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Abstract: The increasing frequency and duration of severe fire events in Australia further necessitate
accurate and timely forecasting to mitigate their consequences. This study evaluated the performance
of two distinct approaches to forecasting extreme fire danger at two- to three-week lead times for the
period 2003 to 2017: the official Australian climate simulation dynamical model and a statistical model
based on climate drivers. We employed linear logistic regression to develop the statistical model,
assessing the influence of individual climate drivers using single linear regression. The performance
of both models was evaluated through case studies of three significant extreme fire events in Australia:
the Canberra (2003), Black Saturday (2009), and Pinery (2015) fires. The results revealed that ACCESS-
S2 generally underestimated the spatial extent of all three extreme FBI events, but with accuracy
scores ranging from 0.66 to 0.86 across the case studies. Conversely, the statistical model tended
to overpredict the area affected by extreme FBI, with high false alarm ratios between 0.44 and
0.66. However, the statistical model demonstrated higher probability of detection scores, ranging
from 0.57 to 0.87 compared with 0.03 to 0.57 for the dynamic model. These findings highlight the
complementary strengths and limitations of both forecasting approaches. Integrating dynamical and
statistical models with transparent communication of their uncertainties could potentially improve
accuracy and reduce false alarms. This can be achieved through hybrid forecasting, combined with
visual inspection and comparison between the statistical and dynamical forecasts. Hybrid forecasting
also has the potential to increase forecast lead times to up to several months, ultimately aiding in
decision-making and resource allocation for fire management.

Keywords: extreme fire danger; fire weather; subseasonal prediction; statistical modelling; climate
drivers; logistic regression; hybrid forecasting; Australia

1. Introduction

Fires are a major hazard in Australia, threatening lives, livelihoods, land, property, in-
trinsic environmental values, ecosystem services, and the economy. Improved management
of fire risk is repeatedly called for by inquiries and royal commissions that follow impactful
fire events [1–4]. Calls for improvement often present as recommendations for more fuel
hazard reduction, including through planned burning, or more advanced fire prediction
and response strategies. Recently, a new fire danger rating system was introduced, replac-
ing the McArthur Forest Fire Danger Index (FFDI) system that has underpinned fire danger
ratings for the past 60 years. Despite repeated calls for improvement and ongoing efforts
to better manage bushfire risk, the scale of disasters continues to increase over time [5,6].
This increase in bushfire risk occurs against a backdrop of climate change, with weather

Atmosphere 2024, 15, 470. https://doi.org/10.3390/atmos15040470 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos15040470
https://doi.org/10.3390/atmos15040470
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-4260-131X
https://orcid.org/0000-0003-4902-1462
https://doi.org/10.3390/atmos15040470
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15040470?type=check_update&version=1


Atmosphere 2024, 15, 470 2 of 22

and climate being two of the primary driving factors [7–9], alongside ignition sources,
time-since-fire, fuel dynamics, and topography [5,10].

Fuel treatment and fire suppression, two of the most effective strategies in sustainable
fire management [11–13], can both be informed through improved fire risk forecasts and
outlooks. Critically, the most damaging fire impacts occur under extreme conditions [7,14],
which are distinguished by high temperatures, low moisture availability, and other partic-
ular meteorological factors. These, in turn, are influenced by large-scale climate drivers
such as the El Niño Southern Oscillation, Indian Ocean Dipole, and Southern Annular
Mode, among others [15]. These drivers have been shown to impact the extremes of
temperature [16–18], fire weather, and fire risk [19,20]. As many of these drivers can be
forecast in advance [21], knowledge of their states could be utilised in forecasting severe
fire danger. In addition, a fine-scale model for predicting fire danger may enable more
targeted preparation focusing on key assets and locations, such as at the wildland–urban
interface (WUI). This would have the benefit of increasing the chances of avoiding large
socio-cultural, socio-economic, or socio-ecological costs while not falling into the ’fire-
fighting trap’ of excluding fire from the environment altogether [6,22]. Fire exclusion and
avoidance has long-term negative implications whereby attempting to exclude fire from the
environment altogether means that productive, frequent low-intensity fires are replaced by
damaging, late-season high-intensity fires due to an overabundance of fuels and changes
to the ecosystem composition [23]. Targeted fire management focused on asset protection
rather than fire avoidance may be a more effective measure overall, made more achievable
by the advance forewarning of a high likelihood of fire where important assets may be
threatened [6,22].

The Australian Bureau of Meteorology routinely issues fire danger outlooks to opera-
tional agencies during the active fire season. These outlooks are driven by the Bureau’s
climate simulation model, which implicitly accounts for the above-mentioned climate
drivers [21]. However, the explicit use of these drivers to develop and inform a statistically
based predictive model has been demonstrated in some cases to accurately depict extreme
and unexpected conditions associated with other aspects of Australian fire weather [24,25].
Highly developed and nuanced physical models of fire behaviour simulation also exist.
Some well-known examples include WRF-fire, FIRETEC [26], and, in Australia, PHOENIX
Rapidfire [27] and Spark Operational [28]. Such models are able to couple fire and atmo-
spheric effects to accurately simulate fire behaviour and spread on short timescales, and
have been shown to be effective in their performance at the WUI [29]. However, while
these are invaluable for the simulation of fires on short timescales, they are not designed to
model or predict fire danger on longer, subseasonal-to-seasonal timescales.

