
Citation: Chen, J.; Huang, L.; Zuo, Q.;

Shi, J. Assessing the Potential for

Photochemical Reflectance Index to

Improve the Relationship between

Solar-Induced Chlorophyll

Fluorescence and Gross Primary

Productivity in Crop and Soybean.

Atmosphere 2024, 15, 463. https://

doi.org/10.3390/atmos15040463

Academic Editors: Jhon Lennon

Bezerra Da Silva, Marcos Vinícius

Da Silva and Márcio Mesquita

Received: 3 March 2024

Revised: 25 March 2024

Accepted: 3 April 2024

Published: 9 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Assessing the Potential for Photochemical Reflectance Index to
Improve the Relationship between Solar-Induced Chlorophyll
Fluorescence and Gross Primary Productivity in Crop
and Soybean
Jidai Chen , Lizhou Huang, Qinwen Zuo and Jiasong Shi *

State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; chenjidai@aircas.ac.cn (J.C.)
* Correspondence: 13811335199@163.com; Tel.: +86-10-8217-8163

Abstract: Photosynthesis is influenced by dynamic energy allocation under various environmental
conditions. Solar-induced chlorophyll fluorescence (SIF), an important pathway for dissipating ab-
sorbed energy, has been extensively used to evaluate gross primary productivity (GPP). However, the
potential for photochemical reflectance index (PRI), as an indicator of non-photochemical quenching
(NPQ), to improve the SIF-based GPP estimation, has not been thoroughly investigated. In this
study, using continually tower-based observations, we examined how PRI affected the link between
SIF and GPP for corn and soybean at half-hourly and daily timescales. The relationship of GPP to
SIF and PRI is impacted by stress indicated by vapor pressure deficit (VPD) and crop water stress
index (CWSI). Moreover, the ratio of GPP to SIF of corn was more sensitive to PRI compared to
soybean. Whether in Pearson or Partial correlation analysis, the relationships of PRI to the ratio of
GPP to SIF were almost all significant, regardless of controlling structural-physiological (stomatal
conductance, vegetation indices) and environmental variables (light intensity, etc.). Therefore, PRI
significantly affects the SIF–GPP relationship for corn (r > 0.31, p < 0.01) and soybean (r > 0.22,
p < 0.05). After combining SIF and PRI using the multi-variable linear model, the GPP estimation has
been largely improved (the coefficient of determination, abbreviated as R2, increased from 0.48 to
0.49 to 0.78 to 0.84 and the Root Mean Square Error, abbreviated as RMSE, decreased from 6.38 to
10.22 to 3.56 to 6.60 µmol CO2·m−2·s−1 for corn, R2 increased from 0.54 to 0.62 to 0.78 to 0.82 and
RMSE decreased from 6.25 to 9.59 to 4.34 to 6.60 µmol CO2·m−2·s−1 for soybean). It suggests that
better GPP estimations for corn and soybean can be obtained when SIF is combined with PRI.

Keywords: photochemical reflectance index; solar-induced chlorophyll fluorescence; tower-based
measurements; gross primary productivity; crop water stress index

1. Introduction

Plant gross primary productivity (GPP) is the largest terrestrial carbon flux in the carbon
cycle and is essential for regulating climatic and environmental changes on Earth [1,2]. To
estimate GPP at in situ or regional scales, the vegetation indices, the physically processed
model, and the light-use efficiency model have been suggested [3]. However, the drawbacks
of using a lot of computing power and the absence of description of different photosynthetic
processes limit the instantaneous accuracy of GPP estimation and make it challenging to
track the dynamic variations of GPP in response to environmental changes.

It has been established that an energy dissipated pathway known as solar-induced
chlorophyll fluorescence (SIF), which is directly related to the light reactions, is a superior
way to monitor GPP dynamics, particularly under stressful conditions [4]. The chloro-
phyll molecules get excited as a result of absorbing photosynthetically active radiation
(APAR). Three processes—photochemical quenching (PQ), non-radiative decay or non-
photochemical quenching (NPQ), and fluorescence—can be used to dissipate the excitation
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energy [5]. The three energy-dissipating pathways compete with one another and display
various patterns in response to the constantly changing external environment. SIF and
GPP have an inherent theoretical foundation for coupling since APAR drives both SIF and
GPP. In reality, the mechanism for using SIF to predict GPP is the link between the linear
electron transfer rate (ETR) coupled with carboxylation processes and SIF [6]. According to
the light-use-efficiency framework, GPP is computed as the product of APAR and light use
efficiency (LUEp), which is expressed as follows:

GPP = APAR × LUEp (1)

Likewise, canopy observed SIF at a certain direction (SIFc) can be represented as the
product of APAR and the apparent yield for fluorescence, which consists of the escaping
probability ( fesc) at the same direction and the photosystem fluorescence yield (Φ f ):

SIFc = APAR × Φ f × fesc (2)

Due to the complex horizontal and vertical structures of the canopy, the emitted
SIF by leaves would experience the scattering of the reabsorption effects before sensors
capture [7,8]. Additionally, because of the limited field of view (FOV) of the sensors, the
hemispherical SIF emission can only be captured in the observation direction. Based on a
multi-angle observational experiment, Liu et al. [9] revealed that SIF and reflectance have an
angle effect that is similar. Numerous studies have shown that using the spectral invariant
theory, the escaping probability of SIF at one angle can be approximately estimated by the
canopy measured reflectance at the same angle divided by the product of its interception
and leaf albedo [10–13]. To obtain the total SIF (SIFt) with more physiological information,
the impacts of observed angle and canopy structure should be eliminated:

SIFt =
SIFc

fesc
(3)

As a result, the relationship between LUEp and Φ f is the primary factor for linking
GPP to SIF. However, the aforementioned LUE framework for linking SIF to GPP has
clear disadvantages in describing various photosynthetic processes because it simplifies
the photosynthetic process, including the light and dark reactions, which may differ in
response to environmental stress [6].

