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Abstract: Prediction of fine particulate matter with particle size less than 2.5 µm (PM2.5) is an
important component of atmospheric pollution warning and control management. In this study, we
propose a deep learning model, namely, a spatiotemporal weighted neural network (STWNN), to
address the challenge of poor long-term PM2.5 prediction in areas with sparse and uneven stations.
The model, which is based on convolutional neural network–bidirectional long short-term memory
(CNN–Bi-LSTM) and attention mechanisms and uses a geospatial data-driven approach, considers
the spatiotemporal heterogeneity effec It is correct.ts of PM2.5. This approach effectively overcomes
instability caused by sparse station data in forecasting daily average PM2.5 concentrations over
the next week. The effectiveness of the STWNN model was evaluated using the Xinjiang Uygur
Autonomous Region as the study area. Experimental results demonstrate that the STWNN exhibits
higher performance (RMSE = 10.29, MAE = 6.4, R2 = 0.96, and IA = 0.81) than other models in
overall prediction and seasonal clustering. Furthermore, the SHapley Additive exPlanations (SHAP)
method was introduced to calculate the contribution and spatiotemporal variation of feature variables
after the STWNN prediction model. The SHAP results indicate that the STWNN has significant
potential in improving the performance of long-term PM2.5 prediction at the regional station level.
Analyzing spatiotemporal differences in key feature variables that influence PM2.5 provides a scientific
foundation for long-term pollution control and supports emergency response planning for heavy
pollution events.

Keywords: PM2.5 prediction; spatiotemporal variation; attention mechanism; SHAP; Xinjiang

1. Introduction

Air pollution, a serious environmental problem, has been recognized as a major
threat to human health and has received increasing attention worldwide [1]. According
to statistics, 6.7 million people died globally in 2019 due to nonattainment pollutants,
with 4.1 million deaths attributed to fine particulate matter [2]. Particulate matter with a
diameter of less than 2.5 µm (PM2.5) is one of the major air pollutants; it penetrates deep
into the human bronchial tubes and alveoli, harms the immune system, and leads to chronic
respiratory diseases, lung cancer, and cardiovascular diseases [1,3]. Prediction of PM2.5
concentrations can effectively support environmental management and provides a basis
for the development of rational decision-making programs.

Previous studies on PM2.5 prediction can be categorized into deterministic mod-
els, statistical models, and machine learning models. Deterministic models, also known
as chemical transport models, predict PM2.5 concentrations by simulating the physical
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transport and chemical reactions of air pollutants, such as the incremental testing of the
Community Multiscale Air Quality model [4] and the Weather Research and Forecasting
model coupled with Chemistry [5]. However, these methods require abundant priori
knowledge and relatively complex computations, leading to high uncertainties in the
prediction results [6,7].

Statistical modeling, on the contrary, overcomes these limitations in PM2.5 prediction
and has a certain degree of interpretability [8]. Linear models, such as linear regres-
sion [9,10] and multiple linear regression [11,12], were the primary methods for PM2.5
prediction. However, the models established in these studies are global regression models,
indicating that the relationship between yield and explanatory variables is assumed to be
spatially constant. In reality, this relationship is highly variable in time and space, especially
in extensive areas, always influenced by natural and anthropogenic factors, i.e., spatial het-
erogeneity (or spatial non-stationarity) [13]. The phenomenon that an explanatory variable
has different effects on model output over space is known as spatial heterogeneity [14].
The relationship of each feature variable with PM2.5 can be highly variable in varying
geographical locations within the research area [15]. Therefore, scholars further proposed
various spatial statistical regression models, such as the geographically weighted regression
model [16], linear mixed effects model [17], two-stage model [18,19], and geographically
and temporally weighted regression model [20]. The geographically weighted regression
model effectively utilizes the spatial distribution characteristics of PM2.5, capturing spatial
coefficient variations at the local scale. In addition to space, time is an important dimension
that affects the relationship between PM2.5 and the feature variables [21]. Therefore, the
geographically and temporally weighted regression model further considers the spatiotem-
poral heterogeneity and can capture the changing patterns of the data under different
spatiotemporal conditions. These studies primarily focus on enhancing model accuracy by
incorporating meteorological parameters and land use variables. However, by introducing
random or local effects into the regression model, they tend to simplify the complex non-
linear relationships between variables, resulting in weak feature learning capabilities and
limiting predictive performance [22].

Machine learning models can fit nonlinear relationships better than statistical models,
such as random forest (RF) models [23,24] and neural networks [25,26]. However, the
geographical and temporal features hidden in time series and spatial distributions have not
been fully exploited [27]. In recent years, prediction models based on deep learning (DL)
have achieved significant success in forecasting spatiotemporal data, using techniques such
as convolutional neural networks (CNN) [28], general regression neural networks [29], and
some models based on long short-term memory (LSTM) [30,31]. Most recurrent neural
network models are based on time series, ignoring spatial heterogeneity and spatial corre-
lation, which strongly affects the geographic objects (i.e., PM2.5) [32]. The DL model based
on CNN–LSTM can effectively capture the spatial features of PM2.5 and the complex rela-
tionships among feature variables through CNN. Simultaneously, LSTM has an excellent
advantage in dealing with time series, whereas bidirectional LSTM (Bi-LSTM), with bidi-
rectional dependencies, further enhances the learning capacity for time series features. In
addition, to better handle the complex correlated features between variables and PM2.5, the
convolutional attention module (CBAM) is introduced into the model, providing enhance-
ment from channel and spatial dimensions [33]. However, CBAM mainly captures global
information, thereby limiting its performance in dealing with local spatial information
to some extent. Most of the existing studies on hybrid DL models based on CNN–LSTM
obtain data from densely populated areas with relatively uniform distributed monitoring
station distribution (e.g., the Beijing–Tianjin–Hebei urban agglomeration, southeastern
provinces in China, etc.) [34–37]. For the hybrid DL model designed for PM2.5 prediction in
spatially large-scale study areas, although the enhanced ability to capture spatial features
has led to a significant improvement in the prediction performance, the results remain
unsatisfactory due to the sparse observation data in some areas [15,27,30,38,39].
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In addition to the model structure, completing features related to PM2.5 is also im-
portant for the accurate forecast of PM2.5. The aerosol optical depth (AOD) data has been
widely used for the estimation and inversion of surface PM2.5 concentration for its spatial
continuity [40,41]. However, some areas frequently face substantial gaps in AOD product
coverage during the autumn and winter seasons, and it is difficult to achieve a high level of
prediction accuracy with the existing means of filling [42]. In the past, PM2.5 prediction stud-
ies in the Xinjiang Uygur Autonomous Region (hereinafter Xinjiang) often superimposed
daily AOD data and averaged it to predict the annual or monthly average concentration
of PM2.5, resulting in relatively low prediction accuracy [43–46]. Therefore, this study
matched daily AOD data to sites for inclusion in the study of characteristic variables.