Linear or logistic regression is a simple but often effective method for the statistical fore-
casting of weather phenomena. It is argued in the literature both that non-linear approaches
outperform simple linear or logistic regression [30–33] and, alternatively, that linear mod-
elling shows comparative results with more advanced non-linear techniques [34,35]. Linear
and logistic regression have been used for the prediction of extreme heat [36] and also
for the reconstruction of extreme heat [37] and rainfall [38]. These reconstructions fur-
ther demonstrate the potential for such linear techniques to be used as predictive tools
in their own right in fire risk forecasting, or for the statistical relationships to be used
to improve dynamical forecasting systems [38]. There are limits to the extent to which
climatic processes can be described or explained in terms of linear relationships, as it is
acknowledged [39–41] that many nonlinearities and asymmetries [19,20,42] exist in climate
dynamics. Rainfall, in particular, is vulnerable in this respect, as large rainfall events often
occur on small spatial and temporal scales (e.g., convective cell thunderstorms, cut-off
lows) driven more by sub-synoptic processes. Advantages of linear regression include its
simplicity, which aligns with the parsimony principle, and its transparency. Non-linear
and particularly machine-learning approaches can hide or obscure the nature of the rela-
tionships used to make predictions, thereby making a forecast that is not only unable to
be checked for logic, but which also cannot be learnt from. Considering these respective
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merits and drawbacks, as well as the strong ability of simple techniques to demonstrate
relationships between fire danger and climate processes [19,20], which are well replicated
by more advanced dynamical systems [19,43], we use climate driver indices to develop a
multiple logistic regression model for forecasting cases of extreme fire danger based on
climate driver activity. The application of this model is demonstrated through three case
studies covering recent impactful fire events in Australia—the Canberra bushfires of 2003,
the Black Saturday bushfires of 2009, and the Pinery fire of 2015.

The implication of damage from fire for human-valued assets often occurs most
obviously at the wildland–urban interface (WUI), which is defined as the region where
buildings and so-called “wildland vegetation” meet [44,45]. This is a critical region as
it represents the area where fire is most likely to impact humans and their values. The
worldwide increase in urban sprawl is particularly pronounced in Australia, and this
has resulted in a proliferation of Australian studies highlighting the importance of the
WUI in fire management [45]. The case studies chosen to demonstrate the application
of the proposed statistical model exemplify the importance of the WUI, as all had major
impacts on human communities. Price and Bradstock [46] demonstrate through modelling
that extreme fire weather conditions cause a high likelihood that fires igniting even at
relatively large distances from the WUI (>10 km) will spread to the WUI. A growing
population increasingly encroaching upon undeveloped ecosystems means a growing
focus on predicting fire at or near the WUI will be beneficial for fire management. The
model we propose shows promising results in the regions where the chosen case-study fires
have impacted the WUI and caused the most significant human-related damage. However,
it must be borne in mind that these case studies represent snapshots of the model’s overall
performance and cannot be interpreted as fully representative of its performance at all
timescales or in all locations, fire situations, and seasons, as we discuss further in Section 4.

When both the dynamical and statistical models are compared, these case studies
highlight the strengths and weaknesses of both approaches in extreme fire cases. Through
evaluating the performance of such a model for extreme fire event case studies, and through
comparison with the dynamical hindcasts generated by the Australian Community Climate
and Earth-System Simulator, the novel contribution of our study lies in its demonstration
that considering fire danger outlooks produced by more than one system may result in
more realistic, timely, and effective forewarning of extreme fire weather events and, thus,
its contribution to mitigating the effects of severe wildfires.

2. Materials and Methods

Regression models were derived from climate drivers with a demonstrated strong
influence on fire behaviour metrics (Table 1) [20]. All climate data used to calculate these
indices were derived from the NCEP/NCAR Reanalysis 1 [47] and expressed as anomalies
relative to the 2003–2017 mean. Beyond this normalisation to the 2003–2017 mean, no
further preprocessing was applied to the climate index data. An exception to this is the
MJO, included in the regressions using the individual RMM1 and RMM2 indices. These
indices represent the amplitude and eastward propagation of the MJO from an empirical
orthogonal function analysis of outgoing longwave radiation and zonal wind. The RMM
indices can be combined to express the amplitude and phase of the MJO [48]. In this
study, the individual indices are used separately, where a positive RMM1 corresponds
to phases 4 and 5, a positive RMM2 corresponds to phases 6 and 7, a negative RMM1
corresponds to phases 8 and 1, and a negative RMM2 corresponds to phases 2 and 3.

Table 1. Indices defining climate drivers in an evaluation of their impacts on Australian fire danger.

Driver Driver Name Index Reference Study

MJO Madden Julian Oscillation Real-time Multivariate MJO series 1 and 2 Wheeler & Hendon, 2004 [48]

ENSO El Nino Southern Oscillation NINO-3.4 Trenberth, 1997 [49]

IOD Indian Ocean Dipole Dipole Mode Index Saji & Yamagata, 2003 [50]
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Table 1. Cont.

Driver Driver Name Index Reference Study

SAM Southern Annular Mode Antarctic Oscillation Index Gong & Wang, 1999 [51]

Split-Flow Blocking Blocking Index Pook & Gibson, 1999 [52]

STRH Sub-tropical Ridge High STRH Index Marshall et al., 2014 [16]

Extreme fire danger is represented by the top decile weekly-mean Fire Behaviour Index
(FBI) of the Australian Fire Danger Rating System (AFDRS). This is the index currently used
to express fire danger in Australia. It consists of a numerical scale from 0 to 100+ which
describes the potential hazard from aspects of fire behaviour such as rate of spread, difficulty
of suppression, and risk to life and property [53,54]. Fuel types in the AFDRS are grouped
into eight categories across Australia, all of which have different models for calculating FBI:

• Forest;
• Woodland;
• Grassland;
• Spinifex;
• Mallee-heath;
• Shrubland;
• Buttongrass;
• Pine.

