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Abstract: This study investigates the impact of warm core eddies (WCEs) on the ocean response
and intensity of tropical cyclones (TCs) in the Northwest Pacific, focusing on three typhoons in 2018:
Jebi, Trami, and Kong-rey. The research uses the Hurricane Weather Research and Forecast (HWRF)
model coupled with the MPIPOM-TC ocean model. Idealized WCEs are embedded into the ocean
model ahead of each TC. The impacts of WCEs are evaluated by comparing simulations with and
without their presence. Uncoupled experiments with the fixed sea surface temperature (SST) serve as
a reference for TC maximum potential intensity. To quantitatively assess the impact of WCEs on the
SST, enthalpy fluxes, and TC intensity, a Maximum WCE Potential Index (MWPI) is introduced. Our
findings indicate that for a WCE with a 200 km radius, the potential to reduce SST cooling ranges
from 34 to 37%, while the potential to increase enthalpy fluxes varies between 25 and 39%. The
influence of WCEs on TC intensity, as measured by minimum pressure, shows a larger variation from
27% to 48%, depending on the oceanic and atmospheric environmental conditions in each storm.
Additional experiments reveal the sensitivity of the MWPI to WCE size, with TC Trami showing less
sensitivity due to its slower translational speed. This study underscores the significant role of oceanic
thermal conditions, particularly WCEs, in modulating TC intensity.

Keywords: tropical cyclone; coupled model; warm core eddy

1. Introduction

Tropical cyclones (TCs), also known as hurricanes or typhoons, form over warm
waters in tropical oceans, typically during late summer, and often result in devastating
disasters, including strong winds, heavy rainfall, floods, and storm surges. The variability
in TC intensity arises from two primary sources: internal variability and environmental
interactions. One crucial aspect of environmental interaction is the interplay between
the TC and the underlying ocean. The generation and intensification of TCs are closely
linked to the transfer of energy from the upper ocean [1,2]. Numerous observational and
numerical studies have shown that TCs induce significant changes in the thermodynamic
structure of the underlying ocean due to storm forcing, which significantly affects this
energy exchange.

Because of the interaction with the ocean, the tropical cyclone–ocean system exhibits
a complex interplay of positive and negative feedback mechanisms. Positive feedback
predominates during the TC genesis and development stages. As the TC strengthens, the
surface wind speed increases, resulting in enhanced evaporation rates [3,4]. The greater
moisture supply from the ocean amplifies the latent heat energy, fueling the circulation of
the TC. As the storm continues to intensify, increased surface winds generate a strong ocean
response, resulting in a decrease in sea surface temperature (SST). The primary processes
responsible for sea surface cooling involve wind stress-induced turbulent mixing of the
upper ocean, accompanied by the entrainment of colder water from deeper layers and
upwelling [5,6]. The cooling of the sea surface causes a reduction in the enthalpy flux
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(latent and sensible heat fluxes) transferred into the atmosphere and has the potential to
weaken the storm intensity [7,8]. This represents a negative feedback mechanism. The
magnitude of the negative feedback is determined not only by the storm intensity but
also by ocean thermal conditions [9–11]. In general, when TCs pass over ocean areas with
deep subsurface warm water, the cooling of the sea surface is reduced, resulting in larger
enthalpy fluxes and the potential to strengthen the storm intensity. However, in regions
with large mesoscale ocean variability, such as the presence of oceanic fronts and eddies,
the interplay between the positive and negative feedback mechanisms is more complex
and less well understood. Predicting TC intensity in these ocean areas thus becomes
particularly challenging.