In summary, establishing a multi-station long-term PM2.5 prediction framework holds
crucial value for regional pollution management and public health. Nevertheless, the spa-
tiotemporal heterogeneity of PM2.5 poses a great challenge for accurate multi-station PM2.5
forecasting. Therefore, this study is dedicated to developing a spatiotemporal weighted
neural network (STWNN) by aggregating neighborhood spatiotemporal information. It con-
siders the impact of spatial heterogeneity and temporal dependency on PM2.5 to enhance
the accuracy of PM2.5 long-term predictions (seven days). Considering Xinjiang, China as
the study area, this study is dedicated to addressing the following objectives: (1) Analyze
the spatiotemporal distribution characteristics of PM2.5 and identify its sources of pollution
in Xinjiang; (2) compare the predictive performance of the STWNN with CNN–LSTM,
CNN–Bi-LSTM, and CBAM–CNN–Bi-LSTM (CBAM+) under different temporal clustering
scenarios; and (3) conduct a spatiotemporal analysis of errors and use the SHapley Additive
exPlanations (SHAP) method to calculate the contribution distribution of feature variables
within the STWNN, demonstrating its interpretability.

2. Study Area and Materials
2.1. Study Area

Xinjiang is located in northwestern China (73◦40′ E~96◦23′ E, 34◦22′ N~49◦10′ N),
covering a total area of 1,664,900 km2. It is the largest provincial-level administrative
region in China and accounts for approximately one-sixth of the nation’s total land area.
The topography of Xinjiang is characterized by mountains and basins, with the Altai
Mountains, Junggar Basin, Tianshan Mountains, Tarim Basin, and Kunlun Mountains,
forming a “three mountains and two basins” landscape, in that order. The snow and
glaciers from these mountain ranges converge to create over 500 rivers, predominantly
distributed in the basins located to the north and south of the Tianshan Mountains. Xinjiang
has a temperate continental climate characterized by substantial temperature variations
and ample sunshine (annual sunshine duration ranging from 2500 to 3500 h). The climate
is dry, marked by scarce precipitation (average annual precipitation of 150 mm). Influenced
by the topography and spatial distribution of water resources, urban agglomerations in
the region typically align in strip or ring formations, and the geographic distribution of
environmental monitoring stations in Xinjiang is consistent with the distribution of cities
(Figure 1). Cities and urban agglomerations play an important role in regional economic
development, but air pollution has become an urgent problem in the region due to the
intense human activities and fragile ecological environment.
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Figure 1. Study area.

2.2. Data

The study data mainly consist of ground-based observed PM2.5 concentrations and
satellite data products (AOD, meteorological data, and normalized vegetation index
(NDVI)). Details of the specific data and sources (Table 1) used are as follows.

Table 1. Details of major data sources in this research.

Type Variable Unit Spatial Resolution Temporal Resolution

Pollutant PM2.5 ug/m3 Station 1 h
Optical AOD N/A 1 km 1 day

Meteorology

BLH m 0.25◦ 1 h
D2M k 0.25◦ 1 h
WD m/s 0.25◦ 1 h
SP pa 0.25◦ 1 h

T2M k 0.25◦ 1 h
TP m 0.25◦ 1 h

Land-related
NDVI N/A 1 km 16 days

Longitude ◦ N/A N/A
Latitude ◦ N/A N/A

2.2.1. PM2.5

Ground-level concentrations of PM2.5 are crucial data for refining model parameters
and assessing estimation outputs. The PM2.5 data utilized in this study were sourced
from the China Environmental Monitoring Center (http://www.cnemc.cn/, accessed
on 1 January 2023). Specifically, hourly PM2.5 data spanning from 1 January 2021 to
31 December 2021 were collected from 46 effective monitoring stations (Figure 1) within
the Xinjiang region.

2.2.2. Feature Variables

AOD exhibits a strong correlation with near-surface PM2.5 concentrations and is
widely used for estimating and inverting surface PM2.5 concentrations [47,48]. For this
study, we obtained the MODIS Collection 6 MAIAC AOD product (MCD19A2 V6.1) from
the Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/, accessed
on 3 August 2023) provided by the National Aeronautics and Space Administration. The
data, generated daily at a one-kilometer resolution, include quality assurance measures to
ensure retrieval quality.

The distribution and chemical–optical properties of PM2.5 are significantly influenced
by meteorological conditions [49,50]. Therefore, six meteorological variables were selected
from the European Center for Medium Weather Forecasting (https://www.ecmwf.int/,
accessed on 4 August 2023) (Table 1) as follows: boundary layer height (BLH, m), dew point

http://www.cnemc.cn/
https://lpdaac.usgs.gov/
https://www.ecmwf.int/
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temperature (D2M, K), wind speed (WD, m/s), surface pressure (SP, Pa), air temperature
(T2M, K), and precipitation (TP, m), each with a spatial resolution of 0.25◦ × 0.25◦.

In addition to meteorological variables, changes in vegetation cover can induce local
climate variations impacting PM2.5 concentrations [51]. Therefore, we also considered land
cover type. In this study, the NDVI was used as an approximation of land cover type. NDVI
data were obtained from the MODIS 16-day NDVI product (MOD13A2\MYD13A2) with a
spatial resolution of 1 km and a temporal resolution of 16 days (https://lpdaac.usgs.gov/,
accessed on 3 August 2023).

