in m/s. Another widespread model [50] relates mass
concentration to visibility, with Vi in meters:

W = 2100Vi−1.29 (12)

In Equation (9), since all parameters, except α, can be obtained experimentally, the
challenge for predicting snow accretion on vehicles is to model the effective growth rate for
different types of snow particles for surfaces with various angles and roughness. In order
to adjust α more accurately to the interactions between the incoming snow particles and the
formed snow layer, Makkonen [51] expanded the coefficient into three new terms, denoted
by α1, α2, and α3, the values of which can vary between 0 and 1. The first one represents
the collision efficiency between particles in the air and a given surface. Its value is obtained
from the ratio of the flux density of particles hitting the object to the maximum flux density.
α2 is the sticking efficiency, which represents the number of particles that remain stuck to
the surface among those that have collided with it. A particle is considered to be aggregated
if it remains in contact with the surface for long enough to affect the heat flux in the forming
snow layer. α3 refers to the accretion efficiency, which is the ratio of the icing growth rate
to the flux density of the aggregated particles. The work by Mohammadian et al. [52]
incorporated the coefficients into a model for predicting snow accumulation on a given flat
surface A. The new equation, which is derived from Equation (6), takes the following form:

dM
dt

= α1α2α3W|V|A (13)

By combining Equations (9) and (13) to conform to the scenario of a moving referential,
the model for snow accumulation on vehicles becomes

dM
dt

= −α1α2α3W
∫

v · dS (14)

Next, the efficiency coefficients will be discussed individually in order to devise
methods for modelling them based on a set of planned experiments.
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2.1. Collision Efficiency (α1)

For the estimation of collision efficiency α1, the dimensional analysis of an air flow over
an inclined flat plate of length l is adopted, in a similar approach to that used by Keith and
Saunders [53] and Makkonen [51] for the case of the flow over a cylinder. The adaptation
of the problem considers the impact of snow particles on the surface of the vehicle at low
speed. Figure 2 shows a representation of a snow particle within the boundary layer of a
unidirectional air flow considered to be laminar and fully developed. As a starting point
for identifying the main parameters of the problem, the equation for the velocity profile in
the surface boundary layer is derived. It is assumed that the particle velocity is composed
of the sum of the wind velocity ux and the terminal velocity vt. Making the simplifying
assumptions of a steady-state regime and that the pressure drop due to the surface slope is
negligible, the following equation can be obtained:

ux(z) = −
ρag sin θ

µ
(z2 − 2δz) (15)

where δ is the boundary layer thickness, and the air density and viscosity are represented
by ρa and µ, respectively. It is well known that the boundary layer thickness can be
approximated by analytical equations and depends on the Reynolds number, even for
inclined surfaces [54,55]. So far, it is assumed that the particles are small enough not to
disturb the flow, as in the work of Böhm [56,57], who derived an analytical solution for
atmospheric particle collision. However, their terminal velocity must be considered as
they become larger. Estimating the terminal velocity of weather precipitation particles
is challenging, but studies in controlled environments show that these values can be
approximated through empirical equations that are functions of the diameter only [58,59].

Figure 2. Representation of snow particle inside boundary layer of flow over inclined flat plate of
length l and angle.

It can be stated that the flow velocity within the boundary layer is a function of the
surface angle θ and the incoming air velocity U∞, as well as its density and viscosity. Also,
the terminal velocity of the particles vt varies with their diameter D. With these assumptions
made, the relation between the collision efficiency and the remaining parameters can be
written as a function f using the Buckingham Π theorem [60]:

α1 = f
(

ρaU∞l
µ

,
l
D

, l3Nd, θ

)
(16)

The dimensionless numbers show that α1 depends on the Reynolds number Π1 = ρaU∞ l
µ ,

the surface angle, and the particle diameter and concentration, expressed by Π2 = l
D and

Π3 = l3Nd, respectively. This leaves the function f to be defined through the interpolation of
numerical and/or experimental simulations, which will be discussed later in this paper.
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2.2. Sticking Efficiency (α2)

