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Abstract: The Huangling region is located in the central part of the Chinese Loess Plateau, which is
sensitive to climate change due to the transitional characteristics of the natural environmental zone in
which it is located. In this study, we utilized a spore–pollen analysis of the Tianjiahe (TJH) profile in
Huangling to apply the pollen–climate factor conversion function method. This approach allowed
us to quantitatively reconstruct the paleotemperature and paleoprecipitation of the Huangling area
during the Middle and Late Holocene. The results show that the Huangling area experienced four
climatic stages during the Middle and Late Holocene, including mild and slightly humid → warm
and humid → warm and slightly humid → warm and humid. Except for the period of 5.3–4.72 kaBP,
during which the climate was relatively cool and dry compared to the present, the climate in the
remaining period (4.72–0.03 kaBP) was warmer and more humid than that of the present. The above
results provide an important insight for further exploring the mechanism of paleoclimate change and
predicting future climate change.

Keywords: spore–pollen; pollen–climate factor conversion function; paleoclimate; quantitative
reconstruction; Holocene

1. Introduction

Over the past 100 years (1906–2005), the global average surface temperature has
increased by approximately 0.74 ◦C [1]. It has received widespread attention from the scien-
tific community and the public due to global warming and its consequences, such as glacier
melting and rising sea levels. Understanding the driving mechanisms of climate change is
crucial to studying the causes of global warming and formulating corresponding policies.
Recognizing past temperature changes, especially during warm periods, is important in
understanding climate change mechanisms. Instrumental temperature data are limited to
records starting from 1850 A.D. Prior temperature variations are primarily inferred from
sedimentary proxies such as ice cores, stalagmites, and loess. Therefore, conducting quanti-
tative research on paleoclimatic elements plays a vital role in understanding the pattern of
past climate change and reducing the uncertainty of future climate change predictions [2].

As one of the three pillars of international paleo-global change research, along with
deep-sea sedimentation and polar ice cores, the loess of China contains abundant paleo-
climate information [3–7]. Considering the high population density in the Loess Plateau
region and its direct influence by the East Asian monsoon climate system [1], reconstructing
the paleoclimate changes in the loess region during the Late Quaternary period can provide
crucial evidence for understanding the mechanisms of climate change, predicting future
climate change, and facilitating human adaptation. Since the 1990s, numerous studies have
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been conducted by scholars to quantitatively reconstruct the paleoclimate of the Loess
Plateau during the Late Quaternary period. These studies utilize various physicochemi-
cal and biological indicators found in the Quaternary loess in China, including magnetic
susceptibility [8–10], spore–pollen [11], phytoliths [12,13], free and total iron [14,15], and
microbial lipids [16,17], among others. Substantial progress has been made in quantitative
paleoclimate research, with the results generally suggesting that the quantitative reconstruc-
tion using biological indicators is reliable [10]. As one of the bio-indicators, spore–pollen
can be preserved continuously in large quantities in sediments due to its characteristics
of corrosion resistance, easy dispersal, and high yield in the spores and pollen of plants.
Therefore, it is commonly used to recover paleo-vegetation succession and reconstruct
paleoclimate evolution as climate proxies [18].