Environmental variables such as air temperature, soil moisture, and light intensity
have an influence on the SIF–GPP relationship. Despite the fact that APAR drives both SIF
and GPP, some studies found there was a stronger relationship of APAR to SIF than that of
APAR to GPP, and the ratio of GPP to SIF decreased with light intensity. These findings
may be related to the differences between light and dark reactions or the irregularly varied
proportion of energy allocated to SIF and photosynthesis [14]. Despite the fact that SIF can
monitor the downregulation of GPP in response to drought conditions at both leaf and
canopy levels, water deficit also affects the link of SIF to GPP [15]. Likewise, the SIF–GPP
relationship is also somewhat impacted by the photochemistry activities and the kinetics
of enzymes involved in carbon reactions, which are both affected by temperature [16].
The SIF–GPP relationship can be altered by the dynamic energy distribution among three
energy dissipation pathways in response to various temperature conditions. Additionally,
the SIF–GPP relationship depends heavily on the chlorophyll content, which could explain
why SIF and GPP have different growth peaks [17]. Plants with the two distinct photosyn-
thetic pathways, C3 and C4, are typically regarded as two major plant functional types
(PFT) in climate-carbon models because of their significant differences in environmental
requirements and global change feedback. C4 plants have higher resource-use efficiency
and potential productivity because they have evolved from the C4 route to adapt to high
light intensity, high temperature, and dryness through C4 photosynthesis. In C4 species,
the effect of diffusional pathways on the SIF–GPP relationship is mitigated by the coopera-
tion of mesophyll and bundle sheath cells to concentrate CO2 near Rubisco. The fact that
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distinct PFTs have different metabolic pathways may explain why there are differences in
the slopes between SIF and GPP for these PFTs [9].

SIF, a single energy dissipation pathway, is insufficient to effectively account for the
dynamic fluctuations in GPP under stress. As one of three pathways for consuming the
solar energy absorbed by leaves, NPQ may thus play a controlled role in the distribution of
energy between fluorescence and PQ [18]. The downregulation of photosynthetic efficiency
at diurnal timescales is often correlated with the degree of epoxidation in the xantho-
phyll pigments, which increases under stress in leaves [19]. Under stress, xanthophyll
de-epoxidation typically causes a rise in NPQ. Some investigations have discovered that
the photochemical reflectance index (PRI), which often exhibits a negative connection with
NPQ, might describe the epoxidation status of xanthophyll pigments [20]. Variations in
PRI can well represent changes in NPQ generated by the xanthophyll cycle in response
to the external environment because of sluggish adjustments in pigment pools at diurnal
timescales. However, at seasonal timescales, the changes in the carotenoid and chlorophyll
pigment pools in leaves can also contribute to the differences in PRI [21,22]. Therefore, at a
specific chlorophyll content level, PRI can be utilized to characterize NPQ fluctuations at
an instantaneous or daily scale, and it is important to thoroughly investigate the potential
effects of PRI variation on the SIF–GPP relationship.

Under the premise of some aspects of the information regarding NPQ that can be
estimated from PRI, it makes sense to study the influences of PRI on the SIF-based GPP esti-
mation. Wang et al. [18] used MODIS PRI, OCO-2 SIF observations, and contemporaneous
flux data from EC locations to evaluate the value of PRI for the SIF-based GPP estimation.
However, because of various data sources and broad spatial scales, the conclusions are
highly unclear. Recently, a large amount of continuously tower-based observations can
offer us trustworthy data to study the SIF–GPP relationship and its reaction to various
environmental conditions [2,19,23]. To measure radiance from a downwelling and up-
welling direction, a number of tower-based spectral systems with a bi-hemispherical or
hemispherical-conical setup have been developed. According to Miao et al. [24], some
spectral systems (e.g., FluoSpec2) contain two subsystems, one for SIF retrieval and the
other for calculating vegetation indices (VI), such as the normalized difference vegetation
index (NDVI), PRI. Therefore, we may explore the potential influences of PRI on the SIF–
GPP relationship at diurnal and seasonal scales using the continuous observations. In
addition, the information from reflectance-based PRI and SIF can be used to estimate GPP
at global scales in the future thanks to the launch of the European Space Agency’s (ESA)
Fluorescence Explorer (FLEX) mission [11,25]. Although the fact that the combination of SIF,
PRI, and structure information has been proven to be beneficial for quantifying GPP based
on airborne or satellite observations, the potential impact of PRI on the relationship of GPP
to SIF for C3 and C4 crops has yet to be investigated based on tower-based measurements.

According to the key hypotheses and the theoretical foundation proposed by
Wang et al. [18], the usefulness of combining the information of NPQ reflected by PRI
with SIFt to improve GPP estimation was examined for soybean (a C3 crop) and corn (a
C4 crop) crops based on tower-based measurements in this study. The specific issues to
be addressed in detail including: (1) How might PRI affect the SIFt–GPP relationships?
(2) How might these relationships differ for C3 (soybean) and C4 (corn) crops? (3) Is it
possible to increase the accuracy of the GPP estimation by combining PRI and SIFt?

2. Materials and Methods
2.1. Site Description

This study used an open-access dataset, which was collected at the US-Ne2 (41.1649◦ N,
96.4701◦ W) and US-Ne3 (41.1797◦ N, 96.4397◦ W) sites in Lincoln, NE, USA [26]. Two
FluoSpec2 systems were installed near planting and uninstalled after the harvest in order
to collect data over the whole growing season. US-Ne2 and US-Ne3 sites, which generally
use corn-soybean rotation, are located in the US Corn Belt (Figure 1). In general, soybean
(Glycine max) and corn (Zea mays) were typically sowed in May and harvested in October.
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The cultivar of corn is molars corn. The variety of soybean is transgenic soybean with weed
resistance. The two locations are not more than 500 m above sea level (a.s.l). The terrain is
flat and productive with organic matters. The soil is a deep silty clay loam. It has a humid
continental climate with a hot summer and a humid-cold winter. In addition, these sites
have a summertime average temperature of about 25 ◦C and an abundant rainfall of about
788.89 mm with high air humidity.
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Figure 1. Information of the two field sites deployed with FluoSpec2 systems. (a) The specific location
for US-Ne2 and US-Ne3 sites; (b) a simple schematic diagram of a FluoSpec2 system consisted
of a QEPRO spectrometer and a HR2000+ spectrometer; (c) a conceptual field deployment for
spectral measurements.