2.3. Data Preprocessing

Hourly observations of PM2.5 were averaged daily for daily estimation. After removing
abandoned monitoring stations, there are a total of 46 valid stations in the Xinjiang region
with a missing data rate of less than 5%. The Lagrange interpolation method was used
to fill in the small amount of missing data in the valid station to encode the daily mean
PM2.5 concentration values into a time series format for input into the time series module
structure [52]. For the model fitting and testing, the multisource remote sensing products
((i.e., AOD, meteorological, NDVI) were initially preprocessed to remove nulls. Among
them, the MODIS data are preprocessed by ENVI + IDL, including quality control, mean
value calculation, same-day Mosaic, reprojection, coordinate system transformation, etc.,
and the NDVI is filled linearly using the interpolate method, resampling the temporal
resolution to daily so that small variations are reflected daily. Subsequently, all raster
predictor variables were uniformly resampled to the same spatial size (1 km) and the
temporal interval (one day) using the bilinear interpolation method. Finally, the multisource
data and ground station PM2.5 mass concentration data were matched temporally and
spatially based on latitude, longitude, and time. To validate the model’s generalization
ability, the dataset was partitioned into a training set (70%), a validation set (20%), and a
test set (10%).

3. Methods
3.1. Flow Chart

The flow chart of this study is shown in Figure 2. First, all the data were preprocessed
and coded into time series form, and then analyzed for correlation. Second, the spatiotem-
poral analysis of PM2.5 in Xinjiang was conducted, and all data were divided into four
clusters (seasonal) in the temporal dimension. Finally, using these distinct clusters, different
models were evaluated and compared in terms of training and validation performance,
and the interpretability of the STWNN was verified.

3.2. Spatiotemporal Analysis and Clustering

In the temporal dimension, we computed the mean and standard deviation of PM2.5
concentrations at various time scales and analyzed the variation characteristics on seasonal
and monthly scales in Xinjiang. We used inverse distance weighted interpolation and
Moran’s I statistics for the spatial dimension to analyze the spatial distribution charac-
teristics of PM2.5 concentrations. The inverse distance weight interpolation was used to
estimate the unknown points. The expressions are as follows:

Z(x0) =
∑n

i=1(
1

d(xi ,x0)
P Z(xi))

∑n
i=1

1
d(xi ,x0)

P

, (1)

where Z(x0) is the interpolated value of the unsampled point x0, Z(xi) is the eigenvalue of
the sampled point xi, d(xi, x0) is the distance between the sampled point and the unsampled
point, n is the number of sampled points, and P is the power exponent controlling the
degree of distance influence, typically ranging from 1 to 3.

https://lpdaac.usgs.gov/
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Moran’s I assesses the spatial correlation of a variable [53,54]. The global Moran’s I
statistic indicates clustering presence or absence across all sample points. Local Moran’s I
is a statistical metric identifying and assessing spatial patterns of PM2.5 hotspot areas. The
formulas for the global and local Moran’s I statistics are as follows:

I = ∑n
i=1 ∑n

j=1 wij(xi − x)
(
xj − x

)
S2∑n

i=1 ∑n
j=1 wij

, (2)

Ii =
(xi − x)

S2 ∑
j=1

wij
(
xj − x

)
, (3)

S2 =
1
n

n

∑
i=1

(xi − x)2, (4)

where I is the global Moran’s I statistic, Ii is the local Moran’s I statistic of sample point I,
S2 is the variance of all values, xi and xj are the values of sample points i and j, respectively,
x is the mean value of all sample points, wij is the spatial weight, and n is the number of
sample points.

Moran’s I statistic ranges from −1 to 1. A positive global Moran’s I indicates spatial
positive correlation, whereas a negative value suggests negative correlation. When local
Moran’s I is statistically significant, sample points can be categorized into high–high,
high–low, low–high, and low–low clusters.

3.3. STWNN

The STWNN utilizes multi-temporal, multisource remote sensing products as inputs,
aggregates domain spatial features based on spatial signals, enhances feature learning capa-
bilities through an improved channel attention mechanism, and acquires temporal features
using a Bi-LSTM structure to augment spatiotemporal features. Finally, the predicted PM2.5
concentrations for the upcoming week serve as the output. The modeling framework is
segmented into spatial, attention, and temporal modules (Figure 3).
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3.3.1. Spatial Module

Given the sparse and heterogeneous stations in Xinjiang, spatial clustering often leads
to model overfitting due to fewer stations in some clusters, thereby increasing uncertainty
and error. Therefore, this study is based on the STWNN (Figure 3) that captures local
dependencies in limited spatial data to deal with spatial correlation and heterogeneity of
spatial objects. To achieve this objective, the spatial signal (SS) is introduced in the spatial
module [55]. The SS is calculated as follows:

SSI =
∑n

j=1
1

d2
ji

Xj

∑n
j=1

1
d2

ji

, (5)
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where the SS considers the effect of n neighboring observations j (j = 1, 2, . . . , n) near the
target point i and uses distance weighting to enhance or attenuate the effect of the nearer
observations, Xj is the PM2.5 concentration of point j near the target data point i, dji is the
distance between points i and j, n is the number of the nearest points of point i, and the
adaptive nature of n usually ensures sufficient local calibration when the samples are dense
or sparse and is crucial for calculating spatial correlation. dij is defined as the Euclidean
distance, calculated using the coordinates of point i(xi, yi) and point j

(
xj, yj

)
, as follows:

dij =
√(

xi − xj
)2

+
(
yi − yj

)2. (6)

Subsequently, the SS at each time node “t” is encoded as a time series vector input to
the CNN along with other feature variables to extract all feature variables and obtain the
spatial dependencies of all stations. Meanwhile, the TimeDistributed layer is used to obtain
more information about the historical time step of the time series data. This condition
allows the CNN to overcome the limitation of using only previous data from a single point
in time as an input, enabling the capture of long-term data features. The primary structure
of the CNN encompasses an input layer, a convolutional layer, a pooling layer, a fully-
connected layer, and an output layer. The information from the input layer is processed
through feature transformation and extraction in the convolutional and pooling layers.
This local information from the convolutional and pooling layers is further integrated by
the fully connected layer and mapped to the output signal through the output layer. The
feature mapping function is defined as follows:

xout
i,j = fCov(

k

∑
m=0

k

∑
n=0

wm,nxin
i+m,j+n + b), (7)

where xout
i,j is the output value of the feature mapping in the i row and j column, xin

i+m,j+n is
the value of the input matrix in the i row and j column, fCov() is the activation function,
wm,n is the weight of the convolution kernel in the m row and n column, and b is the bias of
the convolution kernel.