The system was developed based on the characteristics of fire behaviour which were
determined to be the key indicators of fire danger in each fuel type. In most fuel types,
potential fireline intensity was used, but some fuels, such as spinifex and buttongrass, use
other metrics of fire behaviour (e.g., rate of spread [55]). Overall, the aim of the FBI metric is
to indicate the potential hazard from various aspects related to fire behaviour such as rate of
spread, difficulty of suppression, or risk to life and property. Although the Fire Behaviour
Index (FBI) utilises a standardised 1–100+ scale, the underlying thresholds for fire behaviour
metrics, such as fire intensity, exhibit inherent variability across different fuel types. This
scaling approach, while advantageous for simplicity and comparison, unavoidably masks
some nuanced details specific to each fuel type. Furthermore, the calculation of the FBI for
each fuel type necessitates incorporating multiple input parameters, exceeding the scope of
this study. However, we offer insights into several key datasets employed in this study:

• Grassland fuel loads: The state of hindcast fuel loads is characterised based on Köppen
climate zones, and these were assumed to be constant throughout the climatology. This
introduces an element of uncertainty into the hindcast and climatological datasets, as
fuel loads would realistically have varied over the time period. Operationally, fuel loads
and states (including curing) are regularly updated by fire agencies using the Fuel State
Editor tool.

• Time-since-fire: Employed for all fuel types except pine, grassland, and grassy wood-
land, these data extend back to 2003 [56]. Pine, grassland, and grassy woodland use
direct fuel load values, which are (as above) fixed in the hindcast and updated using
observations in operations.

• Generic fuel state: The inputs relied on established models from relevant studies with
tailored adjustments and assumptions in some instances.

• Jurisdictional fuel datasets: These, along with associated research documents, in-
formed decisions regarding overstorey sub-types and coverage values [57].

Comprehensive details on the FBI calculations for each fuel type and the underlying
models are presented in the AFDRS technical guides [55], the Bureau of Meteorology Fire
Behaviour Model Guides [58], and the AFDRS Research Prototype report [59].

For historical (or ‘observed’) FBI, we use the AFDRS climatology computed using
the Australian Bureau of Meteorology’s Bureau’s Atmospheric high-resolution Regional
Reanalysis for Australia (BARRA) reanalysis climate data. The climatology covers the time
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period from 1 January 2003 to 31 December 2017. This time period is shorter than the
accepted 30-year period for defining a climatology, limited by the availability of satellite
data for estimating fuel loads.

The hindcast FBI values used in our study are the forecasted FBI for two- and three-
week lead times, hindcast using the Australian Bureau of Meteorology’s Australian Commu-
nity Climate and Earth-System Simulator—Seasonal forecast system version 2 (ACCESS-S2)
subseasonal to seasonal forecasting and prediction system [21]. It retains the base models
and resolution of the earlier ACCESS-S1 [60] with an improved updated data assimilation
scheme which produces more realistic initial conditions, including time-varying soil mois-
ture data. We use a 42-day integration with three ensemble members, initialised on the
1st, 6th, 11th, 16th, 21st, and 26th of each month. These hindcasts are at daily resolution,
which we express as 7-day running means, consistent with the timescales of fire hazard
forecasts and the Bureau’s multi-week forecasting timescale. The FBI hindcasts, as well
as the climatology, were on a 5 km by 5 km grid, consistent with the Australian Gridded
Climate Data surface observations used at the Australian Bureau of Meteorology.

We performed logistic regression to statistically predict the probability of the occur-
rence of extreme (top-decile) observed FBI from the BARRA climatology. Despite FBI being
a continuous variable, extreme FBI occurrence is treated here as a binary variable, as an
FBI > 90th percentile is either true or false. We first obtained the regression coefficients
using all climate indices as predictor variables. For each case-study, all dates were used
as training data, except the date of the case study event, the inclusion of which would
artificially improve the model performance. In real-world applications, any train/test split
could be used, or, as all data are historical, the full 2003–2017 training period could be
included. Using the regression coefficients fitted in this way, we statistically reconstructed
the probability of top-decile FBI based on the climate index values observed on the date of
the case study. That is, we substituted the weekly-mean observed climate indices for the
date of the case study into the regression equation developed for the training period. This
resulted in a probabilistic forecast showing the chance of top-decile FBI for the week of the
case study. In order to apply standard verification metrics, our verification scheme builds
upon the climatological probability of top-decile FBI, which is 0.1 (occurring 10% of the
time). If the probability of extreme fire danger falls at 0.1 on the logistic sigmoid curve, this
represents the expected probability of extreme FBI throughout the climatology. Aligned
with analyses such as those by Marshall et al. [19] and Taylor et al. [20], this would represent
a probability ratio of one, or no change in the likelihood of extreme fire danger. This being
so, any forecast probability of extreme fire danger greater than 0.1 represents a positive
probability ratio and an increased probability of extreme fire danger occurring, over what
would be expected from the climatology. This can be compared to the idea of a one-in-ten-
year event, where a prediction of >0.1 represents the event occurring more than once in
any ten-year period. Hence, we take 0.1 as the cutoff value for classifying an occurrence or
non-occurrence of extreme fire danger. Any forecast probability exceeding this benchmark
(P(top-decile FBI) > 0.1) is considered a prediction of the event (“1”), while forecasts below
the threshold (P(top-decile FBI) ≤ 0.1) are classified as non-occurrences (“0”).

We compared the performance of the statistical regression model, which was tested
over the entirety of Australia, but with our focus being on the southern regions of Australia,
with the following:

1. The BARRA climatology’s ‘observed’ occurrence of extreme FBI on the date of the
case study, as the verification comparison;

2. The ACCESS-S2 hindcast probability of extreme FBI from the FBI hindcasts initiated
2 and 3 weeks before the case study date. We refer to this as the dynamical prediction
and verify it using the same binary categorisation technique described above.

Both the statistical and dynamical predictions were verified against the BARRA clima-
tology. Quantitative comparisons were derived from the contingency tables (as defined in
Table 2) for each case study and made using three performance metrics [61]. The first is
accuracy, which is a simplistic measure of model performance, especially in scenarios such
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as those where a high number of true negatives can result in very high accuracy despite
underwhelming overall performance. However, accuracy has the advantages of being
intuitive to interpret and widely used, including by the Australian Bureau of Meteorology
as one of their forecast verification tools [61,62] Careful analysis of the entire contingency
table can mitigate some of the limitations of the accuracy metric.