Oceanic warm core eddies (WCEs) have been recognized as a significant factor in
the TC–ocean interaction. The thicker mixed layer and seasonal thermocline within the
eddy can impede wind-induced mixing and reduce SST cooling. Consequently, WCEs can
mitigate the negative feedback and provide additional energy to enhance storm intensity.
Numerous observational and numerical studies have described TC intensification when
passing over WCEs [12–21]. The Northwest Pacific is known as one of the most active TC
basins [22–24], and the region is abundant in WCEs, particularly in eddy-rich zones [25–27].
A notable example of the significant impact of WCEs on TC intensity in this region is
Typhoon Maemi in 2003. Maemi underwent rapid intensification from category 3 to
category 5 upon encountering two WCEs [12], becoming one of the most powerful typhoons
to hit South Korea since the country began recording typhoons in 1904.

In earlier modeling studies, the impact of WCEs on TCs was primarily investigated
using simplified one-dimensional ocean models [10,12,16]. However, as demonstrated
in [28], accurate simulation of ocean currents and temperature within a WCE requires a
three-dimensional ocean model to account for the strong horizontal advection associated
with eddy circulation. In recent years, atmosphere–ocean coupled models have been used
to study the effects of WCEs on TC intensity. Using idealized settings, these studies have
shown that the impact of a WCE on TC intensity can depend on the size of the WCE, as
well as its location relative to the storm [29]. When a WCE is positioned to the right of the
storm, it can create less favorable conditions for TC intensification due to the advection of
cold water into the storm core by the eddy circulation [19]. A TC can either intensify or
weaken depending on whether the WCE is situated within the inner or outer TC eyewall
area [30].

Recent modeling studies of TCs in the Northwest Pacific have been significantly im-
proved by utilizing atmosphere–ocean coupled models. These models allow for a more
comprehensive understanding of the complex interactions between TCs and their sur-
rounding atmospheric and oceanic conditions. Ref. [31] investigated the impact of cold
core eddies on the intensity change of Typhoons Trami and Kong-Rey in 2018. Using an
atmosphere–wave–ocean coupled model, this study explored the effect of cold eddies on
the rapid weakening of both typhoons, emphasizing the relationship between oceanic
mesoscale features and TC dynamics. Ref. [32] investigated TC–ocean interaction in the
North Pacific subtropical gyre, providing insights into how successive typhoons affect
the SST along their wakes and the subsequent typhoon behavior. Ref. [33] studied the
rapid weakening processes of Trami associated with its slow movement using air–sea
coupled simulations, and Refs. [34,35] explored the impact of SST cooling and cold core
eddies on the eyewall replacement cycle and upper ocean responses in Trami. Ref. [36] an-
alyzed the formation of short-lived convective clouds within the eye of Trami using an
atmosphere–ocean coupled model. All these studies underscore the importance of inte-
grated atmosphere–ocean modeling approaches in advancing our understanding of TC
dynamics in the Northwest Pacific region.

Most previous modeling studies examining the impact of WCEs on TC intensity have
been conducted using idealized TCs and simplified ocean conditions. The aim of this study
is to quantify the impact of WCEs on real TCs simulated by the Hurricane Weather Research
and Forecasting (HWRF) atmosphere–ocean coupled model. We adopt a hybrid approach
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in which artificial WCEs are embedded into the realistic three-dimensional temperature and
salinity fields in front of three TCs in the Northwest Pacific observed in 2018: Jebi, Trami,
and Kong-rey. The paper is organized as follows: Section 2 describes the coupled model
and the experimental design. Section 3 presents the results from the model experiments,
and finally, Section 4 summarizes the main findings and conclusions of the study.

2. Methods
2.1. HWRF Coupled Model Description and Initialization

Numerical experiments are performed using the Hurricane Weather Research and
Forecast (HWRF) model. HWRF has been NOAA’s operational hurricane prediction model
since 2007 and provides numerical guidance to the National Hurricane Center for 126 h
forecasts of TC track, intensity, and structure [37]. This study utilizes a research version of
the 2018 operational HWRF available at the Developmental Testbed Center [38].