3.3.2. Attention Module

The channel attention module amplifies the feature representation of a convolutional
neural network by leveraging SS signals to emphasize the most informative features.
Initially, the module generates channel attention weights for the model through two fully
connected layers and a ReLU activation function. Furthermore, the SS is isolated from the
input tensor, and a spatial attention map is produced via convolutional layers (3 × 3) and
an activation function (sigmoid). This attention map comprises weights that quantify the
importance of each spatial location in the SS signal, thereby capturing intricate relationships
and dependencies between the input feature channels. Subsequently, the weights acquired
through this process are propagated to other feature channels to obtain the adjusted SS
signal. This approach not only preserves the information within the SS signal itself but also
elevates the representation of the feature channels. The channel attention layer seamlessly
integrates after the initial maximum pooling layer of the model, enabling the attention
mechanism to refine the feature representation early in the network. This refinement
profoundly impacts the subsequent layers, enhancing their ability to extract and process the
most relevant information. The adjusted SS signal undergoes element-wise multiplication
with the feature variables within the channel, yielding the final feature representation. This
targeted feature refinement empowers the network to learn more robust and discriminative
feature representations, ultimately translating into improved predictive performance. The
weighting formula is as follows:

Atts = σ(Conv3∗3(SS)), (8)



Atmosphere 2024, 15, 460 9 of 25

ac = σ{W2[ReLU(W1(Atts))]}, (9)

where Atts is the spatial attention map, which is generated by SS; W1 and W2 are the
weight matrices of the two fully connected layers; ac is the adjusted spatial signal, which is
the channel attention weight; Conv3∗3 is the convolutional layer, and σ and ReLU are the
activation functions.

3.3.3. Temporal Module

LSTM is a special type of recurrent neural network model that overcomes the phenom-
ena of gradient explosion and vanishing in error back propagation and effectively captures
long- and short-term information LSTM using an input layer, an output layer, and a series
of memory blocks. Each LSTM block contains an oblivion gate ft, which determines how
much information is retained from time step t − 1; an input gate it, which determines how
much information is stored from the current time step t; a cell state Ct, which updates the
current cell state; and an output gate ot, which determines how much information from the
current cell state Ct is transferred to the output. The LSTM equation for time step t can be
expressed as follows:

ft = σ
(

W f [ht−1, xt] + b f

)
, (10)

it = σ(Wi[ht−1, xt] + bi), (11)

Ct = ft ∗ Ct−1 + it ∗ tanh(WC[ht−1, xt] + bC), (12)

ot = σ(Wo[ht−1, xt] + bo), (13)

ht = ot ∗ tanh(Ct), (14)

where ft, it, ot, and Ct denote the vectors of the oblivion gate, input gate, output gate, and
cell state, respectively; W f , Wi, WC, and Wo are the weights; b f , bi, bC, and bo denote the
bias vectors of the corresponding gate state and cell state; ht−1 and ht are the output vectors
of the different time steps t and t − 1, respectively; xt is the current input, and [ht−1, xt]
combines the two vectors into the output; and σ and tanh are the activation functions.

Bi-LSTM is an extension of LSTM; it overcomes the shortcoming of LSTM in which
the time series only flows forward and allows the time series to flow both forward and
backward [56,57]. In Bi-LSTM, the output vector at time step t is expanded into two vectors:
h f orward

t and hbackward
t . Combining these vectors from the oppostation time directions forms

the final output vector [h f orward
t ,hbackward

t ], i.e., ht. The Bi-LSTM uses independent hidden
layers in two directions; thus, each hidden layer can record past and future information.
Therefore, Bi-LSTM can be regarded as a model with a built-in time weighting mecha-
nism, it retrieves a more comprehensive set of PM2.5 features to improve the prediction of
the network.

In this experiment, we use Keras, based on TensorFlow, to construct the proposed
STWNN model. Table 2 displays the parameters utilized to train the prediction model.

Table 2. STWNN model parameters setting.

Parameters Value

N (SS) 3
Kernel size of CNN 4 × 4

Convolution channels 32
Convolution layer 3

Channel convolution kernel size 3 × 3
Bi-LSTM nodes 256, 128
Bi-LSTM layer 2

Fully connected layer nodes 46
Learning rate Adam

Batch size 8
Epochs 1000
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3.4. Evaluation Indicators

Four metrics, the root mean square error (RMSE), the mean absolute error (MAE), the
coefficient of determination (R2) and the index of agreement (IA), were selected to evaluate
the model [34,35,58]. RMSE reflects the sensitivity of the model to errors, and MAE reflects
the stability of the model. When both values are close to 0, the prediction result is improved.
R2 indicates the prediction ability of the actual data, and IA indicates the similarity of the
distribution between the actual and predicted values, and the value of the two variables
spans [0,1]. Moreover, when the value is closer to 1, the prediction result is consistent with
the distribution of the actual data. The formula is as follows:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2, (15)

MAE =
1
n∑n

i=1|yi − ŷi|, (16)

R2 =
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − ŷi)

2 , (17)

IA = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(|yi − ŷi|+ |ŷi − yi|)

2 . (18)

3.5. Explainability Analysis of Deep Learning Models

This study introduces SHAP to quantify the influence of various feature variables
on forecasting outcomes. It connects optimal credit allocation with local explanations by
the classical Shapley values from game theory and the related extensions [59]. It aims to
calculate the impact of different feature variables on the model output in each sample and
show the positivity or negativity of the impact [60]. SHAP calculates distinct marginal
contributions of feature variables considering all sequences of variables and ensuring
equitable comparisons. The final feature contribution is the weighted average of marginal
contributions for each feature variable when incorporated into the model. The formula is
expressed as follows:

SHAP f eature(x) = ∑
set: f eature∈set

[
|set| ∗

(
F

|set|

)]−1[
yset(x)− yset\ f eature(x)

]
, (19)

where y(x) is the predicted value of the model that includes some feature variables and F is
the number of total subsets of input features.