The evolution of paleoclimatic reconstruction methods based on spore–pollen data has
accelerated due to the widespread application of statistics and mathematics in biological
research, advancements in computer technology, the enhancement in global vegetation
and meteorological databases, and the ongoing development and expansion of modern
spore–pollen databases. These factors have collectively propelled the transition towards
more quantitative approaches in paleoclimate reconstruction. Numerous reliable quanti-
tative reconstruction methods for paleoclimate have emerged. The widely used domes-
tic and international methods include the spore–pollen-complexity–climate conversion
function [19,20], pollen–climate factor conversion function [21–23], pollen–climate corre-
spondence analysis [24–26], pollen–climate response surface modeling [27,28], coexistence
factor analysis [29–31], and other factors. Kay [32] utilized the conversion function to
study the change in summer temperature since the Middle Holocene in northern Canada.
Andrews et al. [33] used 19 pollen types to establish the conversion function with five
climate factors, quantitatively analyzing the climate change since the Middle Holocene
in the eastern Arctic region of Canada. Adam et al. [34] used the pollen–climate trans-
formation function method to investigate the temperature and precipitation changes in
Clear Lake in California, the United States, since the last glacial cyclone. Seppa et al. [35]
used 304 topsoil pollen samples from Finland, Norway, and Sweden to quantitatively
reconstruct the July mean temperature and annual precipitation in northern Finland since
9900 years ago by using the transformation function established by Weighted-averaging
Partial Least Squares Regression (WA-PLS). Seppa et al. [36] quantitatively reconstructed
the paleotemperature and paleoprecipitation since the Holocene in the Toskljavri area, Fin-
land, using the transformation function. Since the beginning of the 20th century, Chinese
scholars have also achieved significant results in Quaternary paleoclimate research using
the abovementioned methods. Tong Guobang et al. [37–39] quantitatively reconstructed the
Quaternary paleoclimate of the Longguan Lake area, the Taibai Mountains, and the Heqing
Basin in Yunnan Province. Song Changqing et al. [40] established a pollen–climate factor
conversion function for northern China and quantitatively reconstructed the paleoclimate
since the Holocene in the central part of Inner Mongolia using the function. Wang Fengyu
et al. [41] restored the Holocene paleoclimate of the Chasuqi peat deposition profile using
pollen–climate response surfaces. Xu Qinghai et al. [42,43] reconstructed the paleoclimate of
the Daihai Basin and the Yanshan area in the past few thousand years. Cai Yongli et al. [44]
reconstructed Shanghai’s mean annual temperature and precipitation series 8500 years ago.

The Huangling area is located in the central part of the Chinese Loess Plateau, a
semi-arid and semi-humid region in the warm–temperate zone. Due to the transitional
characteristics of the natural environment zone in this area, it is susceptible to climate
change, especially the fluctuation of climate dryness and wetness, which directly impact
the turnover of forests and grassland vegetation. This creates the primary conditions for
using a spore–pollen analysis in reconstructing the paleoenvironmental and paleoclimate.
Using the Tianjiahe (TJH) profile in the Huangling region of the Chinese Loess Plateau
as a typical example (Figure 1), a high-resolution spore–pollen analysis and the pollen–
climate factor conversion function are employed in this study to quantitatively reconstruct
temperature and precipitation changes in the Huangling region during the Middle and
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Late Holocene. This study aims to explore the pattern of paleoclimatic change in the
Loess Plateau during this period, providing essential evidence for further exploring the
mechanism of paleoclimate change and predicting future climate change.
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Figure 1. Geographical location of TJH profile.

2. Overview of the Study Area

The Tianjiahe (TJH) profile is located on the second terrace of the Luohe River and
is about 13 km southeast of Huangling County. The profile is 8.8 m high and contains
three layers of black loam soils and four layers of loess units. The specific lithological
characteristics of the profile are described as follows (Figure 2):

(1) Loess Unit L0-1

0–0.50 m: Human tillage layer.
0.50–2.20 m: Gray-yellow muddy silty sand, loose and porous, and homogeneous

texture, with developed root holes and wormholes.
2.20–4.10 m: From top to bottom, color ranges from light gray to gray, and lithology

grades from silty sand to subclay, loose and porous, with abundant mycelium and occa-
sional calcareous nodules (3–4 cm in size). Some wormholes are partially filled with clay.

4.10–4.20 m: Transitional junction layer, slightly lighter in color, with localized 1 cm
sized calcium nodules.
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(2) Paleosol Unit S0-1

4.20–5.00 m: The first layer of black loam soil, gray-black, has abundant mycelium, a
hard and dense structure, and many root holes and wormholes developed.

(3) Loess Unit L0-2

5.00–5.30 m: Black loam soil with weak soil properties (or silty sand), light gray-black,
with abundant mycelium, hard texture, dense structure, localized calcareous nuclei, and
wormhole development.

(4) Paleosol Unit S0-2

5.30–5.80 m: Second layer of black loam soil, dark gray-black, with abundant mycelium,
a hard, dense structure, and 1–2 cm of calcium nodules visible at the top, with wormhole
development.

(5) Loess Unit L0-3

5.80–6.20 m: Gray-yellow silty sand with weak soil properties, local with wormhole
development, loose and porous.

(6) Paleosol Unit S0-3

6.20–7.68 m: Third layer of black loam soil, dark gray-black, with abundant mycelium,
dense structure, and extensive wormhole development.

(7) Loess Unit L0-4

7.68–7.95 m: Gray-yellow silty sand with a loose texture and root, wormhole
development.