HWRF is configured with three nested domains: a fixed parent domain and two mov-
able inner domains, with horizontal grid spacings of 13.5 km, 4.5 km, and 1.5 km, respec-
tively. The parent domain is set to 77.2◦ × 77.2◦, the intermediate domain to 17.8◦ × 17.8◦,
and the innermost domain to 5.9◦ × 5.9◦. The HWRF model employed in this study in-
corporates a suite of advanced physical parameterizations tailored for tropical cyclone
applications. These include the GFDL surface–layer parameterization, the Noah Land
Surface Model (LSM), the Rapid Radiative Transfer Model (RRTMG) radiation scheme, the
Ferrier–Aligo microphysical parameterization, the Global Forecast System (GFS) Hybrid
Eddy Diffusivity Mass-Flux (Hybrid-EDMF) Planetary Boundary Layer (PBL) scheme, and
the scale-aware GFS Simplified Arakawa Schubert (SASAS) deep and shallow convection
schemes. Further details can be found in [38].

The atmospheric component of the HWRF is coupled to a three-dimensional version
of the Princeton Ocean Model for Tropical Cyclones (POM-TC; [39]). In this study, we use
the Message Passing Interface (MPI) version of POM-TC, referred to as MPIPOM-TC [40].
The MPIPOM-TC domain is configured from 5◦ N to 42.5◦ N and from 96.5◦ E to 180◦ E,
with 1/12◦ spatial resolution (Figure 1). Vertical mixing in the model is governed by the
Mellor–Yamada turbulence closure scheme implemented on the terrain-following sigma
coordinate system [41]. In the 2018 version of HWRF, the ocean model included 40 half-
sigma vertical levels. For this study, however, we increased the number of half-sigma levels
to 74. This enhancement provides finer vertical resolution in the upper ocean to enable a
more accurate representation of the effects of WCEs on TC intensity. The placement of these
levels is determined by the bathymetry at each location. In the deepest part of the model
domain, which reaches 5500 m, the vertical levels within the upper 100 m are distributed as
follows: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
52, 54, 56, 58, 60, 62, 65, 68, 71, 74, 77, 81, 85, 89, 94, 100 m.

The ocean model initial conditions are created using the MPIPOM-TC initialization
method described in [40]. It starts with the three-dimensional temperature (T) and salinity
(S) fields from the Generalized Digital Environmental Model (GDEM) monthly climatology
(GDEMv3; [42]) provided at a 0.5◦ horizontal grid and 78 vertical z levels. This is followed
by the assimilation of real-time daily SST data from the operational NCEP Global Forecast
System (GFS) global analysis [43]. While not the primary focus of this paper, it is important
to note that the real-time SST assimilation involves modifying the entire upper ocean
temperature field, including the mixed layer and upper thermocline. Additional details can
be found in [44]. The initial T and S fields are then interpolated onto the MPIPOM-TC grid,
accounting for its land/sea mask and bathymetry. Following the methodology outlined
in [40], the ocean model undergoes a 48 h spin-up period to generate currents that are
dynamically consistent with the initial density field, during which the SST is held constant.
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Figure 1. The HWRF coupled model domains. The region with SST is the outer HWRF domain. The
blue box is the Northwest Pacific MPIPOM-TC domain. The black solid boxes inside show the sizes
of the intermediate and innermost movable HWRF domains.

The initial atmospheric fields are generated following the procedure described in [37]
and the HWRF user’s guide [38]. For the parent domain, the environment fields are derived
by interpolating the GFS analysis fields and then refined using the HWRF Data Assimilation
System (HDAS) to create the initial nested fields. The vortex–scale fields are generated
based on the storm track file (TC vitals), which provides information on the storm position,
propagation speed and direction, central and environmental pressure, the radius of the
outermost closed isobar, maximum wind speed, radius of maximum wind, and the radii of
17, 26, and 33 m/s winds in the northeast, southeast, southwest, and northwest quadrants
of the storm [45]. During the coupled model integration, the momentum and heat fluxes
are transferred from the atmospheric model to the ocean model, and the SST is passed from
the ocean to the atmosphere at each ocean model time step. The exchange underscores
the primary purpose of ocean coupling, which is to create an accurate SST field for the
atmospheric model.