Accuracy =
hits + correct negatives

sum of all predictions
(1)

where
“hit” = extreme FBI observed and forecast;
“correct negative” = extreme FBI not observed and not forecast.
And for Equations (2) and (3),
“miss” = extreme FBI observed but not forecast;
“false alarm” = extreme FBI not observed, but forecast.
In tabular form, this is represented thus:

Table 2. Confusion matrix showing definitions of “hit”, “miss”, “false alarm”, and “correct negative” terms.

Observed

Yes No

Forecast Yes Hit False alarm

No Miss Correct negative

The second performance metric is probability of detection (POD, Equation (2)), which we
used as a way of quantifying the fraction of correctly forecast “yes” events. In this case, the
POD measures the proportion of extreme fire danger gridpoints that were correctly identified
by the model, compared with the total number of observed extreme fire danger gridpoints.
This measure aids in performing a balanced comparison of the statistical and dynamical
forecasts. Although ideally, a forecast should neither over- nor underpredict the chance of
extreme fire danger, as we discuss in Section 5, in these cases of extreme events, it may be of
value to see a ‘worst case scenario’ prediction in addition to the officially issued outlook.

Probability of Detection (POD) =
hits

hits + misses
(2)

However, as the POD measure ignores false alarms, it is necessary to also account for
the rate of false alarms in the model, for which we used the third performance metric, the
false alarm ratio (FAR; Equation (3)) [61,62]. The FAR describes the number of false “yes”
events forecast by the model, compared with the total number of “yes” events forecast:

False Alarm Ratio (FAR) =
false alarms

hits + false alarms
(3)

Additionally, we performed single linear regressions using each climate driver sep-
arately, to qualitatively determine the relative contribution of each climate driver to the
overall statistical prediction model.

2.1. Canberra Bushfires

The Canberra bushfires, which impacted Canberra on 18 January, 2003, were the most
destructive in the city’s history. Burning nearly 160,000 ha, the fires caused four deaths,
destroyed 488 houses [63], and burned nearly 70% of the ACT’s pasture, forest and national
park areas. This fire event contained the world’s first observed fire tornado (or: case of pyro-
tornadogenesis) [64] and pyro-cumulonimbus “eruptions” of unprecedented extremes [65].
These fires occurred against the backdrop of an El Nino [66] and a negative Southern
Annular Mode, causing hot, very dry conditions in southeast Australia. This was further
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influenced by a positive Indian Ocean Dipole mode in the preceding winter/spring [67],
further reducing antecedent rainfall and causing a long-term moisture deficit in both heavy
and fine fuels [66]. Overall, this resulted in sustained very high temperatures, low relative
humidity, low moisture availability, and dry bushfire fuel in the months and days leading
up to the event, with a Forest Fire Danger Index on 18 January 2003 of >50, which fell in the
‘extreme’ category—the highest possible category at the time [66]. The synoptic conditions
on 18 January and on the days prior reflected the ‘quintessential’ setup for extreme fire
hazards in southeast Australia [62,64]. This included the passage of a prefrontal trough and
cold front, causing strong, gusty winds and a change in wind direction. These systems also
influenced the stability of the atmosphere, contributing to the lightning ignition of many
fires and also to the development of pyro-convective firestorms [66,68]. The severe fire
conditions can be seen reflected by the top-decile FBI in eastern and southeastern Australia
for the week of 18 January (Figure 1).

2.2. Black Saturday

On 7 February 2009, a total of 316 fires broke out across the state of Victoria, with
13 developing into “significant” incidents [69,70]. A total of 173 lives were lost, more than
2133 residences destroyed [2], and over 450,000 ha of land burned [70]. These fires caused
the largest direct loss of life from fire in Australia’s history. The day was preceded by ex-
tended extreme heat and dry conditions, with nine of the eleven preceding days exceeding
30 ◦C, and no rainfall recorded since 9 January 2009 [68]. Successive years of below-average
rainfall, part of the Millennium Drought [71], also contributed to the long-term moisture
deficit [72]. Most of the forest areas were long unburned with high fine (<6 mm in one
dimension) fuel loads, resulting in Project Vesta fuel ratings of high to very high (ibid). The
moisture content of fuel was low and grasslands were near 100% cured, all resulting in an
extreme (later recategorised to catastrophic) rating (ibid) using McArthur’s [73,74] Forest
Fire Danger Rating system. The FBI for the week of 7 February 2009 was also above the 90th
percentile in much of southern and southeastern Australia, including the areas of Victoria
where the most significant fires occurred). The Royal Commission which followed the Black
Saturday bushfires resulted in many recommendations and changes to Australian bushfire
management practices, and also prompted the development of the current AFDRS [75].

2.3. Pinery Fire

The Pinery fire ignited on 25 November 2015 and continued to burn until 2 December
2015. This fire occurred in the Mid-North and Barossa Valley regions of South Australia. It
resulted in two fatalities, burned 82,600 ha of land, destroyed or damaged over 1000 houses
and buildings, and caused the loss of millions of dollars worth of crops and livestock [3]. The
event occurred during an El Niño episode, in which a positive IOD developed from late August
to mid-November 2015 [76]. Two high pressure systems moved across the area in the weeks
preceding the ignition, resulting in very high temperatures and dry weather [77], which dried
out the high fuel loads resulting from high rainfall earlier in the month (ibid). The Grass Fire
Danger Index was forecast to reach upper ‘Extreme’ levels at 148 and peaked during the day
at 200 [78]. Similarly to both the Canberra 2003 and Black Saturday fire events, the synoptic
conditions on 25 November included the passage of a prefrontal trough [68,78]. In this case, the
passage of the trough resulted in a change in wind direction which transformed the northern
fire flank into a 40 km long fire front driven by strong, gusty winds [78]. The extremity of this
event is reflected by the observed top-decile FBI in the region of the fire for the week of 25
November 2015, particularly considering that the GFDI dropped to 35 during the evening of
that day following the passage of a cold front, which would reduce the weekly mean FBI.