4. Results
4.1. Variable Importance

The variable importance test refers to the computation of the importance of each
variable in model design [61]. In this study, RF is introduced to quantify the importance of
variables. Following the variable selection strategy [62], variables with importance scores
below 2% are excluded. As shown in Figure 4, the importance scores of all variables in
this research exceed 2%, positively contributing to the estimation accuracy of the model.
The most crucial variable is AOD (33.69%), which exhibits a high correlation with PM2.5
concentrations. Meteorological variables also play a significant role in PM2.5, particularly
BLH (21.05%). The thick temperature inversion layer and low precipitation and BLH
increase the air stagnation, stabilizing the polluted air over the area without diffusion [63].
A relatively high relative humidity favors the formation of secondary aerosols, a vital
component of PM2.5 [64]. In addition, the land-related variables of the NDVI (8.65%)
exhibit a considerable impact.
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4.2. Characteristics of Spatial and Temporal Distribution of PM2.5

In the time dimension, Figure 5 analyzes the annual, seasonal, and monthly changes in
PM2.5 index. Figure 5a illustrates that the annual average PM2.5 concentration in Xinjiang
was 44.42 in 2021, exceeding the national average (30). The PM2.5 levels exhibited significant
seasonal differences (p < 0.001), following the order of spring, winter, summer, and autumn.
Average PM2.5 concentrations in summer (26.98) and autumn (21.97) were below the
national results, whereas those in spring (73.95) and winter (54.78) were notably higher.
Figure 5b indicates that the monthly average PM2.5 concentrations in Xinjiang ranged from
15.93 to 86.61 in 2021, showing a U-shaped trend with higher values at the beginning and
end of the year and lower values in the middle. Notably, June recorded the lowest average
PM2.5 concentration (15.93), whereas January had the highest (86.61). These variations
suggest that PM2.5 pollution concentrations in Xinjiang were generally excellent and stable
during summer and autumn in 2021, with increased concentrations in spring and winter.

In the spatial dimension, Moran’s I statistical value of the annual mean PM2.5 con-
centrations at several stations in Xinjiang in 2021 was 0.71 (p < 0.001). Moreover, Moran’s
I values for seasonal mean concentrations in summer (0.95), autumn (0.92), and winter
(0.74) exceeded those for annual mean concentrations. This finding implies significant
positive spatial correlation and aggregation of annual mean PM2.5 concentrations at multi-
ple stations in Xinjiang. Seasonal datasets better reflected spatial aggregation changes. In
addition, inverse distance weighting was applied to the mean PM2.5 concentrations for each
season in 2021. During summer, autumn, and winter, Xinjiang exhibited a trend of higher
PM2.5 concentrations in the southwest and lower concentrations in the northeast. Local
Moran’s index statistics (Figure 6) indicate high–high clustering in the Kashgar (I) and
Hotan (II) regions in southern Xinjiang during summer. Conversely, most areas in northern
Xinjiang display low–low clustering in summer and autumn. Among them, the urban
agglomeration on the northern slope of the Tianshan Mountain (III) no longer follows this
pattern in winter, showing elevated PM2.5 concentrations, gradually shifting to high–high
clustering in spring.
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In summary, the region displayed significant spatiotemporal heterogeneity in PM2.5
concentrations. In northern Xinjiang, the large temperature difference between day and
night during the summer and autumn seasons, coupled with intense solar radiation, led
to a rapid rise in surface temperatures and heating of the near-surface air. This condition
resulted in increased convection, unstable atmospheric stratification, and enhanced pre-
cipitation, facilitating the diffusion and deposition of air pollutants. Consequently, PM2.5
concentrations were generally lower in northern Xinjiang during summer and autumn. By
contrast, emissions from operations such as mining and transportation of energy sources
(e.g., oilfields and coal) in the core area of urban and industrial development on the north-
ern slopes of the Tianshan Mountains contributed to rising PM2.5 concentrations in winter
and spring. In addition, surface inversions caused by low surface temperatures in spring
and winter hindered vertical convection, impeding pollutant diffusion. The widespread
dusty weather in southern Xinjiang, influenced by cold air activities in spring, also had a
significant impact on northern Xinjiang. In southern Xinjiang, the abundance of deserts
brought a rich source of atmospheric pollutants, and the region, surrounded by moun-
tains on three sides, caused floating dust to linger for an extended period, resulting in
prolonged high concentrations of PM2.5. The primary sources of PM2.5 in southern Xinjiang
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were windy dust, supplemented by oil and gas combustion, and to a lesser extent, coal
combustion emissions.
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4.3. Model Fitting and Validation
4.3.1. Determination of Proximity Points Number N for SS

The determination of the proximity point number (n) is critical for assessing spatial
correlation. Through multiple experiments (refer to Table 3), the optimal prediction perfor-
mance was achieved when n = 3. Consequently, this study aggregated the spatiotemporal
information from three stations near each sampling point. The features were spatially
augmented using a distance-weighting method, enabling the model to effectively compute
spatial correlation and achieve optimal performance.

Table 3. Effect of number of adjacent points on model performance.

n RMSE MAE R2 IA

1 13.23 7.79 0.94 0.79
2 13.24 7.66 0.93 0.79
3 10.29 6.1 0.96 0.81
4 13.26 7.9 0.94 0.78
5 12.89 7.08 0.94 0.79

4.3.2. Overall Forecasting

The prediction accuracies of the four PM2.5 prediction models based on the relevant
data in 2021 are shown in Figure 7. For single-day predictions, the MAE ranks in descending
order are STWNN, CBAM+, CNN–Bi-LSTM, CNN–LSTM, and similarly in ascending order
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for IA. The RMSE follows the descending order of STWNN, CNN–Bi-LSTM, CBAM+, CNN–
LSTM, and the same ascending order for R2. Among these models, STWNN (RMSE = 16.23,
MAE = 8.43, R2 = 0.92, and IA = 0.78) exhibits the best predictive ability, whereas the
original CNN–LSTM (RMSE = 24.09, MAE = 13.18, R2 = 0.78, IA = 0.73) performs the least
favorably. The other models show improvements in predictive ability compared with the
CNN–LSTM.
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For multi-day forecasting, prediction accuracy generally increases and then decreases
with the number of days, with models reaching peak accuracy around the fourth day
(Figure 7). Averaging the prediction accuracies over the seven days, STWNN (RMSE = 10.29,
MAE = 6.10, R2 = 0.96, and IA = 0.81) has the highest average prediction accuracy (Figure 8).
Notably, STWNN (RMSE = 7.15, MAE = 4.19, R2 = 0.99, and IA = 0.83) has the highest
prediction accuracy on the fourth day.