2.2. Spectral and Flux Measurements

The FluoSpec2 consists of two subsystems: a directional-hemispherical system for
SIF retrieval and a hyperspectral observational system for calculating vegetation indices.
Each subsystem consists of a spectrometer, a splitting fiber, an inline shutter, and two
fibers. These fibers are utilized to capture downwelling irradiance and upwelling canopy
reflected radiance, respectively. The cosine corrector (CC3, Ocean Optics) attached to the
irradiance fiber is used to collect downwelling solar energy at a field of view (FOV) of
180◦, while the bare fiber is designed as a FOV of 25◦ to collect the canopy radiance at the
nadir. The end of the fibers was positioned at a 5 m tower above the ground, with a 2.2 m
diameter sample area on the ground. The directional-hemispherical system collects data
by the QEPRO spectrometer, which has a Full Width Half Maximum (FWHM) of 0.15 nm
and covers a wavelength range from 730 nm to 780 nm. The hyperspectral observational
system measures data by the HR2000+ spectrometer, which has a wavelength coverage
from 350 nm to 1100 nm and has a FWHM of 1.1 nm. A laptop coordinates two subsystems
to execute data collection automatically.

The carbon dioxide (CO2) exchange between the atmosphere and crops was measured
by the eddy covariance (EC) method. The CO2 flux measured system consists of a CO2/H2O
open-path infrared gas analyzer (IRGA) and a three-dimensional ultrasonic anemometer.
The IRGA continually collected CO2 and water vapor turbulence data with a frequency
of around 10 Hz. The collected raw EC data can be used to extract the latent heat (LE),
soil heat flux beneath the canopy (G), sensible heat (H), Obukhov length (L), and friction
velocity (u*). The measured variables can be utilized to characterize the plant stress status,
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such as LE which can be a potential indicator for water stress. The measuring height of the
EC instruments for soybean at the US-Ne2 and US-Ne3 sites was maintained at 3 m for the
duration of the growing season; for corn, it was at 3 m when the canopy height was less
than 1 m and it rose to 6 m as the canopy height grew until the end of the growing season.
According to Wu et al. [27], the SIF–GPP relationships were not substantially changed after
upscaling nadir SIF to GPP footprint at the crop sites planted with corn and soybean. In
addition, the half-hourly mean and daily mean data were processed using the averaging
approach proposed by Hu et al. [28].

Moreover, an automatic weather station (AWS) is capable of continually measur-
ing climatic variables like air temperature (Ta), the photosynthetically active radiation
(PAR), relative humidity (RH), precipitation, and air pressure, among others. Suyker and
Verma [29] provide comprehensive information on the EC and meteorological measure-
ments for the US-Ne2 and US-Ne3 sites. To match the flux observations, we calculated the
30 min average of PAR and all other meteorological variables.

2.3. SIF Retrievals and Downscaling

The upwelling radiance includes solar-induced chlorophyll fluorescence in addition
to radiance reflected by foliage and soil background. Because of the specific absorption
by atmospheric molecules, the SIF emitted by leaves contributes significantly more to the
reflected radiance in the atmospheric absorption regions than the atmospheric window
does [30,31]. Therefore, it provides us with an approach to retrieve SIF in the telluric O2
absorption bands. Based on the presumption that the fluorescence and reflectance in the
retrieval bands obey a specific law of change, numerous methods for SIF retrieval have been
proposed [32]. In this study, we used the retrieved SIF results based on the spectral fitting
approach (SFM) with the assumption that fluorescence and reflectance exhibit a nonlinear
pattern with wavelength, which can better utilize the features in fitting the window [17,33].
The specific equation for SFM is as follows:

L(λ) = f (m, ∆λ)× E(λ)
π

+ f (n, ∆λ) (4)

where L(λ) is the reflected radiance by canopy; E(λ) represents the downwelling irradiance
from sky; f is the fitted function based on the assumption that fluorescence and reflectance
obey a certain law for change; ∆λ is the width of the fitting window; and m and n represent
the reflectance shape and fluorescence shape, respectively.

The fPAR can be calculated using observations of the four PAR components or es-
timated using radiative transfer models or vegetation indices [34]. The measured fPAR
contains a significant amount of missing and incorrect data since the instrument calibration
was not completed in a timely manner, the mounting location was not typical of the entire
canopy, and the instrument malfunctioned due to adverse weather. Therefore, this study
used the fPAR calculated by the red-edge normalized difference vegetation index [21].
Then, the fesc at the near-infrared band can be approximately equal to ρNIR multiplied by
the normalized vegetation index (NDVI) divided by fPAR:

fesc(NIR) ≈ ρNIR × NDVI
f PAR

(5)

where fesc(NIR) represents the fesc at the near-infrared band. Finally, the SIFt can be
obtained by the SIFc divided by fesc (Equation (3)). For better handling of the missing or
incorrect data, the linear interpolation approach was utilized to obtain the gap filling of the
fPAR and other variables derived from it.

2.4. Calculation of PRI

The extra energy will be mostly dissipated as a result of the reduction in decreasing
energy sinks, and its amount can be calculated by measuring the degree to which the
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pigments from the xanthophyll cycle (such as zeaxanthin) are de-epoxidized [14,35]. The
reversible NPQ closely relates to zeaxanthin changes, which PRI may identify at a strong
absorption band of approximately 531 nm. The PRI is frequently employed as a stand-in
for NPQ under various environmental conditions [36]:

PRI =
ρ531 − ρ570

ρ531 + ρ570
(6)

where ρ531 and ρ570 are reflectance at 531 nm and 570 nm, respectively.