The interaction between snow particles in suspension and inside clouds has been
studied for the purpose of modelling climatic precipitation at the atmospheric level [61].
Analytical solutions for α2, especially for the flat-plate problem, are, however, scarce due
to the complexity of the problem. Makkonen [51] discusses sticking efficiency values for
different types of snow. Supercooled water droplets, for example, freeze when they come
into contact with the surface and therefore do not bounce, leading to α2 ≈ 1. Snow particles,
on the other hand, have a more varied range of behaviour. Dry snow effectively bounces
off surfaces, so its sticking efficiency is very low. The opposite is true for wet snow due
to the layer of water that forms in the contact zone. This effect favours the adhesion of
particles, especially at low speeds and under suitable conditions of temperature and relative
humidity. Despite the lack of theoretical models, empirical relationships based on wind
speed observations provide a lead for implementing α2 in numerical snow accumulation
models [62]. A common practice is to consider wet snow as rime ice, with α2 = 1, to
prevent the growth of the snow layer from being underestimated. The need for more
accurate models of sticking efficiency motivates work in this area. One of the limiting
factors identified is the absence of consistent climate data so that correlations between α2
and temperature and relative humidity can be drawn. It is expected that a similar setup to
the one that produced the data shown in Figure 1 will be able to elucidate this issue.

2.3. Accretion Efficiency (α3)

The heat balance equation during the accumulation of snow on a given surface must
be formulated so that the value of α3 can be determined. Makkonen [51] and Poots and
Sakamoto [63] address this issue for power cables. The proposed models consist of the heat
flux terms relevant to their respective applications, which is not necessarily the same for the
case of AV sensing surfaces. Ohmic heating, for example, is included in the heat exchange
equation of Poots and Sakamoto [63] due to the electric current carried by the power lines.
An adaptation of this model for the automotive context will therefore not account for this
term. Makkonen [51] includes air friction heating in his formulation, but he also states that
this term can be negligible, as its values are only relevant to flow regimes encountered in
aerospace. Although an equation for frictional heating is provided, it takes into account
the recovery factor for the viscous heating of the body, which is known for cylinders but
can vary drastically for flat surfaces. For simplification purposes, this term can also be
overlooked at first glance. A heat flux equation of wet snow accretion appropriate to the
topic under discussion can take the following form:

QF −QC −QE −QL −QS = 0 (17)

where QF is the latent heat released by freezing at the ice–water interface:

QF = (1− λ)α3FLF (18)

where F = α1α2W|V| is the flux density of water to the surface, LF is the water’s latent heat
of freezing, and λ is the fraction of liquid in the snow layer. QC is the sensible heat loss to
the air:

QC = h(ts − ta) (19)

which is a function of the convective heat transfer coefficient h, the temperature of the icing
surface ts, and the air temperature ta. QE is the heat loss by evaporation:

QE =
hεLe

Cp p
(es − ea) (20)

where ε = 0.622 denotes the ratio of the molecular weights of dry air and water vapour,
Le is the latent heat of vaporization, es is the saturation water vapour pressure over the
accretion surface (es = 61.7 kPa), ea is the ambient vapour pressure in the airstream, which
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is a function of temperature, cp is the specific heat of air, and p is the air pressure. QL is the
heat loss in heating the supercooled water to freezing temperature once it hits the surface:

QL = FCw(ts − td) (21)

with Cw as the specific heat of water and td representing the impacting droplets. Makkonen [51]
affirms that td can be assumed to be equal to ta for supercooled raindrops. Finally, QS is the
heat loss due to radiation:

QS = σa(ts − ta) (22)

where σ = 5.67× 10−8 Wm2 K−4 is the Stefan–Boltzmann constant, and a = 8.1× 107 K3

is the radiation linearization constant. By entering the individual expressions of the heat
exchange terms into Equation (17) and assuming td = ta, α3 can be derived as

α3 =
1

(1− λ)FLF

[
(ts − ta)(h + σ + FCw) +

hεLe

Cp p
(es − ea)

]
(23)

The challenge in implementing this model remains the estimation of the liquid fraction
λ and the convective heat transfer coefficient h. With respect to the former, previous work
suggests that λ = 0.3 is a good first approximation [64,65]. Nevertheless, new methods
could be developed to assess this parameter.

Regarding the heat transfer coefficient, attempts were made to obtain a theoretical
model, with reasonable results for cylindrical bodies [29]. However, it was observed that
values depend strongly on the shape and roughness of the icing surface. It is therefore
agreed that the best approach to estimating h is to employ an empirical model based on
observations of the configuration studied. The scope of the WoW project includes climate
chamber tests using thermal cameras to analyze snow accretion on flat plates in order to
feed Equation (23) with suitable values for this parameter.