3. Results
3.1. Canberra Fires, 18 January 2003

The statistical model shows a similar spatial pattern to the observed occurrence of
top-decile FBI in the week of the Canberra fires (Figure 1). It clearly overpredicts the area
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exposed to these conditions, considering that any probability greater than 0.1 corresponds
to a greater-than-climatological likelihood of extreme FBI. This overprediction is reflected
in the accuracy score of 0.66. However, the areas of highest probability (~0.4 and above)
closely match what was observed. The statistical model captures the high likelihood of
extreme conditions along the east coast and particularly the southeast, as well as high
probabilities in areas of South Australia, the Kimberly Plateau, and in a narrow strip of
the Great Australian Bight. Areas where the statistical model is notably unrepresentative
of the observed conditions include a large area in southwest Australia and in Tasmania,
where the model shows relatively high chances of extreme FBI and these did not occur in
the southwest, and occurred only in the southeast of Tasmania. The areas around Canberra,
particularly at the WUI, and southeast Australia in general where the fires had the greatest
impact were well highlighted by the statistical forecasting method.

The dynamical model underpredicts the chance of extreme FBI in most regions where
it was observed, and predicts its occurrence in some areas where it was not. Only a small
area in far southeast Victoria is predicted to experience top-decile FBI, and this does not
include the Australian Capital Territory or immediate surroundings where the greatest
impact of the fires was experienced. Given that the greatest impacts of fire on human-
valued assets tend to occur at the WUI, the underprediction of fire danger in the region of
the ACT by the dynamical model is in contrast to the performance of the statistical model
in that same WUI region. This must be taken into account when considering the respective
merits and drawbacks of each model, as the prediction of fire danger at the WUI may, at
times, have to take precedence over prediction in other more remote areas, despite the high
intrinsic value of these remote ecosystems and the services they provide. In addition to the
dynamical underprediction of fire danger at the WUI, other reaches of the east coast area
are also underpredicted. Similar to the statistical model, high chances of extreme FBI are
predicted in the southwest by the dynamical model, where they were not observed. The
dynamical model predicts a higher-than-climatological probability of extreme FBI in the
northern desert regions where it was not observed nor predicted by the statistical model.
The dynamical model performs notably well in Tasmania, clearly highlighting the high
chances of extreme FBI that was observed in the southeast.

The dynamical model outperforms the statistical forecasting technique in terms of
accuracy (Table 3—0.74 vs. 0.66). The contingency tables show that this is due to the high
number of correct negatives in the dynamical model, whereas the statistical method has
more hits. The statistical model performs considerably better in terms of the POD while
having a similar FAR to the dynamical model, demonstrating that the statistical model is
more likely to correctly issue a ‘hit’ forecast. This is consistent with the visual inspection
of the dynamical and statistical forecast probabilities (Figure 1), as the statistical forecast
figure shows a spatial pattern more aligned with the BARRA ground truth.

This pattern of high FBI risk reflects the compounding influences of multiple active
climate drivers (Figure 2). Those likely to be most impactful in the multiple logistic regression
model are the SAM, BI, and ENSO. These three climate drivers indicate a higher chance of
extreme FBI on the east coast, with the SAM and BI heavily influencing the southeast. The
narrow strip of high probabilities in the Great Australian Bight is evident from the contribution
of STRH, and to a lesser extent, the SAM, Bi and ENSO. Finally, the increased chance of high
FBI that was forecast for the southwest of the continent, but not observed, is driven most
strongly by the SAM, with some contribution also from the BI and IOD. A negative SAM
in DJF is associated with lower rainfall in southeast Australia [79] and higher probabilities
of extreme fire conditions across the majority of the continent [20]. This is despite a lower
probability of extreme heat in these regions [16]. The negative BI likewise shows an elevated
chance of extreme fire danger over southern Australia in DJF [20], consistent with the reduced
chances of high rainfall from cut-off low pressure systems during instances of low blocking
activity [80]. This is despite its influence being lowest during the Austral summer [81]. The
combination of these drivers resulting in a pattern of high risk of extreme FBI over the time
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of the Canberra 2003 bushfires indicates that this event was considerably influenced by the
climatic conditions present at the time, which primed the landscape for a severe fire event.
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Table 3. Contingency table, accuracy, probability of detection, and false alarm ratio for dynamical
(ACCESS-S2) and statistical models on week of 18 January 2003 over Australia.