7.95–8.25 m: Gray-brown irregularly shaped clay, lenticular-like, and slightly reddish-
brown, with mycelium development, locally containing clay grains (volume about 30 × 60 cm).

8.25–8.80 m: Grayish-yellow muddy silty sand, the upper layer of the binary structure.
Below 8.80 m: A binary structure of sand and gravel.
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3. Materials and Methods
3.1. Spore–Pollen Analysis

In the Tianjiahe (TJH) profile, a total of 100 spore–pollen samples were analyzed. The
samples underwent chemical treatment with acid and alkali in the laboratory, followed
by neutralization through water exchange. Subsequently, centrifugation was performed,
and flotation was carried out in the centrifuge using a heavy liquid with a specific gravity
of 2.1 or higher. Subsequently, the samples were diluted with glacial acetic acid aqueous
solution, concentrated, washed to neutrality with pure water, and transferred to test tubes.
Finally, movable slides were prepared, observed, identified, and counted under a biological
microscope. A total of 9062 pollen samples from terrestrial plants were counted. A total of
9062 pollen grains were counted, averaging 91 grains per sample. The total concentration
of spore–pollen averaged 23 grains/g per sample. A total of 48 families and genera of
plant pollen were found and identified, including tree plant pollen from 11 families and
genera, shrub plant pollen from 5 families and genera, herb plant pollen from 25 families
and genera, fern spores from 6 species and genera, and one concentricystis.

3.2. Chronological Analysis

Eight samples at depths of 2.40 m, 3.95 m, 4.28 m, 4.72 m, 5.40 m, 5.70 m, 6.40 m, and
7.52 m were selected for radiometric 14C chronology testing in the Tianjiahe (TJH) section,
which was completed by the Laboratory of Scientific and Technological Archaeology and
Conservation of Cultural Relics at the School of Archaeology, Wenbo, Peking University.
Based on the concordance analysis, five results of high reliability were selected (Figure 2).

3.3. Statistical Methods
3.3.1. Cluster Analysis

A cluster analysis is a common data analysis method [45,46], whose main purpose is to
divide objects in a dataset into several categories, so that objects within the same category
have higher similarity, while objects between different categories have lower similarity.
Common clustering algorithms include K-means clustering, hierarchical clustering, density
clustering, etc. Different clustering algorithms are suitable for different types of data and
problems. This study is based on the spore pollen percentage data of the Tianjiahe (TJH)
section, determines the clustering units and variables, and uses the hierarchical clustering
method for the cluster analysis. Finally, different spore–pollen combination zones are
divided based on the affinity relationship of spore–pollen assemblages.

3.3.2. Multiple Regression Analysis

A regression analysis is one of the most common statistical analysis methods [47–49],
which is to study the correlation between random variables through a set of (univariate
regression) or multiple sets of (multiple regression) experimental (or observational) data,
and establish a mathematical model for prediction or control. A regression analysis can be
divided into a linear regression analysis and nonlinear regression analysis. When applying
regression analysis methods to palynological research, linear regression (usually multiple
linear regression) is used to establish pollen–climate factor conversion functions.

3.3.3. Pollen–Climate Factor Conversion Function

As a simple method to establish functional relationships for quantitative research on
paleoclimate and the paleoenvironment, the pollen–climate factor conversion function has
been widely used in various regions [50–52]. The quantitative reconstruction of paleo-
climate was conducted using the pollen–climate factor conversion function method [53],
coupled with the spore–pollen data obtained in this study. The pollen–climate factor
conversion function method uses the topsoil spore–pollen data to carry out mathemati-
cal statistics, establish the pollen–climate factor conversion function through a stepwise
regression analysis, and then apply the conversion function to the spore–pollen data of
the borehole cores and profiles to obtain the values of the paleoclimate parameters. In
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developing the conversion function, stepwise regression was conducted using climate
factors as the function and various pollen types as the variables. Each regression equation
was iteratively calculated 70 times, ranging from 0.1 to 7.0 with an increment of 0.1 for
each increase in F1 and F2. Finally, the regression equations with the smallest regression
coefficient and the largest complex correlation coefficient of the values of F1 and F2 were
selected to be the final conversion functions.