3. Model Architecture and Experimental Apparatus

Equation (14) provides a potential analytical approach to quantifying the evolution
of snow accumulation on moving surfaces with various orientations. The next stage in
its implementation is to define an architecture that illustrates the procedure for obtaining
the model parameters experimentally. Figure 3 shows a flowchart summarizing the steps
involved in the processing of sensor data to assess the rate of snow growth on a given sur-
face. The experimental setup consists of three distinct modules for full-scale measurements.
The first module consists of a test vehicle instrumented with a Vaisala WXT530 Weather
Transmitter , an Airmar WX220 weather station , and two Laser Precipitation Monitors
(LPM) from Theis Clima oriented at 0◦ and 90◦. The vehicle will record weather data as it
travels along a track located at the Weather Farm land provided by Ontario Tech University
in northern Oshawa, Ontario. In the vicinity of the course, two meteorological towers
also equipped with Vaisala WXT530 transmitters and Theis LPM disdrometers, mounted
at 0◦, will serve as a static referential from which correlations between its measurements
and those coming from the vehicle will be drawn. A Freefly Alta X drone adapted as
a portable weather station will complement the database with measurements from an
additional Vaisala WXT530 while it hovers still. By varying the geographical position
of the drone, the coverage radius of the experimental setup can be defined. Correlation
analysis between data obtained by the drone and the remaining static benchmarks will
indicate the maximum distance at which the output of the instruments shows agreement
and suggest a set of correlation coefficients to be used. The drone will also be equipped
with a thermal camera for monitoring the layer of snow being formed on strategic surfaces
of the vehicle during the experiments. In recent experimental campaigns, 3 GoPro cameras
were installed on distinct surfaces of the test vehicle to measure the thickness of the snow
layer formed during the tests. The cameras were mounted so as to monitor the front and
rear windshields and the hood of the vehicle. Table 1 lists the experimental apparatus at
the disposal of the WoW project, along with the data generated by the set of instruments.
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Figure 3. Architecture of the snow accretion model on moving vehicles.

Table 1. Experimental setup of the WoW project.

Asset Sensors Quantity Measurements

WoW Vehicle

Airmar WX220 weather station 1 Wind speed and direction, temperature,
and GPS data

Vaisala WXT530 weather transmitter 1 Wind speed and direction, temperature, relative
humidity, and air pressure

Thies Laser Precipitation Monitor (LPM) 2 Particle size distribution and particle
speed distribution

GoPro camera 3 Snow deposition depth

MET Tower
Vaisala WXT530 weather transmitter 1 Wind speed and direction, temperature, relative

humidity, and air pressure

Thies Laser Precipitation Monitor (LPM) 1 Particle size distribution and particle
speed distribution

WoW Drone
Vaisala WXT530 weather transmitter 1 Wind speed and direction, temperature, relative

humidity, and air pressure
Thermal Camera 1 Thermal imaging

Direct measurements allow the parameter W of the analytical model of dM
dt to be

obtained through Equations (10)–(12). However, new models are expected to be developed
based on measurements of LWC and snow particle density for more accurate results. In
addition, the vectors of the wind velocity and the displacement of the target surface, re-
quired for computing the integral of Equation (14), can be obtained from the meteorological
towers and GPS data, respectively. The projection of the particle velocity on the analyzed
surface can be estimated by the scalar product between the wind velocity vector, obtained
by the Vaisala WXT530 anemometer on the meteorological tower, and the moving surface
vector of S, represented by the vehicle velocity vector. The tower’s weather transmitter also
plays an important role in evaluating the criterion presented by Equation (4) for wet snow
formation. In the event of dry snow, the α term is set to zero, as no accumulation takes place
on moving surfaces. Otherwise, numerical methods should be employed, as experimentally
obtaining the independent values of α1, α2, and α3 is challenging. The next sections of this
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paper will discuss strategies for this task currently being implemented in the full-scale data
processing chain.

4. Perspectives and Preliminary Results

Experimental research on the snow accretion impact on vehicles is notably at an
early stage of development, primarily due to the challenges in securing suitable test
facilities and the inherent risks associated with vehicular navigation in snowy terrains.
Alternatively, laboratory environments can substitute for outdoor field tests, offering more
control on tested parameters. Given the challenges and high costs associated with testing
in actual environments, a controlled setting such as an enclosed track or chamber equipped
with machines capable of generating artificial rain, fog, or snow can closely replicate
environmental conditions. Based on these benefits, the WoW project’s other scope aims
to investigate how to enhance ADAS sensor performance and AV safety under adverse
weather in the ACE climatic wind tunnel at Ontario Tech. This simulation aims to pinpoint
adaptive control strategies that can mitigate the impact of Weather Design Cases (WDCs)
on vehicles [66]. In addition to outdoor climate measurement campaigns to define the
WDCs, a series of indoor experiments have been designed to evaluate the performance of
snow guns in replicating real snowfall. As input parameters that can be controlled within
ACE’s facilities, air temperature and relative humidity, the flow rate of water sprays, and
particle density and size can be cited.