In the experiment, the time step was set at 7, corresponding to one week. This value
allows the model to capture cyclical changes effectively, leading to improved simulation ac-
curacy for the first four to five days. However, for longer time spans, increased uncertainty
in spatiotemporal features may result in overfitting and reduced prediction performance.
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Figure 8. Overall forecasting scatter plots for (a) CNN–LSTM, (b) CNN–Bi-LSTM, (c) CBAM+, and
(d) STWNN. The color of points represents the percentage of the total number of points in this value
range. A higher percentage indicates that more data points are within this value range. The average
value of multi-step prediction evaluation results is provided (N = 34134).

4.3.3. Seasonal Forecasting

Given the evident seasonal differences in PM2.5 concentrations within Xinjiang, the
dataset is categorized into four clusters based on the seasons, leading to the establishment
of a seasonal PM2.5 prediction model for each cluster (Figure 9). The multi-day prediction
accuracy trend of the seasonal prediction model is approximately similar to that of the
overall forecasting model, exhibiting an initial increase followed by a decrease (the highest
accuracy is reached on the fourth to fifth day). Figure 9 illustrates a comparative analysis
of seasonal prediction models utilizing four types of neural networks. Notably, some
seasonal differences in prediction accuracy are found among the models, with autumn
predictions displaying the most robust performance across all four models (CNN–LSTM
(RMSE = 4.56, MAE = 2.7, R2 = 0.95, and IA = 0.87); CNN–Bi-LSTM (RMSE = 6, MAE = 3.28,
R2 = 0.94, and IA = 0.86); CBAM+ (RMSE = 4.15, MAE = 2.69, R2 = 0.97, and IA = 0.89);
STWNN (RMSE = 4.56, MAE = 2.38, R2 = 0.95, and IA = 0.89)). Examination of the model
performance reveals that CNN–LSTM and CNN–Bi-LSTM consistently outperform the
overall prediction across all four seasonal clustering predictions. CBAM+ excels in three
seasonal clustering predictions (autumn, winter, and summer). By contrast, STWNN
demonstrates comparable performance to the overall prediction in spring and summer
clustering predictions, outperforming the overall prediction in autumn and winter (Table 4).
Notably, in seasonal predictions, STWNN consistently outperforms other models across all
seasonal clusters (spring (RMSE = 12.48, MAE = 5.71, R2 = 0.96, and IA = 0.85); summer
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(RMSE = 10.98, MAE = 5.68, R2 = 0.96, and IA = 0.81); autumn (RMSE = 4.56, MAE = 2.38,
R2 = 0.95, and IA = 0.89); winter (RMSE = 7.99, MAE = 5.64, R2 = 0.96, and IA = 0.87)).
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Table 4. Comparison of overall forecasting and seasonal forecasting by the STWNN model.

STWNN RMSE MAE R2 IA

Overall 10.29 6.10 0.96 0.81
Spring 12.48 5.71 0.96 0.85

Summer 10.99 5.68 0.96 0.81
Autumnn 4.56 2.38 0.95 0.89

Winter 7.99 5.64 0.96 0.87

Seasonal forecasting, as observed in the experiments, generally outperforms the over-
all forecasting. This enhanced performance is likely attributed to pronounced seasonal
variations in PM2.5 concentrations influenced by meteorological and anthropogenic factors.
Season-specific models prove adept at capturing these unique patterns, resulting in more
accurate predictions. Training distinct models for each season allows the network to learn
season-specific features without being confounded by broader variations in annual data.
This approach acknowledges that discretizing data across different seasons may limit the
ability to perform accurate seasonal forecasting. In Xinjiang, autumn PM2.5 concentrations
are generally low, leading to consistently small prediction errors. Conversely, in spring,
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the discrete and fluctuating nature of PM2.5 concentrations, especially with high values,
hampers the model’s forecasting ability, resulting in larger errors. This limitation is likely
linked to the frequent occurrence of dust storms during spring in the Xinjiang region.

4.4. Spatiotemporal Variation of Feature Variable Based on SHAP Values

On the basis of the results of the overall and seasonal forecasting, the distribution
of each feature variable’s contribution to the PM2.5 forecasting is described from a global
interpretability standpoint. This analysis considers station A (Altay 2708A) in the northern
part of the northern frontier, station B (Urumqi 1494A) in the urban agglomeration on the
northern slope of the Tianshan Mountain, and station C (Kashgar 2699A) located on the
western edge of the Taklamakan Desert in the southern frontier (Figure 10a).
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4.4.1. Overall Forecasting