2.5. Indicator for Stress

For the purpose of identifying the growth condition of vegetation under stress, nu-
merous stress indices have been established. The Crop Water Stress Index (CWSI), a useful
indicator for tracking crop drought, has been extensively utilized to track the occurrence
of drought for C3 and C4 croplands [37]. Either a theoretical or empirical methodol-
ogy can be used to determine CWSI. The canopy temperatures under well-watered and
non-transpiring conditions are essential variables that must be entered into the empirical
approach. Because there were no data of canopy temperature, this study used a theoretical
method to calculate CWSI [38]:

CWSI = 1 − ET
ETp

(7)

where ET and ETp are the actual and potential crop evapotranspiration, respectively
(Wm−2). The ETp refers to conditions where soil moisture satisfies plant water uptake.
Based on the Priestley–Taylor equation, the ETp can be expressed as follows [39]:

ETp = a
∆Rn

∆ + γ
(8)

where, in addition to the equilibrium term, the constant a is set to 1.26 and accounts for
the evaporation resulting from the humidity deficit; ∆ is the slope of the saturation vapor
pressure curve (kPa·K−1); Rn indicates the net radiation (Wm−2); and γ represents the
psychrometric constant (Pa·K−1) which is affected by the air pressure [40]. In addition, this
study also used vapor pressure deficit (VPD) to represent the dry status of the atmosphere.

2.6. Estimation of Canopy Stomatal Conductance

The canopy stomatal conductance (Gs) can describe the level of stomatal opening
across the entire canopy, which regulates the gas exchange (e.g., CO2 and H2O) between
the atmosphere and leaves. Based on the Penman–Monteith (PM) equation [41,42], the
eddy covariance data ban be used to calculate Gs:

Gs =
γgaLE

∆(Rn − G) + ρcpgaVPD − (∆ + γ)LE
(9)

where ρ represents the air density (kg·m−3); cp represents the air’s specific heat capacity
(kJ·kg−1·K−1); and ga indicates the conductance to describe aerodynamics (m·s−1), which
can be calculated using anemometer height, zero-pane displacement, roughness lengths for
H and momentum, and the corresponding stability correction factors. Gs is closely related
to the carbon reaction process of photosynthesis and is sensitive to environmental changes.

2.7. Analysis

According to Wang et al. [18] and Ma et al. [43], this study also used a multi-variable
linear model to analyze the performance of GPP estimation using PRI and SIFt:

GPP = aSIFt + bPRI + c (10)
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where a, b and c are parameters fitted through the use of the continuously observed mea-
surements in regression analysis based on the least square method. Using linear regression
analysis, the relationship between GPP and SIFt as well as PRI could be investigated.

Additionally, a partial correlation analysis was carried out to examine the influence
of PRI on the SIFt–GPP relationship by controlling various environmental parameters
(such as PAR, air temperature, and CWSI), the structural (such as NIRv and NDVI), and
physiological indicators (such as Gs). The regression equation can be established initially
when examining the partial correlation between variables Y and X1. Using X2, X3, Xn, and
so on, the variables Y and X1 are stated linearly as follows:

Y =
∼
XθY + eY

X1 =
∼
XθX1 + eX1

∼
X = [X2, X3, . . . Xn]

(11)

The parameter identification process can then be carried out using the least squares
(LS) method: 

θY =

(∼
X

T ∼
X
)−1∼

X
T

Y

θX1 =

(∼
X

T ∼
X
)−1∼

X
T

X1

(12)

The correlation coefficient, or R value, is the determination index that is employed.
The residual error of the established model can be expressed as follows:

eY = Y −
∼
X
(∼

X
T ∼

X
)−1∼

X
T

Y

eX1 = X1 −
∼
X
(∼

X
T ∼

X
)−1∼

X
T

X1

(13)

where the portions of variables Y and X1 that are unaffected by
∼
X. The conventional

correlation analysis between eY and eX1 is equal to the partial correlation analysis between
variables Y and X1. The clearness index (CI) is used to characterize different sky condi-
tions [32]. To reduce the impact of weather conditions and growth periods, the measured
data with NDVI < 0.70 and CI < 0.55 were excluded in the analysis.

3. Results
3.1. Changes of PRI, SIF and GPP for Corn and Soybean
3.1.1. Seasonal Changes of PRI, SIF and GPP

Based on tower-based measurements, it is possible to identify the precise driving
mechanisms for the diurnal changes in SIFt and GPP. At the US-N2 site, there was a
“hump-shape” diurnal pattern of SIF and GPP for corn (DOY 196 in 2017) and for soybean
(DOY 180 in 2018) (Figure 2a,d). Strong diurnal patterns were seen in the SIF and GPP,
with a constant increase in the morning and a subsequent fall after solar noon, mostly
due to incoming radiation (PAR, Figures 2c and 3f). Both GPP and SIF are driven by PAR.
However, PRI exhibited a “bowl-shaped” diurnal pattern. Due to that, VPD increases until
the afternoon and NPQ is inversely related to PRI; it can be inferred that a relatively larger
portion of energy will be dissipated by NPQ when crops suffer from stress at some extent
compared to that when crops do not experience stress (Figure 2b,e). The diurnal changes of
PAR and Ta were also shown in Figure 2c,f.
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3.1.2. Seasonal Changes of PRI, SIF and GPP

Figure 3 displays the measured data for two consecutive growth periods (one is for
corn; the other is for soybean) at the US-Ne2 site. The observed data at the US-Ne3 site
can be found in Figure S1. It can be shown that for both corn and soybean, SIFt and GPP
followed similar seasonal patterns. PRI showed an obvious seasonal shift, which may also
contain information about energy allocation changes. In order to reduce the influences
of chlorophyll content and canopy structure on PRI, we only used measured data at the
growth peak period with NDVI greater than 0.70 for subsequent analysis.