Drawing from the analysis of 215 topsoil spore–pollen samples from northern China,
Song Changqing et al. (1997) [40] formulated a pollen–climate factor conversion function:

R = 580.291 + 9.3X2 + 6.3X3 + 1.8X5 + 4.6X6 − 1.4X7 − 1.5X8 − 9.3X9 − 1.9X10 − 4.4X11 + 7.6X12 − 10.9X13 (1)

T = 5.441 − 0.079X1 + 0.073X2 + 0.04X5 − 0.08X7 − 0.056X8 − 0.013X9 − 0.014X10 + 0.018X12 (2)

where R is the average annual precipitation, T is the average annual temperature, X1 is
Betula, X2 is Querus, X3 is Juglans, X4 is Corylus, X5 is Pinus, X6 is Carpinus, X7 is Picea, X8
is Cyperaceae, X9 is Ephedra, X10 is Artemisia, X11 is Chenopodiaceae, X12 is Compositae,
and X13 is Gramineae.

Due to the lack of topsoil spore–pollen data and the fact that the study area coincides
with the geographic space of the topsoil samples of the pollen–climate factor conversion
function conducted by Song Changqing et al. (1997) [40], this study borrows the pollen–
climate factor conversion function of northern China by Song Changqing et al. (1997) [40]
to quantitatively reconstruct the paleoclimate of the Huangling area since the Holocene.

4. Results
4.1. Characterization of Spore–Pollen Assemblages

According to the results of the statistical analysis of microscopic spore–pollen identifi-
cation, 86 samples met the statistical criteria (≥50 grains). A set of 37 quantitative indicators
was selected for the analysis, encompassing various aspects such as the total concentra-
tion of spore–pollen, pollen of tree plants, pollen of shrub plants, pollen of herb plants,
spores of ferns, Pinus, Betula, Juglans, Moraceae, Rhus, Querus, Ulmus, Salix, Gramineae,
Chenopodiaceae, Compositae, Artemisia, Echinops Type, Aster, Taraxacum type, Legumi-
nosae, Ranunculaceae, Thalictrum, Polygonum, Solanaceae, Rosaceae, Convolvulaceae,
Zygophyllaceae, Labiatae, Humulus, Urticaceae, Cyperaceae, Typha, Selaginella, S.Sinensis,
Pteris, Adiantum, and Polypodiaceae. The spore–pollen percentage content pattern was
made by using the sporophyte-specialized mapping software Tilia 2.0.45. According to
the cluster analysis, the Tianjiahe (TJH) profile can be divided into four sporophyte zones
from bottom to top. The characteristics of each sporophyte zone, as well as the reflected
vegetation and climate, are as follows (Figure 3):

Spore–pollen zone I (8.8–7.52 m): The total concentration of spore–pollen was 18 grains/g,
indicating a relatively low spore–pollen count. Herbaceous plant pollen was dominant in
the spore–pollen assemblage, with an average content of 54.73%, including families such as
Ranunculaceae, Rosaceae, Chenopodiaceae, Artemisia, Gramineae, and Thalictrum. This was
followed by tree plant pollen, with an average content of 38.88%, and the pollen composition
contained Pinus, Betula, Ulmus, Juglans, etc. In addition, there was a small amount of fern
spores, with an average content of 5.89%, which could be seen in the Selaginella, Pteris,
Polypodiaceae, etc. The average content of pollen in shrub plants accounted for only 0.49%. It
was inferred that the vegetation type at that time was grassland, and the climate was mild
and humid.

Spore–pollen zone II (7.52–6.04 m): The total concentration of spore–pollen was
57 grains/g, indicating a richer spore–pollen count. The spore–pollen combination ex-
hibited an average pollen content of 34.45% from tree plants, primarily dominated by
Pinus, alongside smaller quantities of Ulmus, Betula, and Querus. The average spore
content of fern was 33.17%, mainly dominated by Selaginella. The average pollen content of
herbaceous plant pollen was 32.2%, and the pollen contained Chenopodiaceae, Artemisia,
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Rosaceae, Solanaceae, Ranunculaceae, Cyperaceae, Convolvulaceae, etc. The average
pollen content of shrub plant pollen only accounted for 0.18% of the total spore–pollen. It
is assumed that the vegetation type at that time was grassland, and the climate was warm
and humid.
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Spore–pollen zone III (6.04–4 m): The concentration of spore–pollen was 53 grains/g.
The spore–pollen assemblage was dominated by herbaceous plant pollen with an average
content of 40.2%, and the pollen mainly contained Gramineae, Artemisia, Chenopodiaceae,
Compositae, Humulus, Rosaceae, Ranunculaceae, and others, followed by fern spores with
an average share of 33.05%, dominated by Selaginella, the sparse Polypodiaceae, Adiantum,
S.Sinensis, etc. The pollen of tree plants had an average content of 26.56%, and the pollen
mainly contained Pinus, Ulmus, Querus, Rhus, Betula, etc. On average, shrub plant pollen
accounted for only 0.19% of the total spore–pollen. It is assumed that the vegetation type at
that time was grassland, and the climate was warm and humid.