Figures 10 and 11 illustrates the distribution of SHAP values for various feature
variables at different stations concerning their contributions to PM2.5 in the overall pre-
dictions. Figure 10b indicates that station A is predominantly influenced by AOD (SHAP
value = 1.14, contributing 39.83%), exerting a significantly positive impact on PM2.5. El-
evated AOD levels forecasting increased vertical aerosol accumulation, resulting in at-
mospheric haziness and a subsequent increase in PM2.5 levels. The contributing factors
as well as their corresponding SHAP values and percentage contributions are as follows:
NDVI (SHAP value = 0.744 with a contribution of 26%), BLH (SHAP value = 0.296 with
a contribution of 10.34%), T2M (SHAP value = 0.293 with a contribution of 10.24%), and
D2M (SHAP value = 0.145 with a contribution of 5.07%). Figure 10c reveals that station B is
mainly driven by the NDVI (SHAP value = 0.787 with a contribution of 58.08%), leading to a
substantial negative impact on PM2.5. Therefore, relatively high vegetation cover promotes
the absorption and deposition of PM2.5, resulting in a decrease in PM2.5 levels. Subsequent
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factors include D2M (SHAP value = 0.127 with a contribution of 9.37%), T2M (SHAP
value = 0.127 with a contribution of 9.37%), BLH (SHAP value = 0.111 with a contribution
of 8.19%), and SS (SHAP value = 0.088 with a contribution of 6.49%). Figure 10d indicates
that station C is primarily influenced by WD (SHAP value = 0.154 with a contribution of
16.68%), resulting in a negative impact on PM2.5. Wind tends to bring abundant pollutants
from the sand source given its proximity to the desert. The subsequent factors include BLH
(SHAP value = 0.137 with a contribution of 14.84%), NDVI (SHAP value = 0.134 with a
contribution of 14.52%), AOD (SHAP value = 0.131 with a contribution of 14.19%), and SS
(SHAP value = 0.129 with a contribution of 13.98%). A relatively high SS value indicates a
more substantial influence of surrounding stations on the focal point, with the positivity
or negativity of the impact depending on the PM2.5 levels at the surrounding stations.
This result aligns with the presented results in the figure. The contribution distribution
of these aforementioned features indicates spatial heterogeneity between PM2.5 and the
feature variables.
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Xinjiang.

4.4.2. Seasonal Forecasting

Apart from regional variations in key variables, seasonal differences in the impact
of feature variables on PM2.5 are observed. Figure 12 displays the mean absolute SHAP
values and contribution percentages of the top three contributing feature variables, where
higher SHAP values indicate a greater influence on the dependent variable.

The Altay region, where station A is located, is in the northernmost part of Xinjiang
and is recognized as a water-sustaining mountain grassland ecological function area with
light PM2.5 pollution. In summer and winter, AOD remains the dominant factor, consistent
with the overall predictions. However, spring and autumn exhibit different dominant
factors and seasonal differences. In spring, D2M significantly influences PM2.5 at station
A (SHAP value = 0.151 with a contribution of 19.28%), showing a negative impact. Subse-
quently, WD, and AOD contribute 18.14% and 14.94%, respectively. The region experiences
dry and windy conditions in spring. Consequently, changes in D2M significantly affect
aerosol wetting and condensation processes, thereby substantially influencing the PM2.5
concentrations. In summer, AOD has a major negative impact on the area where station A
is located (SHAP value = 0.227 with a contribution of 38.34%), followed by T2M and BLH,
contributing 14.86% and 13.51%, respectively. In autumn, BLH has a significant negative
impact on station A (SHAP value = 0.100 with a contribution of 24.63%), followed by WD
and AOD with contributions of 22.41% and 16.01%, respectively. The region experiences
clear and cool conditions in autumn, with a usually larger boundary layer height, facilitat-
ing pollutant dispersion and resulting in reduced PM2.5 concentrations and relatively good
air quality. In winter, AOD significantly influences station A, contributing 55.35% (SHAP
value = 1.516), followed by D2M and NDVI contributing 10.04% and 8.43%, respectively.
Moreover, in spring and autumn, the second and third contributing feature variables (WD
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and AOD, respectively) are consistent. Generally, higher wind speeds are believed to
enhance aerosol diffusion and reduce AOD values [65].

Atmosphere 2024, 15, x FOR PEER REVIEW 20 of 26 
 

 

 
Figure 12. Dominant factors affecting PM2.5 concentration and their SHAP values in different regions 
((a) station A, (b) station B, and (c) station C) of Xinjiang in different seasons. 

Similar to station A, the dominant factor (NDVI) for station B in summer and winter 
aligns with the overall predictions, whereas the meteorological variables become domi-
nant in spring and autumn, showing seasonal differences. In spring, WD significantly in-
fluences station B (SHAP value = 0.154 with a contribution of 30.84%), followed by SS and 
NDVI with contributions of 14.23% and 13.63%, respectively. The Urumqi region, where 
station B is located, is in the urban agglomeration of the northern slope of Tianshan Moun-
tain. The region experiences the highest wind speed in spring, beneficial for reducing 
PM2.5 concentrations, negatively affecting the predictions. In summer, the NDVI has a 

Figure 12. Dominant factors affecting PM2.5 concentration and their SHAP values in different regions
((a) station A, (b) station B, and (c) station C) of Xinjiang in different seasons.

Similar to station A, the dominant factor (NDVI) for station B in summer and winter
aligns with the overall predictions, whereas the meteorological variables become dominant
in spring and autumn, showing seasonal differences. In spring, WD significantly influences
station B (SHAP value = 0.154 with a contribution of 30.84%), followed by SS and NDVI
with contributions of 14.23% and 13.63%, respectively. The Urumqi region, where station
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B is located, is in the urban agglomeration of the northern slope of Tianshan Mountain.
The region experiences the highest wind speed in spring, beneficial for reducing PM2.5
concentrations, negatively affecting the predictions. In summer, the NDVI has a major
impact on station B (SHAP value = 0.18 with a contribution of 44.33%), followed by T2M
and D2M with contributions of 16.75% and 14.29%, respectively. In autumn, humidity
has a significant impact on station B (SHAP value = 0.052 with a contribution of 24.76%),
followed by BLH and T2M with contributions of 20.95% and 15.71%, respectively. In winter,
the NDVI significantly influences station B, contributing 55.73% (SHAP value = 0.506),
followed by T2M and D2M with contributions of 11.01% and 8.7%, respectively. Abundant
precipitation tends to bring moist water vapor, and high humidity conditions usually
occur under low-pressure systems, jointly affecting PM2.5 nucleation, condensation, and
coagulation, resulting in elevated PM2.5 concentrations [66].