To investigate the accumulation over a moving body subjected to various environ-
mental conditions, a set of experiments was meticulously designed and conducted within
the ACE Large Climatic Chamber, notably in the absence of wind, to isolate the effects of
temperature and artificial snowfall. The experimental protocol was carefully crafted and
focused on monitoring artificial snow build-up on a horizontal surface (zero degrees) while
varying the temperature inside the chamber and the flow rate of the snow gun. For this,
high-resolution IP cameras were strategically positioned to monitor the sample, enabling
real-time documentation of snow accumulation under varying experimental conditions.
The preliminary goal is to derive an effective value for alpha from this dataset. An initial
analysis of the results points to α = 0.541 when the flow rate of the snow gun was set to
4 gallons per minute (GPM), and the room temperature was maintained at −10 ◦C. In
addition, a second experimental campaign was carried out to investigate the accumulation
of snow on inclined surfaces. Figure 4 shows the experimental setup of the most recent
campaign. As new results are generated, it is expected that the work will lead to progress
in generating realistic snowfall indoors.

Following the tests, these experimental results will be used to calibrate numerical
simulations aimed at determining all three alpha components for wide ranges of temper-
ature and relative humidity. A CFD model based on a coupled solution between Ansys
Fluent, for solving Navier–Stokes equations in a fluid medium, and Altair EDEM software,
a Discrete Element Method (DEM) solver, has been identified as a promising strategy
for snow accretion studies with automotive applications. The work by Xiong et al. [67]
used this method to investigate how dust accumulates over solar photovoltaic (PV) panels
by simulating particle collisions against flat surfaces at various angles of inclination. A
full DEM approach was presented by Sai Tanneru [68] to study snow particle adhesion at
different angles of repose. In this work, parameters like Young’s modulus, surface adhesion,
and friction coefficients are used on granular snow particles to generate angle-of-repose
values. The convective heat transfer coefficient is critical in determining α3, following
Equation (23), and the surface convective heat transfer and its effect on accumulation can
be observed in Ansys Fluent, potentially helping with an estimation of this quantity. Based
on the numerical results, the estimated values of the alpha coefficients will be coupled to
the precipitation flux model by Carvalho and Hangan [44], which is designed to compute
the precipitation rate on inclined surfaces in motion. As an illustration of what would be
expected in terms of monitoring the growth rate of snow layers on vehicle surfaces, the
preliminary effective value of α = 0.541 found in the indoor tests was used to generate
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synthetic values for dM
dt , as shown in Figure 5. Outputs from the model in Equation (14)

fed with experimental data collected on March 7th 2022 at GM’s MATT test track showed
good agreement when compared with direct precipitation rate readings from an FD70
disdrometer. Table 2 shows the Pearson correlation coefficient [69] values between the
two results. Despite the high coefficients in both test cases, the correlation with the vehicle
in motion is slightly lower. This might have been induced by aerodynamic forces linked to
the flow around its structure, as the instrument was not designed as an embedded system
for dynamic measurements. Despite this limitation in relation to the equipment, the overall
performance of the model is considered satisfactory, as the model’s predictions and the
disdrometer measurements show a correlation of more than 0.88 over 10 min of testing.
This demonstrates the model’s responsiveness to variations in weather conditions. In terms
of the mean absolute error (MAE), the static case showed a greater value compared to
dynamic measurements. As can be seen in Figure 5 (top), after 300 s of testing, when low
levels of snowfall are encountered, the disparity between the signals increases. During
this period, the maximum error between theoretical and experimental values reaches 60%.
Given that the levels of precipitation recorded during this trial were on average 44% lower
than in the case of 80 km/h, this error is likely due to the low measured values reaching
the instrument’s resolution threshold. However, once the vehicle encountered higher snow-
fall (bottom of Figure 5), which is the critical case in terms of accumulation, the values
generated by the model approach those obtained experimentally. This can be observed in
Figure 6, which shows the error between disdrometer readings and amounts predicted by
the model over time throughout the dynamic test case. The values are plotted against the
instrument output signal to highlight that the error is reduced when the precipitation rate
is high. Other factors that can explain the divergence between the results may be associated
with the hypothesis of the spherical shape of the particles, which directly influences the
calculation of the total volume of snow encountered. To address this, characterization
campaigns of the disdrometer combined with snow particle visualization techniques could
provide elements to improve the accuracy of the model.