3.2. Special Role of PRI in the SIF–GPP Relationship for Corn and Soybean
3.2.1. Linear Relationship of SIF to GPP for Corn and Soybean

For corn and soybean, we examined the association between SIFt and GPP. At the
half-hourly and daily timescales, SIFt exhibited a strong connection with GPP for both
corn and soybean (R2 = 0.48–0.62, p < 0.01; Table 1). It is worthy to note that the slope of
the linear SIFt–GPP relationship for corn ranged from 8.38 to 8.87 (µmol CO2·m−2·s−1),
whereas the slopes for soybean ranged from 6.45 to 6.57 (µmol CO2·m−2·s−1).

Table 1. Regression relationship between SIFt and GPP for corn and soybean. GPPpre represents the
predicted GPP.

Crops Timescale Linear Model R2 RMSE r p

Corn
Half-hourly GPPpre = 8.87 × SIFt + 20.29 0.48 10.22 0.69 <0.01

Daily GPPpre = 8.38 × SIFt + 13.93 0.49 6.38 0.70 <0.01

Soybean Half-hourly GPPpre = 6.45 × SIFt + 8.85 0.54 9.59 0.73 <0.01
Daily GPPpre = 6.57 × SIFt + 5.23 0.62 6.25 0.79 <0.01

From Figure 4, it can be seen that the slopes of the SIFt–GPP relationship generally
have a lower value at the lower PRI than that at the higher PRI. It is critical to combine
information from SIFt and PRI in order to calculate GPP accurately.

Figure 4. Relationships between SIFt and GPP for corn ((a) for half-hourly data; (c) for daily data)
and soybean ((b) for half-hourly data; (d) for daily data). Table 1 lists the corresponding regression
coefficients. The color bar on the right indicates the magnitude of PRI.

3.2.2. Relationships between PRI and SIF for Corn and Soybean

Due to the importance of SIF and NPQ as key energy dissipation pathways other than
PQ, it is crucial to comprehend the potential association between SIF and NPQ in order
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to more accurately estimate GPP. NPQ can be represented by PRI using remote sensing
methods. At half-hourly and daily timescales, there is a substantial correlation between
SIFt and PRI for corn and soybean (Figure 5). However, PRI has a stronger correlation with
SIFt for soybean (0.63 for half-hourly data and 0.78 for daily data) than that for corn (0.34
for half-hourly data and 0.51 for daily data). It suggests that for soybean, SIF is more prone
to be influenced by PRI.

Figure 5. Relationships between PRI and SIFt for corn ((a) for half-hourly data; (c) for daily data)
and soybean ((b) for half-hourly data; (d) for daily data). The Pearson correlation coefficient and the
significance level were given. A significance level of 0.01 is represented by **. The color bar indicates
the magnitude of GPP. The solid black line is the fitted curve.

Additionally, SIFt and GPP had a lower value at lower PRI (Figure 5) and the slopes
of the SIFt–GPP relationship varied with PRI (Figure 4). It indicates that the allocated
energy to GPP and SIFt fluctuates dynamically with NPQ and the ratio of GPP to SIFt has
a higher value when NPQ decreases. Therefore, the potential fluctuations in energy for
NPQ should be taken into account in the SIFt-based GPP estimation.

3.2.3. Impact of PRI on the SIF–GPP Relationship under Different Stress Conditions

In this study, in order to better explore the impact of PRI on the SIF–GPP relationship
under different stress conditions, we considered two stress indicators, including CWSI
and VPD. CWSI can reflect the stressed status of crops in response to water deficit. Water
deficit affects crops’ physical–physiological activities (e.g., photosynthesis and transpira-
tion), among which the stomatal conductance is an important adaptation mechanism to
environment. Additionally, we used VPD to represent the degree of dryness of the air.

Figure 6a,b shows that for both corn and soybean, PRI falls with increasing CWSI. In
reaction to stress, a plant will dissipate more energy absorbed by chlorophyll molecules
through NPQ. The reduction in energy allocated for photosynthesis or the stomatal re-
sponses to stress may be the causes of GPP downregulation. As SIFt or NPQ are a com-
ponent of the light reactions other than those that are related to the dark reactions, the
incongruity of light and dark reactions is a potential factor that could influence the GPP
estimation based on SIFt and PRI. Despite a slight decline of PRI with VPD for soybean,
PRI showed an obvious decreasing tendency with increasing VPD for corn (Figure 6c,d).
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In addition, using correlation coefficients, we also analyzed the impacts of CWSI and
VPD on the relationships between GPP and SIFt as well as PRI (Figure 7). For corn and soy-
bean, the GPP–SIFt relationship exhibited a gradually downward trend along with CWSI
(Figure 7a,b). The GPP–SIFt relationships for corn exhibited a more pronounced decline
than those for soybean with an increase in CWSI. The GPP–PRI relationship resembled a
flat lying “S” shape with increasing CWSI. When CWSI was higher than 0.6, there was a
downward tendency in these correlation coefficients. Figure 7c,d also depict the impact of
VPD on the relationship of GPP to PRI and SIFt.
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Figure 7. The influences of CWSI on the relationships between GPP and SIFt as well as PRI for corn
(a) and soybean (b). (c,d) represent the effects of VPD on the relationships between GPP and SIFt

as well as PRI for corn and soybean, respectively. The blue line shows the GPP–SIFt relationship,
the red line shows the GPP–PRI relationship. CWSI was distinguished as a 0.1 interval. VPD was
distinguished as a 0.5 interval.
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3.2.4. Partial Correlation Analysis between the Ratio of GPP to SIF and PRI

As shown by the results above, PRI plays an important role in the SIFt–GPP rela-
tionship. For corn and soybean, the ratio of GPP to SIFt increases with PRI (Figure 8). In
contrast to soybean, corn showed a clear upward tendency of the ratio of GPP to SIFt with
PRI. It can be interpreted that SIFt is more sensitive to PRI for soybean (Figure 8) and
that the division of GPP by SIF reduces some impacts of PRI on the ratio of GPP to SIFt
for soybean.
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Figure 8. Relationships between the ratio of GPP to SIFt and PRI for corn ((a) for half-hourly data;
(c) for daily data) and soybean ((b) for half-hourly data; (d) for daily data). The blue line is the trend
line, and the shaded area represents the 95% confidence interval.