2.2. Model Experiments
2.2.1. Control Experiments

We conducted numerical simulations of three typhoons in the Northwest Pacific in
2018: Trami, Kong-rey, and Jebi. These storms represent slow-, medium, and fast-moving
major TCs, respectively. For each typhoon, we ran two control experiments (hereafter CTRL)
using the HWRF coupled system at 12 h intervals: 1200 UTC 30 August and 0000 UTC
31 August for Jebi (JEBI1 and JEBI2), 1800 UTC 23 September and 0600 UTC 24 September
for Trami (TRAMI1 and TRAMI2), and 1800 UTC 30 September and 0600 UTC 1 October
for Kong-rey (KONG-REY1 and KONG-REY2).

Figure 2 shows the simulated tracks of these storms and the time series of the maxi-
mum wind speed and minimum central pressure, along with their comparison with the
best track data from the Joint Typhoon Warning Center (JTWC). While not perfect, the
HWRF simulations reasonably captured the observed tracks, noting that the Trami track
simulations show greater variability in the subsequent 12 h forecasts. The phases of storm
intensification and weakening are also reasonably well reproduced. Given the considerable
differences in predicted storm intensity between the two subsequent runs for each TC, we
used all CTRL experiments to investigate the impact of WCEs on TC intensity.
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Figure 2. Upper panels: tracks of JTWC BEST and control experiments for TCs Jebi, Trami, and
Kong-rey. Circles indicate the storm center every 6 h. Middle panels: minimum central pressure (hPa)
and Lower panels: 10 m maximum wind speed (m/s) in JTWC BEST and control experiments every
6 h as a function of time.

2.2.2. Warm Core Eddy Experiments

In the WCE experiments, temperature anomalies associated with idealized WCEs are
embedded into the three-dimensional temperature field at the end of the MPIPOM-TC
initialization described in Section 2.1. The idealized WCEs are generated using the feature-
based methodology described in [19,44], which involves specifying the eddy size, the upper
ocean temperature profiles at the eddy center, and the surrounding background. The sizes
of WCEs are determined through the analysis of sea surface height anomalies (SSHAs) in
the Northwest Pacific, using data provided by the Archiving Validation and Interpretation
of Satellite Data in Oceanography (AVISO) at a spatial resolution of 1/4◦ × 1/4◦. Figure 3a
shows an example of AVISO sea surface height anomaly (SSHA) data on 21 September 2017.
The eddy edge is defined as the outermost closed contour line surrounding the eddy center
(maximum SSHA) with the same sign of relative vorticity [46]. The eddy size is calculated
as the radius of a circle encompassing an area equivalent to the region enclosed by the
outermost closed SSHA contour. Based on the SSHA shown in Figure 3a, the radius of the
idealized WCE is estimated and set to 200 km.

Additional sensitivity experiments were conducted using WCEs of different sizes
to quantify their impact on storm intensity. According to [47], the average radius of
anticyclonic eddies in the Northwest Pacific southern eddy zone at the latitude of 20.4◦

N ranges from 120 km to 140 km. Super Typhoon Maemi encountered a WCE with an
estimated radius of 300 km [12], which is significantly larger than the typical size. Therefore,
in the additional sensitivity experiments, WCE sizes were set to 140 km to represent small
eddies and 300 km for large eddies.