Spore–pollen zone IV (4–0.05 m): The spore–pollen concentration was 84 grains/g,
indicating the most abundant spore–pollen zone. The fern spore content in the spore–pollen
mix was dominant, with an average of 77.83%, and the spore species were dominated by
Selaginella, sporadic Adiantum, and Polypodiaceae. This was followed by tree plant pollen,
with an average of 14.97%, and the pollen mainly contained Pinus, Ulmus, Moraceae, Rhus,
and Juglans, among others. The average herbaceous plant pollen was 7.2%, containing only
a small amount of Artemisia, Gramineae, Compositae, and Solanaceae. It is assumed that
the local vegetation type is grassland and that the climate is warm and humid.

4.2. Chronological Sequences

Based on the results of chronological tests and sedimentation rates, the approximate
age of each sample was obtained using linear interpolation. The geologic age represented
by each spore–pollen zone was extrapolated: spore–pollen zone I (8.8–7.52 m) corresponds
to 5.3–4.72 kaBP, sporophyte zone II (7.52–6.04 m) corresponds to 4.72–3.91 kaBP, spore–
pollen zone III (6.04–4 m) corresponds to 3.91–2.7 kaBP, and spore–pollen zone IV (4–0.05 m)
corresponds to 2.7–0.03 kaBP. The absence of strata in the early Holocene may have been
caused by river erosion.

4.3. Results of the Quantitative Reconstruction of Paleoclimate

Based on the changing characteristics of spore–pollen assemblages in the Tianjiahe
(TJH) profile, we quantitatively reconstructed the paleoclimate change characteristics
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during the Middle and Late Holocene in the Huangling area, which are described as
follows (Figure 4):
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Stage I (8.8–7.52 m; 5.3–4.72 kaBP): This stage has the lowest mean annual temperature
and the smallest mean annual precipitation in this profile. The mean annual temperature
fluctuates between 3.97 and 10.83 ◦C, with a mean annual temperature of 8.4 ◦C. The mean
annual precipitation fluctuates between 390 and 584 mm, with a mean annual precipitation
of 466 mm. It can be inferred from the above data analysis that the climate of that period
was cooler and drier than today.

Stage II (7.52–6.04 m; 4.72–3.91 kaBP): Compared with the previous period, the climate
in this stage gradually transitions to warm and humid and predominantly warm and
humid. The mean annual temperature and mean annual precipitation fluctuated greatly,
with the mean annual temperature fluctuating between 8.42 and 18.46 ◦C and the mean
annual precipitation fluctuating between 473 and 1038 mm. The mean annual temperature
during this stage was 11.59 ◦C, and the mean annual precipitation was 603 mm.

Stage III (6.04–4 m; 3.91–2.7 kaBP): The mean annual temperature in this period
increased, and the mean annual precipitation decreased compared to the previous period.
The mean annual temperature fluctuates from 8.02 to 17.86 ◦C, and the annual precipitation
fluctuates from 256 to 1006 mm during this period, with a mean annual temperature of
12.79 ◦C and a mean annual precipitation of 552 mm. The mean annual rainfall of the
sample at 5.36 m is the lowest in this profile, which is only 255.76 mm, possibly indicating
a drought event.
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Stage IV (4–0.05 m; 2.7–0.03 kaBP): This period has one of the region’s highest tem-
peratures and highest precipitation. The average annual temperature and average annual
precipitation increased compared to the previous period and remained relatively stable with
less fluctuation. The average annual mean temperature in this period was 17.02 ◦C, and the
average annual precipitation was 903 mm. The overall climate was warm and humid.

Overall, the paleoclimate reconstruction results from the sedimentary records indicate
favorable, warm, and humid climate conditions in the Huangling area during the Middle
and Late Holocene period. This is attributed to the enhanced solar radiation in the North-
ern Hemisphere in the summer from the early to Middle Holocene [54,55], leading to a
significant rise in the summer temperature of the East Asian continent and increasing the
gradient of the temperature difference between the land and the sea. This, in turn, caused
the enhanced summer winds in East Asia, bringing in more water vapor and significantly
pushing the rain belt to the northwest.