It is worthy to note that complex structural-physiological factors and environmental
factors have an influence on the SIFt–GPP relationship. To better interpreter the potential
impact of PRI on the SIFt–GPP relationship, the correlation of PRI with the ratio of GPP to
SIFt and its relationship to other influencing variables should be analyzed in detail.

In this study, we used Partial correlation analysis to distinguish the impacts of envi-
ronmental variables (PAR, Ta, VPD, CWSI) and structural-physiological factors (Gs, NIRv,
NDVI) on the relationship of PRI and the ratio of GPP to SIFt (Table 2). By controlling the
structural variables (NIRv, NDVI), the PRI is less strongly correlated with the ratio of GPP
to SIFt than it is with other variables (Gs, PAR, etc.). It can be explained by the fact that
PRI contains some information about structure or chlorophyll content. In addition, NDVI
or NIRv is also related to leaf growth and leaf age, which affect the dynamic variations in
NPQ. It should be noted that the relationships between the ratio of GPP to SIFt and PRI
were significant when Gs was controlled for both corn and soybean, which may be due to
the fact that PRI contains some information about plant responses to stress (Figure 6) and
that there was no severe stress for the crops that could have caused an imbalance between
the light and dark reactions. Overall, the relationships between PRI and the ratio of GPP
to SIFt were almost all significant in both the Partial and Pearson correlation analyses,
regardless of controlling structural-physiological and environmental variables.
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Table 2. Correlation coefficients for the links between PRI and the ratio of GPP to SIFt for corn and
soybean at half-hourly timescales. The control variables are included in parenthesis, and the Pearson
and Partial correlation coefficients are provided.

Crops Timescales Pearson’s Coefficient
of Correlation

Partial Correlation Coefficient

Physiology Structure Environment

(Gs) (NIRv) (NDVI) (PAR) (Ta) (VPD) (CWSI)

Corn
Half-hourly 0.31 ** 0.33 ** 0.02 0.28 ** 0.45 ** 0.30 ** 0.26 ** 0.27 **

Daily 0.45 ** 0.51 ** 0.23 * 0.56 ** 0.56 ** 0.41 ** 0.47 ** 0.45 **

Soybean Half-hourly 0.33 ** 0.31 ** 0.13 ** 0.06 * 0.45 ** 0.45 ** 0.33 ** 0.25 **
Daily 0.22 * 0.19 * 0.24 * –0.02 0.45 ** 0.34 ** 0.18 0.23 *

“*” is the significance level of 0.05 and “**” represents the significance level of 0.01.

3.3. Improvement of GPP Estimation Using a Combination of SIF and PRI for Corn and Soybean

At half-hourly and daily timescales, the impact of PRI on the SIFt–GPP relationship
was evaluated for corn and soybean. The measured data was randomly divided into
two parts: 70% of the measured data is utilized for modeling and the remaining 30% of
the measured data is performed for validation. The multi-variable regression results are
displayed in Table 3. After combining SIFt and PRI, the slopes between GPP and SIFt for
corn (4.89–6.32) were also higher than those for soybean (0.95–2.87), and there is a good GPP
estimation accuracy with higher R2 values (0.78) and lower RMSE (6.60 µmol CO2·m−2s−1)
at half-hourly timescales as well as with higher R2 values (0.82–0.84) and lower RMSE
(3.56–4.3 µmol CO2·m−2s−1) at daily timescales. These results suggest that fluorescence
and PRI should be considered in the GPP estimation model.

Table 3. Multiple-variable GPP regression model based on SIF and PRI.

Crops Timescale Multi-Variable Linear Model R2 RMSE p

Corn
Half-hourly GPP = 6.32 × SIFt + 389.88 × PRI + 32.71 0.78 6.60 <0.01

Daily GPP = 4.89 × SIFt + 287.46 × PRI + 27.01 0.84 3.56 <0.01

Soybean Half-hourly GPP = 2.87 × SIFt + 230.13 × PRI + 19.00 0.78 6.60 <0.01
Daily GPP = 0.95 × SIFt + 218.85 × PRI + 19.39 0.82 4.34 <0.01

It is worthy to note that the slope of the SIFt–GPP relationship differs between corn (a
C4 crop) and soybean (a C3 crop), with a higher slope for corn than that for soybean. In
comparison to the GPP estimation model based solely on SIFt, the GPP estimation model
based on both SIFt and PRI has a lower value of fitted coefficients between SIFt and GPP
(Tables 1 and 3).

The remaining 30% of the data was used for validating the above equations. Figure 9
shows the relationships between true GPP obtained from EC measurements (GPPmeas) and
the modeled GPP (GPPpre). At half-hourly and daily timescales, the slopes of the regression
lines for both corn and soybean were approximately equal to 1. There are higher R2 values
for corn (0.79–0.92) and soybean (0.75–0.80). Therefore, PRI can be used to improve the
SIFt-based GPP estimation.

In addition, we investigate the effects of Gs on the GPP estimation. From Figure 10,
we can see that the ratio of GPPmeas to GPPpre correlated to Gs for corn (r = 0.25, p < 0.01)
and soybean (r = 0.13, p < 0.05) at half-hourly timescales. The effects of soil water content
(SWC) on the GPP estimation can be found in Figure S4. At daily timescales, the ratio of
GPPmeas to GPPpre was not correlated with Gs for corn (r = 0.14, p = 0.52), while it was
relatively significantly related to Gs for soybean (r = 0.45, p < 0.05).