To create the 3D structure of the WCE, we followed the methodology described
in [19]. The WCE is constructed by assigning a series of temperature profiles ranging from
the background to the eddy center. In our experiments, the background temperature is
determined from the temperature field at the end of the MPIPOM-TC initialization, at
the location where the WCE is embedded. The temperature at the center of the eddy is
specified from the WCE encountered by Super Typhoon Maemi, as described in [12]. These
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profiles are illustrated in Figure 3b. Figure 4 shows the temperature at a depth of 75 m
within the created idealized eddy and a zonal vertical cross-section through the center
in the upper 300 m. The current field is spun up by running the MPIPOM without wind
forcing and assuming a fixed SST for approximately 96 h. By the end of the integration,
the density and current fields are adjusted to achieve quasi-geostrophic balance. After the
WCE is created, the temperature anomaly field is calculated by subtracting the background
temperature. This field is then added to the temperature field at the end of the MPIPOM-TC
initialization procedure.
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Figure 4. (a) Spatial distribution of temperature (◦C) at 75 m in the idealized WCE. (b) Zonal vertical
cross-section through the center of WCE. Vertical dashed line indicates the WCE center.

In each experiment, the center of the artificial WCE is placed ahead of the TC and
along its predicted storm track. This positioning is chosen to maximize the potential impact
of WCEs on TC behavior. It allows us to examine in detail how WCEs affect the cooling
of the sea surface by storms and the resulting changes in TC intensity. While this method
does not replicate real-world scenarios where the locations of WCEs relative to the TC
tracks vary, it provides valuable insights into the maximum potential effect of WCEs on
TC behavior. For consistency, the center of the WCE in all cases was positioned at the
same latitude, 20.4◦ N, enabling a comparison of the impacts of WCEs on TC intensity
under similar Coriolis effects. The longitude positions of the WCEs were chosen so that
their centers aligned with the predicted TC track. The main differences in how these TCs
interacted with the WCEs are primarily related to their intensity and translation speed.
Figure 5 illustrates the temperature at a 75 m depth and a vertical zonal cross-section along
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20.4◦N after embedding the idealized WCE, as shown in Figure 4, into the temperature
field at the end of the MPIPOM-TC initialization in the TC Kong-rey case. Figure 6 shows
the same temperature fields as in Figure 5 but in the cases with embedded small and large
WCEs. In all these cases, the temperature at the eddy’s center is more than 3 ◦C warmer
than the background temperature at a depth of 75 m, with the warmer water extending
to a depth of at least 300 m. Spatial distribution of sea surface height anomaly (SSHA) at
1800 UTC 30 September in the KONG-REY1 experiments with artificial WCEs of 140 km,
200 km, and 300 km radii are shown in Figure 7.
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Figure 5. (a) Spatial distribution of temperature (◦C) at 75 m in GDEM climatology, and (c) zonal
vertical cross-section at 20.4◦ N along the dashed line in (a). (b,d) after WCE with 200 km radius as-
similation into GDEM climatology for TC Kong-rey experiment initialized at 1800 UTC 30 September
(KONG-REY1). BEST track and center positions of Kong-rey every 6 h are overlaid in (b). Vertical
dashed line in (d) indicates the center of WCE.
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Figure 7. Spatial distribution of sea surface height anomaly (m) at 1800 UTC 30 September in the
KONG-REY1 experiments (a) WCE (140), (b) WCE (200), and (c) WCE (300). SSHA is calculated
from the model output (WCE–CTRL). Simulated track and center positions of Kong-rey every 6 h
are overlaid.

2.2.3. Uncoupled Experiments

In addition to the CTRL and WCE coupled TC atmosphere–ocean simulations, uncou-
pled experiments were conducted in which the SST fields were fixed in time. In our study,
we use the results of the uncoupled experiments as a reference for the maximum potential
intensity that each TC can achieve. Table 1 summarizes all experiments conducted for TCs
Jebi, Trami, and Kong-rey.

Table 1. Summary of all experiments conducted for TCs Jebi, Trami, and Kong-rey. The coupled and
uncoupled experiments are denoted as CTRL and UNCL. The numbers in the parentheses indicate
the radius of the WCEs in kilometers.