Station C is located in the southwestern part of Kashgar, surrounded by mountains
on three sides and the Taklamakan Desert to the east, where floating dust lingers for an
extended period and is not easily dispersed. Because of the windy, sandy and floating
dust weather in this area in spring and summer, AOD has a significant impact on station
C in spring (SHAP value = 0.233 with a contribution of 26.39%) and summer (SHAP
value = 0.180 with a contribution of 35.02%), followed by WD and T2M because of the
windy, sandy, and floating dust weather in this area in spring and summer. In addition,
BLH has a greater impact on the area, where station C is located in the autumn (SHAP
value = 0.048 with a contribution of 19.93%), followed by D2M and T2M with contributions
of 19.85% and 14.95%, respectively. In winter, BLH (SHAP value = 0.153 with a contribution
of 29.82%) is also the largest dominant factor, followed by SS and NDVI, with contributions
of 23.00% and 11.50%, respectively. These characteristics are consistent with the top five
dominant factors with closer contributions in the overall prediction of the previous section.

5. Discussion

The STWNN model demonstrated that spatial signals in sparsely and unevenly dis-
tributed areas can enhance the predictive performance of PM2.5. STWNN strengthened its
ability to capture spatial heterogeneity by incorporating spatial information into the model.
In the overall forecasting, SS significantly improved the model’s predictive performance
(RMSE = 10.29, MAE = 6.10, R2 = 0.96, and IA = 0.81), with STWNN emerging as the
optimal PM2.5 prediction model in this study. Taking MAE as an example, the predictive
errors of STWNN were decreased by 36.9% (CNN–LSTM), 25.4% (CNN–Bi-LSTM), and
20.1% (CBAM+) compared to other models. Autocorrelation analyses of the errors for
each model in the overall forecasting were conducted, to investigate the spatiotemporal
characteristics of the model performance. The results indicate that the errors are randomly
distributed in the study area, signifying effective capturing of spatial heterogeneity by
the models. Notably, for CNN–LSTM (0.081), CNN–Bi-LSTM (−0.126), CBAM+ (0.116),
and STWNN (0.006), all p-values are less than 0.05. The degree of error aggregation of
STWNN was evidently weaker than that of other models, demonstrating that STWNN
was better at capturing spatiotemporal heterogeneity. In temporal clustering, there is a
certain improvement found in predictive accuracy based on seasonal clustering. Taking
MAE as an example, the prediction errors of STWNN decreased by 10.8% (spring), 11.3%
(summer), 62.8% (autumn), and 11.9% (winter) compared to the overall forecasting. Model
performance variations may stem from the relationships between PM2.5 and feature vari-
ables, temporal clustering methods, and model development techniques. Factors such
as data volume, cluster discretization levels, and spatial correlation can also yield differ-
ent prediction outcomes. Figure 13 provides the spatial distribution of model absolute
errors for different temporal clusters under ideal spatiotemporal heterogeneity expression,
further illustrating the adaptability of the model within the study area, and showing the
superior performance of the STWNN. Comparing the four models, STWNN consistently
outperforms others in all temporal clusters, with the model based on seasonal clustering
surpassing the overall prediction.
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In this study, RF analysis was used to assess the relative importance of various feature
variables. However, this method inadequately conveys the spatial contribution of these
variables to PM2.5. To address this issue, the SHAP model was added to conduct interpre-
tative analysis on the STWNN prediction results, revealing the spatiotemporal variations
in the driving patterns of feature variables in PM2.5 prediction in Xinjiang province. This
approach concludes the intensity and spatiotemporal heterogeneity of the impact of dif-
ferent variables on PM2.5. The variable importance test and SHAP interpretation in this
study indicate that AOD, BLH, and NDVI are the most influential variables in generating
PM2.5 in Xinjiang. In addition, SHAP results highlight two main differences in the major
feature variable of PM2.5 prediction in the study area: geographic location and seasonal
variation. In summary, the results of this study encompass the support of early warning
systems and the development of management measures to enhance air quality. For example,
increasing urban green spaces in agglomerations and judicious use of artificial rain autumn
can contribute to long-term PM2.5 reduction.

The proposed STWNN showed satisfactory accuracy in the PM2.5 prediction, but some
shortcomings still exist. To enhance the model, considering integrating SS with time-related
attention to enhance spatiotemporal features could be beneficial. Meanwhile, additional
features, such as socioeconomic data, could be incorporated for more comprehensive
information. Moreover, the study area can be refined to urban regions to enhance the spatial
resolution (e.g., urban-level 500 m spatial coverage) and improve prediction accuracy and
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reliability. This will enable more accurate prediction and analysis of PM2.5 changes within
cities, providing targeted support for urban air quality management and decision-making.

6. Conclusions

Previous studies on PM2.5 prediction often yielded less-than-ideal results in regions
with sparse and unevenly distributed monitoring stations. This study introduces a DL
model (STWNN) that integrates spatial signals into a recurrent neural network capable
of handling time series. The model enhances feature representation through the SS in
attention layer, considering spatial and temporal heterogeneity. The conclusions of this
study are as follows:

(1) Temporally, PM2.5 in Xinjiang exhibits significant seasonal variations, forming a
U-shaped pattern on annual and monthly scales. Spatially, the annual average con-
centration of PM2.5 in Xinjiang shows a trend of being higher in the southwest and
lower in the northeast. The PM2.5 concentration in this region demonstrates notable
spatiotemporal variations.

(2) STWNN demonstrates significantly improved predictive accuracy compared with
most previous models (CNN–LSTM, CNN–Bi-LSTM, and CBAM+). Performance is
relatively enhanced for seasonal predictions compared with the overall predictions.
STWNN is considered the top-performing model for overall and seasonal predictions.
Error pattern analysis further indicates that STWNN (0.006, p < 0.05) captures spatial
heterogeneity, exhibiting strong spatiotemporal adaptability.

(3) This study introduces SHAP methods for in-depth analysis of the STWNN prediction
model, enhancing its interpretability and credibility. SHAP reveals the importance and
spatiotemporal variation of key factors affecting PM2.5 predictions. Results indicate
that AOD, BLH, and NDVI are the most influential feature variables in generating
PM2.5 in Xinjiang.

The proposed STWNN model fully utilizes the spatiotemporal variations of PM2.5 and
remote sensing data, providing daily PM2.5 products for regions with sparse monitoring
stations. This is more suitable for daily public requirements and provides scientific support
for government decision-making.
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