Atmosphere 2024, 15, 463 14 of 19Atmosphere 2024, 15, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 9. Validation of the GPP estimation accuracy based on 𝑆𝐼𝐹  and PRI at half-hourly and daily 
timescales. 𝐺𝑃𝑃   represents the EC measured GPP. 𝐺𝑃𝑃   represents the GPP predicted by 𝑆𝐼𝐹  and PRI. The validation findings for corn at half-hourly and daily timescales are shown in (a,c), 
respectively. (b,d) illustrate the results for soybean at half-hourly and daily timescales, respectively. 
The PRI value is depicted by the color bar. The best-fit line is shown by the solid red line, while the 
short-dashed line is the 1:1 line. 

In addition, we investigate the effects of Gs on the GPP estimation. From Figure 10, 
we can see that the ratio of 𝐺𝑃𝑃  to 𝐺𝑃𝑃  correlated to Gs for corn (r = 0.25, p < 0.01) 
and soybean (r = 0.13, p < 0.05) at half-hourly timescales. The effects of soil water content 
(SWC) on the GPP estimation can be found in Figure S4. At daily timescales, the ratio of 𝐺𝑃𝑃  to 𝐺𝑃𝑃  was not correlated with Gs for corn (r = 0.14, p = 0.52), while it was 
relatively significantly related to Gs for soybean (r = 0.45, p < 0.05).  

 
Figure 10. Relationship between the ratio of 𝐺𝑃𝑃  to 𝐺𝑃𝑃  and Gs based on the validated 
dataset. (a,c) represent the relationship between the ratio to Gs for corn at half-hourly and daily 
timescales, respectively, while (b,d) indicate the relationship between the ratio to Gs for soybean at 
half-hourly and daily timescales. The color bar indicates the magnitude of PRI. “*” is the significance 
level of 0.05 and “**” represents the significance level of 0.01. 

Figure 9. Validation of the GPP estimation accuracy based on SIFt and PRI at half-hourly and daily
timescales. GPPmeas represents the EC measured GPP. GPPpre represents the GPP predicted by SIFt

and PRI. The validation findings for corn at half-hourly and daily timescales are shown in (a,c),
respectively. (b,d) illustrate the results for soybean at half-hourly and daily timescales, respectively.
The PRI value is depicted by the color bar. The best-fit line is shown by the solid red line, while the
short-dashed line is the 1:1 line.
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Figure 10. Relationship between the ratio of GPPmeas to GPPmeas and Gs based on the validated
dataset. (a,c) represent the relationship between the ratio to Gs for corn at half-hourly and daily
timescales, respectively, while (b,d) indicate the relationship between the ratio to Gs for soybean at
half-hourly and daily timescales. The color bar indicates the magnitude of PRI. “*” is the significance
level of 0.05 and “**” represents the significance level of 0.01.

4. Discussion
4.1. Uncertainties of the GPP Estimation Based on PRI and SIF

In this study, we assessed the potential of PRI to improve the relationship between SIF
and GPP for corn and soybean. The relationships of GPP to SIF and PRI are influenced by
structural and physical-physiological factors. Canopy structure affects the estimation of fesc,
which further affects the estimates of the total SIF [8]. The canopy-observed SIF at a solid
viewing angle has an angle effect. Therefore, it is necessary to convert the canopy-observed
SIF at a solid viewing angle into the total SIF at the hemisphere [4]. Although the ratio of
NIRv to fPAR can be as an approximation of the fesc at the near-infrared band, the influences
of complex structure and soil background on the fesc have not been well explored [7,11]. In
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addition, a single-wavelength SIF cannot well characterize the broadband SIF covering the
650 nm to 800 nm spectral range [35]. The observed SIF not only contains contributions
from PSII but also from PSI, while only SIF emitted from PSII is directly related to light
reactions. Hitherto, there are no methods available to distinguish PSI and PSII fluorescence
at leaf or canopy levels [6]. In this study, to lessen the impact of the canopy structure, we
only explored the GPP–SIFt relationships using data with NDVI greater than 0.7.

This study used PRI as an indicator of NPQ, which has demonstrated that PRI can track
the dynamic changes of NPQ in previous studies, especially at short-time timescales [44].
Although this study assessed the role of PRI in regulating the SIF–GPP relationship, it
depends on whether PRI is a good proxy for NPQ. Due to the fact that there are three
main energy dissipated pathways, it is reasonable to combine the information from SIF and
NPQ to improve GPP estimation. The intricate interplay of environmental factors (e.g., air
temperature, light intensity, and water availability) have an impact on how SIF and NPQ
are linked to GPP. NPQ and SIF tend to increase with PAR [45]. Low temperature may cause
NPQ to increase whereas SIF may show a fall trend, provided that it does not cause damage
to chlorophyll molecules [19]. According to some studies conducted in hot environments,
the NPQ rises as temperature rises but SIF exhibits the opposite pattern [45,46]. Moreover,
water stress made NPQ increase and might decrease SIF [47,48]. Overall, SIF and NPQ
react differently to variable environmental conditions, and they have a comprehensive
impact on PQ changes. As a result, the combination of SIF and NPQ has a special ability to
indicate PQ dynamics under complex environmental conditions.