Dynamical Model Statistical Model

Observed Total Observed Total

Yes No Yes No

Forecast Yes 22,368 42,030 64,398 Forecast Yes 46,807 89,720 136,527

No 28,317 177,712 206,029 No 4103 131,977 136,080

Total 50,685 219,742 270,427 Total 50,910 221,697 272,607

Accuracy 0.74 Accuracy 0.66

Probability of detection 0.28 Probability of detection 0.85

False alarm ratio 0.65 False alarm ratio 0.66

3.2. Black Saturday Fires, 7 February 2009

The statistical and dynamical forecasts both show a spatial distribution of elevated chances
of extreme FBI that resembles the observed distribution (Figure 3). The pattern of high probabil-
ities in Victoria and around the margins of NSW is strongly overemphasised in the dynamical
model, which contrasts with the statistical model’s failure to forecast higher probabilities of
extreme FBI in northern NSW and southern QLD. Although the spatial pattern present in the
southeast is well reproduced in the statistical model, the magnitude of the signal is much less
than what is forecast by the dynamical model. On the other hand, the distribution of high
chances of extreme FBI in central Australia is notably more accurate in the statistical than the
dynamical model. Both modelling methods additionally forecast high chances of extreme FBI on
parts of the west coast, which is not consistent with the observed results. In this case, although a
total of over 400 fires were recorded, many of these occurred elsewhere, away from the WUI.
A total of 73 fires impacted communities by burning at or through the WUI, and it is at the
locations of such impacts that accurate model prediction would have been most valuable. Most
notably, the Kilmore East and Kinglake fire complexes were those which resulted in the greatest
damages to communities. That being said, these case studies do represent only a window
in time, and where extreme fire danger is present, many other factors, such as ignition and
short-term atmospheric and fuel attributes, have a major influence on potential fire damage.
In this case, it is evident that although the dynamical model predicts a very high likelihood
of extreme fire danger in Victoria and southeast Australia, the exact spatial distribution and
pattern of extreme fire weather is more closely replicated by the statistical model, despite its
lower probability magnitude. This suggests that the statistical model’s spatial accuracy in this
region may have been of considerable benefit to fire management, given the amount of WUI
land that was affected here.

The statistical model displays higher performance scores than the dynamical model in
terms of accuracy, with an identical POD (Table 4). Both have similar forecast hits, but the
statistical model results include more correct negatives and fewer false alarms. However,
the statistical model also has a lower false alarm ratio, which may indicate a more accurate
forecast overall.

Table 4. Contingency table, accuracy, probability of detection, and false alarm ratio for dynamical
(ACCESS-S2) and statistical models on week of 7 February 2009 over Australia.

Dynamical Model Statistical Model

Observed Total Observed Total

Yes No Yes No

Forecast Yes 61,938 68,186 130,124 Forecast Yes 62,339 48,661 111,000

No 23,426 116,877 140,303 No 23,669 137,938 161,607
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Table 4. Cont.

Dynamical Model Statistical Model

Observed Total Observed Total

Yes No Yes No

Total 85,364 185,063 270,427 Total 86,008 186,599 272,607

Accuracy 0.66 Accuracy 0.73

Probability of detection 0.57 Probability of detection 0.57

False alarm ratio 0.52 False alarm ratio 0.44

The climate drivers contributing to the pattern shown by the statistical forecast model
are predominantly the ENSO, BI, and RMM1 (Figure 4). A strong negative BI was present
in this case and, hence, the influence of the BI is similar to that in the Canberra 2003 case
study. A strong RMM1 was also present, corresponding to MJO phases 4 and 5. The pattern
displayed for the influence of RMM1 reflects the observed impacts of MJO phase 4 on FFDI
in the southern reaches of Australia, and to some extent, the impacts of phase 5 that are
simulated by the ACCESS-S1 model in parts of central and western Australia [19]. The
ENSO was in a negative (La Niña) phase in February 2009, which is significant because
extreme fire events are usually associated with an El Niño event in Australia [82–85]. Hence,
the influence of the ENSO in this case is consistent with that of a La Niña phase, when
fire risk is increased in the central desert areas of Australia due to increased biomass
growth [86–88]. The region of the strongest BI and RMM1 interaction correlates well with
the region of increased probability of extreme FBI that is observed in central Australia.
During this event, the STRH was in a strongly positive phase. Its lack of evidence in the
statistical logistic regression forecast is unexpected, and is thought to be due to its influence
being negated by the influence of the other drivers assessed, which generally act to reduce
the chance of extreme FBI in central southeast Australia. Overall, although the accuracy
metrics for the statistical model are high, the strong ability of ACCESS-S2 to highlight the
increased chance of severe FBI, particularly in the affected region of Victoria, indicates that
the FBI was considerably influenced by shorter-term meteorological factors that are less
represented by large-scale climate drivers [68,71].
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3.3. Pinery Fire, 25 November 2015

There is a very high discrepancy between the dynamical and statistical forecasts of
extreme FBI probability in the week of the Pinery fire case study (Figure 5). The statistical
forecast model indicates a very high likelihood of extreme FBI in the southeast of Australia
and up the east coast. In some locations, this likelihood is greater than 0.9. Increased
chances of extreme FBI are also forecast in northern Australia and the southwest. In
contrast, the dynamical model indicates higher chances of extreme FBI only in a narrow
strip of southeast Australia. It fails to capture any increase in the probability of extreme
FBI in the regions north of Adelaide which were impacted at the WUI by the fire event,
nor in southwest Australia which was impacted by fires in the preceding week [89]. The
statistical model clearly highlights the risk of high FBI in southeast Australia in the region
of the fires, as well as the observed signal through eastern Tasmania, eastern NSW, and
southern QLD. However, it substantially overpredicts the chance of severe FBI, particularly
in QLD and northern Australia, where it was not observed.

These differences are represented in the contingency tables for the statistical and
dynamical models (Table 5). The accuracy of the dynamical model is very high due to
the large number of correct negative forecasts—more than double those of the statistical
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model. In contrast, the statistical model has more than 10 times the number of ‘hit’ forecasts.
However, the prevalence of false alarms and lower proportion of correct negatives in the
statistical model results in a much lower accuracy metric. This is contrasted with the
POD for the statistical model being almost 25 times that of the dynamical model. This is
accompanied by a high FAR in the statistical model forecast—more than 10 times the FAR
for the dynamical forecast. As we discuss in Section 4, this discrepancy can highlight the
importance of assessing more than one model’s output for a fire danger forecast, particularly
when operational agencies are aware in advance that extreme conditions are likely [90].
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Table 5. Contingency table, accuracy, probability of detection, and false alarm ratio for dynamical
(ACCESS-S2) and statistical models on week of 25 November 2015 over Australia.