5. Discussion

The Holocene climate change has always been a hot research topic in the academic
community, and its temperature and precipitation reconstruction provides an important
basis for explaining modern warming and predicting future climate change [56]. In recent
years, in order to obtain paleoclimate evolution information recorded in the Chinese loess in
the Holocene, some scholars have used indicators such as the magnetic susceptibility [57],
free iron/total iron ratio [58], phytoliths [12], organic carbon isotopes [59], Sr/Ca ratio of
biocalcites [60], secondary carbonate Mg isotopes [61], cosmic nuclide 10Be [62], chemical
weathering index [63], spore–pollen [64], terrestrial snail shell cluster isotopes [65], and
microbial lipids [66] to conduct quantitative research on paleotemperature and precipitation
in some classic loess profiles in different regions of the Loess Plateau. Based on the above
quantitative climate reconstruction research results, it is found that the Holocene climate on
the Loess Plateau showed an overall trend of gradually drying out. Among them, during
the early Holocene, the climate warmed up and the East Asian summer monsoon gradually
strengthened. The climate of the Middle Holocene was the wettest, during which the East
Asian summer monsoon was prevalent. The Late Holocene was characterized by an overall
arid climate and a weakening of the East Asian summer monsoon.

Taking the climate reconstruction results in the Weinan region since the Holocene, Li
Jiahao (2022) [67] quantitatively reconstructed the temperature of the Holocene using the
GDGTs’ index, which varied between 13.2 and 20.2 ◦C. Wang Fang (2015) [68] reconstructed
the temperature of the Weinan region using pollen, which showed an overall trend of first
increasing and then decreasing since the Holocene, with a range of −2.82–29.27 ◦C, an
average temperature of about 14.2 ◦C, a precipitation range of 53.7–519.43 mm, and an
average precipitation of 203 mm. Overall, the early Holocene generally in the Weinan region
showed a gradual increase in temperature and precipitation, the Middle Holocene was the
optimal climate period with the highest temperature and the highest precipitation, and
the Late Holocene showed a trend of decreasing temperature and decreasing precipitation,
with violent fluctuations.

The quantitative climate reconstruction in this study shows that the average annual
temperature and precipitation in the Huangling area during the Middle and Late Holocene
are mostly between 8.4 and 17.02 ◦C and 466 and 903 mm, and their climate change is
roughly consistent with the classic Holocene changes. The pattern of change is that during
the Middle Holocene was the best climate period with the highest temperature and the
highest precipitation. Since the Late Holocene, the climate in this area has once again
shown a trend of decreasing temperature and precipitation. Comparing the reconstructed
paleoclimate changes using different indicators, although they reflect similar trends, there
are significant differences in the magnitude and numerical values of the changes. The
differences in the reconstructed results indicate the complexity and limitations of various
indicators in reconstructing paleoclimate.
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6. Conclusions

In summary, the Huangling area has probably undergone four climatic stages during
the Middle and Late Holocene, including mild and slightly humid → warm and humid
→ warm and slightly humid → warm and humid. The quantitatively reconstructed mean
annual temperature and mean annual precipitation in this study area generally ranged
between 8.4 and 17.02 ◦C and 466 and 903 mm, respectively. In contrast, the current actual
mean annual temperature and mean annual precipitation in the study area are 9.86 ◦C and
531 mm. Except for the period of 5.3–4.72 kaBP, which was cooler and drier than today, the
climate in the rest of the period (4.72–0.03 kaBP) was generally warmer and more humid
than that of the present.

The notable distinctions observed in the paleoclimatic indicators during the Mid-
dle and Late Holocene and the contemporary climate in this region imply a discernable
discrepancy between the retrieved paleoclimatic parameters in this study and the actual
parameters. This error is because the pollen–climate factor conversion function is based on
a series of ecological assumptions, which assume a linear relationship between pollen and
climate. In reality, the relationship between pollen and climate is unlikely to be entirely
linear. Therefore, since the Holocene is only a kind of trend, the quantitatively reconstructed
mean annual temperature and mean annual rainfall in the Huangling area represent a
good attempt to quantitatively reconstruct the paleoclimate using mathematical meth-
ods. However, there is still a particular gap in the absolute value of the real quantitative
reconstruction of paleoclimate parameters.
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