Name Initial Time Experiments

JEBI1 1200 UTC 30 August CTRL UNCL WCE (200) WCE (140) WCE (300)
JEBI2 0000 UTC 31 August CTRL UNCL WCE (200)

TRAMI1 1800 UTC 23 September CTRL UNCL WCE (200) WCE (140) WCE (300)
TRAMI2 0600 UTC 24 September CTRL UNCL WCE (200)

KONG-REY1 1800 UTC 30 September CTRL UNCL WCE (200) WCE (140) WCE (300)
KONG-REY2 0600 UTC 1 October CTRL UNCL WCE (200)

3. Results
3.1. Ocean Response to TCs in Control Experiments

Before comparing the CTRL and WCE simulations, we first examine the ocean re-
sponse and changes in TC intensity in the CTRL experiments. In the KONG-REY1 CTRL
experiment initialized at 1800 UTC 30 September, the storm intensified during the first
24 h, as evidenced by the increased maximum wind speed and the decreased minimum
central pressure (Figure 2). Figure 8a shows the pre-storm SST at 1800 UTC 30 September
2018. The plotted storm track indicates that for the first 24 h, the pre-storm SST exceeded
28.5 ◦C. However, this high temperature ahead of Kong-rey alone is not sufficient to explain
the TC intensification, as it does not account for the SST cooling effect produced by the
storm. A more accurate indicator of the available energy for the TC is the upper ocean heat
content (OHC), also known as the tropical cyclone heat potential [8,48]. Figure 8b shows
the pre-storm OHC calculated as

OHC =
∫ d26

0
ρcp[T(°C)− 26]dz (1)
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where d26 is the depth of the 26 ◦C isotherms, ρ is the seawater density, cp is a specific heat
at constant pressure, T is the ocean temperature, and dz is the change in depth.
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Figure 8. Spatial distribution of (a) SST (◦C) and (b) OHC (kJ/cm2) with ocean currents for KONG-
REY1 CTRL experiment at 1800 UTC 30 September. The storm track is shown by the black line.

During the initial 24 h (from 1800 UTC 30 September to 1800 UTC 1 October), Kong-rey
encountered high OHC exceeding 80 kJ/cm2 (Figure 9c), which is greater than the threshold
for TC intensification of 50 kJ/cm2 [49]. The SST field at 1200 UTC 3 October indicates that
the cooling caused by the storm did not exceed 1 ◦C during this period. This is consistent
with the high OHC crossed by Kong-rey within the first 24 h, underscoring the favorable
conditions for intensification.
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Figure 9. Time series of area-averaged OHC (kJ/cm2) for (a) JEBI1, (b) TRAMI1, and (c) KONG-REY1.
OHC is calculated within 100 km radius. Vertical red dashed lines indicate the time period when the
storm passed over WCE.

The subsequent weakening of the storm, starting at 1800 UTC 2 October, is consistent
with the lower OHC levels (20–40 kJ/cm2) encountered by Kong-rey (Figures 8b and 9c).
This weakening corresponds to the pre-existing SST cooling caused by the preceding TC
Trami [50], which is evident at 19–22.5◦ N, 128–131◦ E in the GFS SST and, especially, OHC
at 1800 UTC 30 September (Figure 8). However, the weakening phase is not accurately sim-
ulated compared to the best track data (Figure 2), which is consistent with the results of [31].
This suggests that other factors, such as the storm’s size, may have a more substantial
impact on storm intensity than the pre-existing cooling.

In the JEBI1 CTRL experiment, initialized at 1200 UTC 30 August, the pre-storm SST
along the track ranges from approximately 29 to 29.5 ◦C (Figure 10a). Similar to the Kong-
rey case, the evolution of Jebi’s intensity can be explained by the magnitude and spatial
distribution of the OHC. The storm gradually intensified over the first 24–30 h (Figure 2)
while passing through an area with a high OHC of around 70 kJ/cm2 (Figures 10b and 9a).
The subsequent decrease in the storm’s intensity, starting around 0000 UTC 1 September
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and continuing until landfall, is consistent with the lower OHC along the track, as seen in
Figure 10b. Ref. [32] noted that their simulation failed to reproduce the observed maximum
intensity of TC Jebi due to limitations in the atmospheric model’s horizontal resolution
of 10 km and challenges in accurately representing the inner core structure. In our study,
we used the HWRF model with the innermost domain having a horizontal resolution of
1.5 km, enabling us to simulate Jebi’s intensity evolution more accurately.
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Figure 10. Same as Figure 8, but for JEBI1 CTRL experiment at 1200 UTC 30 August.