It is worthy to note that the decoupling of light reactions and dark reactions in response
to stress may also alter the relationships of GPP to NPQ and SIF [35]. The stomatal
conductance controlling the sink of CO2 and the loss of H2O may be more sensitive to
stress conditions than the light reactions. Helm et al. [47] found that the stomata responded
sensitively to the water deficit, as demonstrated by the stomatal conductance and the net
photosynthetic carbon assimilation that decreased, whereas the SIF responded to water
stress in eastern cottonwood less strongly. Kimm et al. [46] reported that both fluorescence
quantum efficiency and stomatal conductance declined in response to water stress and
NPQ exhibited an upregulated trend [15]. Magney et al. [19] found that the SIF yield
showed a substantial reduction in the winter due to sustained NPQ and deactivation of
the photosystems. Under stress, chlorophyll molecules typically are unable to fully utilize
the solar energy they have taken in for CO2 fixation. The photochemical activities will
be damaged if the additional absorbed energy cannot be efficiently dissipated [31]. NPQ
generally upregulated in response to environmental stress, while Gs showed a down-
regulated trend under stress conditions [35]. The rate at which the products of electron
transport—ATP and NADPH—are consumed in the dark processes is influenced by the
CO2 partial pressure in the stroma, which is determined by CO2 diffusional resistances in
the stomata and mesophylls. Feedback from the dark to light processes may therefore have
an impact on how much energy is distributed across PQ, SIF, and NPQ [6]. It indicates that
NPQ not only regulates the quantum yield of photochemistry and fluorescence quantum
efficiency occurring in light reactions, but also can reflect some information of dark reaction
in response to stress conditions. In this study, the ratio of GPPmeas to GPPmeas was related
to Gs for corn (r = 0.25, p < 0.01) and soybean (r = 0.13, p < 0.05) at half-hourly timescales
(Figure 10). Therefore, the relationships of GPP to SIF and PRI are affected by the plant
physiological status in response to stress conditions, especially the incongruity of dark
reactions and light reactions.

The regulated NPQ was affected by the xanthophyll cycle, which can be detected by
canopy reflectance of 531 nm at short-time timescales [22]. However, the seasonal variations
in PRI were largely influenced by changes in pigment pools (e.g., chlorophyll content) and
the reliability of using PRI to indicate NPQ needs to be further investigated. Magney
et al. [19] reported that the plant adaptation to winter not only corresponds to the changes
in the xanthophyl cycle, but also variation of a variety of carotenoids (e.g., lutein and beta-
carotene), which may play a photoprotective role for plants in response to low temperature.
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The intricate interplay of environmental factors (e.g., air temperature, light intensity, and
water availability) have an impact on how SIF and PRI are linked to GPP [33,47]. Moreover,
the canopy reflectance was influenced by the solar viewing geometry, canopy structure
and soil background, which further affects the calculation of the PRI and the linkage of PRI
to NPQ [49]. In this study, we found that the slopes of the SIFt–GPP relationship change
with PRI using tower-based measurements (Figure 4). PRI can be used to improve the
SIFt-based GPP estimation (Figure 9). Nevertheless, the potential underlying mechanisms
for linking PRI to NPQ at canopy scale need to be explored further.

4.2. Limitations and Implications

In this study, we found that corn showed a more prone upward trend in the ratio of
GPP to SIFt with rising PRI than soybean (Figures 5 and 8). The SIF–GPP relationship’s
slope varies depending on the biome or plant functional type (PFT), according to a number
of recent research [3,4,50–54]. The photosynthesis of C3 and C4 plants, for instance, showed
different patterns in response to environmental conditions. Because C4 plants have evolved
from the C4 route to adapt to high light intensity, high temperature, and dryness through C4
photosynthesis, they have improved resource-use efficiency and potential productivity. C4
crops are more suited to warm climates than C3 crops are, and they can withstand greater
temperatures and stronger light [9]. The SIF–GPP relationship was highly dependent on
the PFT. In addition, as different varieties may respond differently to environmental factors,
it would be beneficial to consider the effects of the specific cultivars or genotypes [55–57].
Overall, it suggests that different PFTs may perform differently when utilizing PRI to
enhance the SIFt–GPP relationship. In addition, although this study has demonstrated that
PRI can be used to improve the SIFt-based GPP estimation, the results were only applicable
to two crops, one is corn and the other is soybean. The separation of sunlit/shaded and
diffuse/direct beam radiation among the multilayer canopy structure is important for
understanding the relationships of GPP to SIF and PRI [7,35]. To comprehend and forecast
the complicated dynamics of SIF emission, more efforts will be required.

In this study, we used CWSI and VPD to assess the effects of stress conditions on the
GPP estimation based on SIFt and PRI. The results show that the GPP–SIFt and GPP–PRI
relationships are influenced by environmental stress (Figure 6; Table 2). However, the
influences of the environmental stress on the GPP estimation based on PRI and SIFt should
be further investigated from leaf to canopy scales [18,43]. Therefore, in order to develop
a more accurate GPP estimation model, more leaf and canopy observation experiments
should be carried out in the future.

5. Conclusions

In this study, based on tower-based measurements for corn (a C4 crop) and soybean
(a C3 crop), we investigated the special role of PRI in improving the SIFt-based GPP
estimation at half-hourly and daily timescales. Drought stress, as reflected by CWSI
and VPD, has an impact on the coupling of GPP to SIFt and PRI. Corn showed a more
pronounced upward trend in the ratio of GPP to SIFt with rising PRI than soybean. Whether
in Pearson or Partial correlation analysis, the relationships of PRI to the ratio of GPP to
SIFt were almost all significant, regardless of controlling structural-physiological (stomatal
conductance, vegetation indices) and environmental variables (light intensity, temperature,
etc.). Therefore, PRI has a significant influence on the SIFt–GPP relationship for corn and
soybean. In order to develop a more accurate GPP estimation model, the better proxy
of NPQ should be explored in addition to PRI and more leaf and canopy observation
experiments should be carried out in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos15040463/s1, Figure S1: Seasonal variations of Ta and PAR for
corn and soybean at US-Ne2 site. Figure S2: Seasonal variations of Ta and PAR for corn and soybean
at US-Ne3 site. Figure S3: Seasonal variations of GPP, SIF, NIRv and PRI for corn and soybean at
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US-Ne3 site. Figure S4: Relationship between the ratio of GPPmeas to GPPmeas and the soil water
content (SWC, %) based on the validated dataset.
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