Dynamical Model Statistical Model

Observed Total Observed Total

Yes No Yes No

Forecast Yes 2627 192 2819 Forecast Yes 36,382 117,054 153,436

No 36,238 232,431 268,669 No 2639 117,596 120,235

Total 38,865 232,623 271,488 Total 39,021 234,650 273,671

Accuracy 0.86 Accuracy 0.56

Probability of detection 0.03 Probability of detection 0.87

False alarm ratio 0.07 False alarm ratio 0.76

In this case, the primary influence on the chance of extreme FBI is the ENSO (Figure 6),
which was in a strong El Niño phase, with an ENSO3.4 index more than two standard
deviations above the 2003–2017 mean. This results in a strong signal of increased chances
of extreme FBI, which closely resembles the distribution in the full logistic regression
forecast (Figure 5). This is consistent with the expected influence of El Niño on heat and
rainfall [15,91] and, hence, fire danger in Australia [20]. The BI also adds to the magnitude
of the signal in southern and northern Australia. Further amplification of the signal in
southeast, southwest, and northern Australia is due to the positive RMM2, indicating MJO
phases 6 and 7. In SON, MJO phase 6 is strongly associated with increased chances of
severe fire weather, particularly in southwest Australia, whereas phase 7 is more influential
in inland Australia [19]. However, rainfall is more significantly decreased in southwest
Australia during phase 7 of the MJO in SON [92], so both of these phases may contribute to
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the statistically modelled signal. the Climate outlooks for the period leading up to spring
in 2015 also suggested below-average rainfall and above-average temperatures in northern
Australia [93], so the fact that this was not observed may be an anomaly compared to the
usual influences of the climate drivers active at the time.
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4. Discussion

Our case studies and investigations demonstrate that neither ACCESS-S2 nor a logisti-
cal regression approach is capable of accurately forecasting the occurrence of top-decile
fire danger at two- to three-week lead times. However, the current FBI outlooks are driven
solely by ACCESS-S2 and fuel information, and ACCESS-S2 outlooks have historically
produced underestimates of cases of extreme FBI, as also demonstrated in the case studies
above. Conversely, using a statistical approach solely based on climate driver activity
results in overprediction of the area affected by extreme FBI. The inclusion of fuel infor-
mation in official outlooks is one way in which the ACCESS-S2 forecasts are considerably
more advantageous; however, these extreme tails of the distribution are often not well
represented by climate models [94].

A model which uses climate driver information as its inputs may also have value
for the advanced forecasting of extreme fire danger conditions at longer time scales than
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what may be practical with dynamical models. Climate driver states are often accurately
predicted by ACCESS-S2 up to six months in advance, with understandably shorter lead
times for drivers with a shorter overall period [21]. The extent to which an outlook can
be extended may depend on the strength of the relationships between a climate driver
and extreme fire danger in the region of interest. For example, in an area where the effect
of ENSO is highly significant, but the influence of RMM indices are insignificant, it may
be possible to achieve longer lead times of 1–6 months, depending on the season [21].
In contrast, where the MJO or the SAM is found to be a dominant driver, or in cases of
very high amplitudes of these events, the achievable lead time may be shorter, in the
order of approximately 15 days. This has potential to add value for fire practitioners and
diverse stakeholders.

Extended lead times can be used beneficially through a hybrid forecasting approach
whereby dynamically driven climate driver data can be entered into the statistical model [95].
Hybrid forecasting usually takes the form of combining time-series forecasting with a
machine learning model [96]. However, the use of dynamically derived predictions as
the input to a statistical model is a commonly used approach at a subseasonal to seasonal
timescale [97]. Analysing the output from such a hybrid forecast, a climate-state-driven
statistical model of the probability of extreme FBI for a period several weeks to months ahead
may prove valuable for giving an additional or earlier indication of the expected severity
of an upcoming fire season, or, for example, planning suitable windows for preparatory
activities such as planned burns, which must be scheduled far in advance. There are also
other methods of constructing hybrid, merged, or paired predictive models which may
prove highly valuable for this case. Most notably, the approach taken by Schepen and
Wang [98] presents a solution for analyses quite similar to those presented here. Schepen
and Wang utilised Bayesian Model Averaging to combine a climate-driver-driven statistical
rainfall forecast with a GCM rainfall forecast, showing that the combined model considerably
outperforms both the dynamical and the statistical model. This method for combining the
strengths of both models is likely to be a fruitful pathway for further investigation in this
field of fire danger forecasting. Future research could investigate the potential for Artificial
Intelligence (AI) in developing or combining the models’ strengths; however, the rapid
evolution of AI as a field puts a complete review of this possibility beyond the scope of
our study. One further avenue to consider is the possibility of explicitly accounting for
climate drivers in the AFDRS as a whole. Fire management practitioners confirm that there
is “room left” in the system for the inclusion of climate states, but that these have not yet
been incorporated [99]. This study offers a potential model through which to incorporate
climate driver relationships into AFDRS models.

The use of the BARRA climatology as an ‘observed’ reference point introduces an
added limitation to our analysis. This is because there are notable uncertainties embedded
in the climatology, which cannot be quantified. These uncertainties include the following:

• The finalisation of the climatology in March 2023. The AFDRS is a modular system,
designed to be updated and improved upon over time. As weaknesses and limitations
are identified in the operation of the system, changes are likely to be made to the fuel
models which will not be reflected in the climatology and hindcasts used in our study.

• In some fuel types, adaptions were made to existing fuel state models to attempt to
account for the unavailability of an accurate fuel state history. These adaptations did
not always have a strong scientific basis and may therefore introduce an element of
error into the observed values [55].

• The limited climatology of 2003–2017 confines the analysis to a warmer and wetter
period than the average climate state [100,101], in addition to introducing weaknesses
due to it being shorter than an official climatology definition of 30 years.

Uncertainties implicit in the BARRA reanalysis model are accounted for as discussed
by Su and Eizenberg [102].