According to the JTWC best track data, Trami reached its peak intensity of 914 hPa
at 1800 UTC 24 September and gradually weakened thereafter (Figure 2). This is consis-
tent with our model simulation during Trami’s weakening phase. In the TRAMI1 CTRL
experiment, initialized at 1800 UTC 23 September, the TC intensity significantly decreased
between approximately 1800 UTC 24 September and 0000 UTC 27 September. This reduc-
tion was primarily due to Trami’s slow movement during this period, with a translation
speed of 2–3 m/s, resulting in a large SST cooling. Figure 11 shows the spatial distributions
of SST and zonal vertical cross-sections along 20.4◦ N at 0000 UTC 24 September (before
the storm’s arrival) and 0000 UTC 27 September (during the storm). The maximum SST
cooling reached about 6 ◦C just behind the storm center, which is in good agreement with
the observations and model results from previous studies [31,33–36]. The slow propaga-
tion speed amplified the TC-driven ocean currents and vertical current shear, enhancing
vertical mixing and the entrainment of colder water from the thermocline into the ocean
surface layer. The relationship between the surface cooling rate and the storm’s translation
speed has been extensively documented in early modeling studies [5]. The slow-moving
Trami also caused strong upwelling near the storm center, as shown in the temperature
cross-section in Figure 11d. The upwelling, driven by the divergence of the near-surface
current induced by the TC’s cyclonic wind, brought deeper and cooler water closer to the
sea surface, increasing the efficiency of vertical mixing and cooling of the SST. This effect
often results in a rapid decrease in storm intensity [6].

Ref. [35] investigated the modulating effects of a pre-existing cold core eddy on upper
ocean responses to Trami, revealing that the presence of the cold eddy enhances typhoon-
induced sea surface cooling. However, Ref. [31] noted that the simulated intensity evolution
of Trami, particularly during the rapid weakening phase, was not affected by including
the cold core eddy in the initial oceanic conditions. Figure 9b shows the rapid decrease
in OHC in the TRAMI1 CTRL simulation, falling below the threshold of intensification
(50 kJ/cm², [49]) under the storm from 1200 UTC 25 September to 0000 UTC 27 September.
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This is consistent with the results of [31] (Figure 10a). Consequently, the intensity evolution
of Trami in our simulations (Figure 2) matches the results shown in [31] (Figure 8b).
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Figure 11. Spatial distribution of SST (◦C) with ocean currents for TRAMI1 CTRL experiment (a) at
0000 UTC 24 September and (c) at 0000 UTC 27 September. Zonal vertical cross sections at 20.4◦ N
(b) at 0000 UTC 24 September and (d) at 0000 UTC 27 September.

3.2. Ocean Response to TCs in WCE Experiments

In this section, we will discuss the TC simulations in which the ocean model is
initialized with embedded WCEs. In all WCE experiments, the eddies were positioned
along the TC track to assess their maximum impact on storm intensity. Figures 12–14
compare the spatial distributions of the SST and enthalpy flux (latent and sensible heat flux)
in the WCE and CTRL experiments for JEBI1, TRAMI1, and KONG-REY1, respectively. The
locations of the WCEs are indicated by circles.