Figure 4. Indoor experimental setup at ACE climatic chamber.

The final goal is to refine the snow accretion equation by setting accurate values for
Makkonen’s coefficients through the numerical models calibrated by indoor experiments,
which faithfully reproduce the events encountered outdoors. For this, the results will
be cross-checked with a set of full-scale experiments presently running at Ontario Tech’s
Weather Farm, where a test vehicle has been equipped with two disdrometers mounted
with distinct orientations and cameras to monitor the growth of the snow layer, in addition
to meteorological towers providing wind speed and direction data, as described in Table 1.
These sensors are capable of measuring the distribution and terminal velocity of snow
particles, allowing for the calculation of precipitation amounts. These data will then be
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utilized to corroborate the analytical model. Additionally, the vehicle is equipped with
three GoPro cameras to record snow accumulation on various critical surfaces of the vehicle
in real time. This setup not only captures the total snow accumulation over a certain period
but also provides data on the rate of snow accumulation. Other instruments on the vehicle,
such as the Airmar WX220 weather station and Vaisala WXT530 weather transmitter sen-
sors, measure wind speed in three components, temperature, vehicle positioning, relative
humidity, and atmospheric pressure, offering a comprehensive analysis of environmental
conditions, as can be seen in Figure 7. Alongside this vehicle, there are two stationary
towers equipped with the same types of sensors to measure identical properties. These
will be used to compare results and determine the impact of movement on precipitation
and accumulation.

Figure 5. A comparison between normalized Vaisala FD70 precipitation rate direct readings and the
theoretical mass growth rate using α = 0.541. At the top, data collected with the WoW test vehicle at
rest. Below, measurements performed at a driving speed of 80 km/h. In both cases, the disdrometer
was mounted horizontally. For more details about the experiment, see Carvalho and Hangan [44].

Table 2. Evaluation of the model’s performance compared to measurements from the Vaisala
FD70 disdrometer.

Driving Speed (km/h) Correlation Coefficient Mean Absolute Error (MAE)

0 0.934 0.188

80 0.889 0.109



Atmosphere 2024, 15, 548 14 of 17

Figure 6. Model error over time of test case at 80 km/h plotted against precipitation rate measure-
ments from Vaisala FD70 disdrometer. Results show negative correlation between quantities, as error
tends to rise when precipitation intensity decreases.

The results generated throughout the Weather on Wheels project are expected to
validate the proposed proof of concept, where a network of low-cost meteorological towers
can be used to map, with high accuracy, the level of precipitation perceived by vehicles on
nearby roads. In a future where most vehicles will have autonomous features, it is possible
to imagine a means of communication between them and the nearest weather station. By
combining measurements of wind and weather precipitation obtained by the tower with
GPS data from the vehicles, the snow accretion model can be used to predict the level of
build-up on the latter and set safety operational thresholds.

Figure 7. The WoW vehicle for outdoor experiments along with the MET tower at Ontario Tech’s
Weather Farm.

5. Conclusions

The work carried out throughout the Weather on Wheels (WoW) project represents
an important step forward in terms of mitigating adverse weather effects on the operation
of autonomous vehicles. The architecture proposed in this paper introduces the full-scale
climate data processing chain for determining the growth rate of snow layers on critical
surfaces. Discussions on existing models with applications other than the automotive sector
provide an insight into elements that require refinement, such as estimating the fraction
of liquid water in snow particles and appropriate values for the heat transfer coefficient.
Weather data will be collected simultaneously between three project assets developed by
the ACE engineering team: the WoW test vehicle, the meteorological tower, and a drone
adapted for weather measurements. This experimental apparatus will enable correlation
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analysis between moving and static referentials, as well as feeding the project database for
training artificial intelligence models. In addition, numerical simulations are envisaged
to determine the collision, sticking, and accumulation efficiencies required for the overall
model to be effective. As the experimental and numerical modules of the WoW project
progress, the results are expected to provide important elements for the comprehension of
snow deposition on vehicles in motion. It is envisaged that both of these strategies will be
devised to ensure that cameras and/or LiDAR devices remain operational and increase
road safety during intense weather precipitation episodes.
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