In cases such as extreme fire danger conditions, where impacts can be significant, there
may be value in considering the ‘worst case’ scenario suggested in the statistical model, in
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conjunction with what was shown by the official FBI outlook. The McLeod Inquiry which
followed the 2003 bushfires criticised authorities for ‘reassuring’ the public, rather than
presenting ‘a more sober and realistic estimation of the dangers that might lie ahead’ [103].
Inquiries following this and more recent events also recommended more preparation for ex-
treme fire seasons, despite acknowledging some improvements over time [103–107]. These
criticisms may be mitigated in future, and communities can be more aware of and prepared
for severe fire events, if additional prediction methods are considered in conjunction with
the official forecasts. However, it is important to balance this with the costs, both financial
and social, of overpreparing for extreme fire seasons. Clearly, the presence of a high FBI
does not guarantee the ignition of a fire or development of the fire into a threat to life
and property, and preparation and the associated costs may be seen as unnecessary in
response to high fire danger if ignitions do not occur. For example, the recruitment of
aerial resources, other firefighting equipment, and human resources is costly. Over the
2018–2019 financial year, the New South Wales Rural Fire Service spent AUD 11 million on
mitigation and resilience, most of which was allocated to the maintenance of fire trails and
planned burning [108]. The cost of aerial suppression equipment is cited at approximately
1800 AUD/hour for a small helicopter and approximately 35,000 AUD/hour for larger
air tankers, without accounting for the costs of crew, fuel, and retardant (ibid). These
resources are also costly to keep on standby, with fleet standby costs of AUD 18 million
(2008–2009 value) in Victoria over the 2008–2009 financial year [109]. Such expenses as-
sociated with the recruitment and readiness of these resources may be unacceptable to
the public and to governments when routinely carried out in response to a false alarm.
Hazard-reduction burning also has a large financial and labour cost, and also produces a
smoke burden which impacts public health and other industries. All these considerations
must be balanced with the awareness of the costs of fighting and recovering from severe
fire seasons, including not only the direct financial costs, but also the environmental, social,
health, heritage, psychological, and intangible costs.

Socially, the continued issuing of warnings related to high fire danger and warnings
to the community can result in warning fatigue when extreme fire events do not arise.
This can result in not only community discontent but also ‘cynicism and apathy’ [110].
For this reason, it is important to remain aware of the high false alarm ratio which regu-
larly accompanies statistical model forecasts. However, underexpressing the risk to the
community is also socially unacceptable, and an appropriate balance between warning
fatigue and underwarning should be the aim. Thus, it is of critical importance to con-
sider methods for combining the two forecasts, such as the Bayesian Model Averaging
approach used by Schepen and Wang [98]. Meanwhile, given the discrepancy often present
between the statistical and dynamical model outlooks, carefully analysing both, with input
from on-the-ground operational agencies, may aid in reaching an appropriate balance
more often.

These case studies offer limited examples of the model’s performance. They serve
to showcase three impactful events in South Australia in this region’s active fire season
of spring and summer [111]. The statistical model may produce varying results in other
areas of Australia, depending on the ability of a linear method to capture relationships
between fire danger and climate influences. For instance, where climate drivers may have
a less pronounced or less clear influence on fire danger [20], a linear model may prove
less effective. This also holds for regions and fire seasons where multicollinearity and
teleconnections between drivers are different or have different strengths [83,112,113]. In
these cases, there may be benefits in considering other non-linear forms of forecasting, such
as more developed machine-learning models, or the AI-based methods alluded to above.
Further, in certain seasons, the occurrence or impact of some climate drivers is different to
what it is in the Austral spring and summer, e.g., [15,19,20]. For regions such as northern
and central Australia, where fires are most active or destructive during other months of
the year [111], the model structure could be compromised. However, as the probability of
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extreme fire danger in northern regions of Australia is generally highly predictable from
climate activity [43], this is unlikely to introduce significant errors or weaknesses.

5. Conclusions

This study investigates the capabilities of two distinct approaches for forecasting
extreme danger (represented by the top-decile Fire Behaviour Index): the Australian
Community Climate and Earth-System Simulator (ACCESS-S2) and a newly developed
statistical model driven by climate drivers. Both models demonstrated both strengths and
limitations in accurately predicting these rare events at two- to three-week lead times.

ACCESS-S2, while reliable for general fire danger trends, underestimated extreme FBI
events in the case studies, potentially impacting community preparedness during high-risk
periods. Conversely, the statistical model exhibited sensitivity to climate driver activity,
but overpredicted of the area affected by extreme FBI, as demonstrated by the generally
high probability of detection and false alarm ratio scores. If such a model were relied upon
for estimating the probability of extreme fire danger, it would potentially raise concerns
about false alarms and resource mismanagement.

These findings highlight the challenge of balancing accuracy and overwarning in fire
danger forecasting. Underestimating risk leaves communities vulnerable, while overesti-
mating it can trigger unnecessary resource allocation and disrupt daily life. Therefore, we
propose the following strategies to improve forecasting and communication:

1. Combined analysis involving Integrating ACCESS-S2 and statistical model forecasts
with on-the-ground expertise can provide a more comprehensive picture of potential
fire danger, enabling nuanced risk assessments;

2. Further research into avenues for combining dynamical and statistical forecast strengths,
such as Bayesian Model Averaging or potential AI-based approaches, presents the
opportunity to develop a single prediction system which explicitly accounts for the
statistical relationships between fire danger and climate drivers, while additionally
considering the factors captured by the dynamical model;

3. Operational integration involving investigating strategies to incorporate the statistical
model’s “worst case” scenarios into official outlooks, such as probabilistic forecasts
or scenario planning, can help better prepare for extreme events without triggering
widespread false alarms;

4. Transparent communication involving clearly communicating the limitations and
uncertainties of each forecast, the potential consequences of overwarning and under-
warning, and the rationale behind risk assessments can maintain public trust and
understanding.

Mitigating the impacts of extreme fire events requires a multifaceted approach that
acknowledges the limitations of current forecasting models while leveraging their strengths.
By integrating climate knowledge, dynamical models, statistical forecasts, and on-the-
ground expertise, we can improve the accuracy of fire danger warnings, optimise resource
allocation, and build resilience in fire-prone communities.
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