These figures were compiled at 0600 UTC 1 September in JEBI1 (Figure 12), 0600 UTC
27 September in TRAMI1 (Figure 13), and 1200 UTC 3 October in KONG-REY1 (Figure 14),
representing the times the enthalpy flux differences between the WCE and CTRL ex-
periments reached their maximum. The presence of WCEs has a significant impact
on the SST response in all experiments. The SST anomalies calculated as WCE–CTRL
(Figures 12c, 13c and 14c) show reduced SST cooling over WCEs, which resulted in in-
creased enthalpy fluxes (Figures 12f, 13f and 14f). As expected, the magnitude of changes
in the SST and enthalpy fluxes varies among the TC cases, depending on the specific storm
characteristics and the pre-storm ocean conditions.
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Figure 12. Spatial distribution of SST (◦C) and enthalpy flux (W/m2) in (a,d) CTRL, (b,e) WCE
experiments, and (c,f) anomaly (WCE–CTRL) for JEBI1 at 0600 UTC 1 September. The black circle
indicates the location and approximate size of WCE, and the black dot indicates the storm center. The
lines indicate the storm tracks in WCE and CTRL experiments.
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Figure 13. Same as Figure 12, but for TRAMI1 at 0600 UTC 27 September.
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Figure 14. Same as Figure 12, but for KONG-REY1 at 1200 UTC 3 October.

To examine the changes in the upper ocean thermal structure as the storm passes
over the eddy, zonal vertical cross-sections through the storm center are compared in
the CTRL and WCE experiments (Figures 15–17). In the CTRL experiments, common
features of the ocean response include the deepening of the mixed layer and a decrease in
temperature. These changes in the upper ocean result from wind-induced vertical mixing,
which is stronger to the right of the storm track due to the storm’s movement [5,6]. Another
notable feature observed in the KONG-REY1 and TRAMI1 cases is the upwelling of cold
thermocline water near the TC center, leading to enhanced cooling of the mixed layer.
Trami produced the most significant upwelling due to its lowest translation speed among
the three simulated TCs.
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Figure 15. Zonal vertical cross section of temperature (◦C) at the center of WCE in (a) CTRL, (b) WCE,
and (c) anomaly (WCE–CTRL) for JEBI1 at 0600 UTC 1 September. Vertical dashed line indicates the
center of WCE.
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Figure 16. Same as Figure 15, but for TRAMI1 at 0600 UTC 27 September.
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Figure 17. Same as Figure 15, but for KONG-REY1 at 1200 UTC 3 October.

In the WCE experiments, mixed layer cooling was significantly reduced compared to
the CTRL experiments, as indicated by the positive temperature differences in
Figures 15c, 16c and 17c. The presence of deep warm water within the WCE, extending
to depths of at least 300 m (Figure 5d), reduced the amount of cold water entrained into
the mixed layer and substantially diminished the rate of vertical mixing. In the case of
Trami, the strong upwelling generated near the storm center was capable of penetrating
through the WCE warm layer (Figure 16b). Nevertheless, the mixed layer cooling was still
considerably less than in the CTRL experiment.

3.3. Impact of WCEs on TC Intensity

Figures 18–23 show the minimum central pressures and maximum wind speeds in
the uncoupled, coupled, and WCE experiments for all TC cases examined in this study:
JEBI1, JEBI2, TRAMI1, TRAMI2, KONG-REY1, and KONG-REY2. As expected, the storm
intensity in the uncoupled experiments is stronger in all TC cases than in the coupled
experiments despite their following similar tracks (not shown). Note that [31] also found
nearly identical track simulations in their coupled and uncoupled experiments. When
the SST is fixed, it does not account for the SST cooling induced by storms, leading to an
unlimited heat energy supply from the ocean for TC intensification. The largest differences
in the TC intensity between the uncoupled and coupled experiments are found in Trami,
which is the slowest-moving storm among the three simulated TCs. The slow movement
of Trami allowed enough time to mix and cool the upper ocean beneath the storm and
produced strong upwelling within the storm core area, as shown in Figure 16. This resulted
in the largest differences in the averaged SST and enthalpy flux between the coupled and
uncoupled experiments.
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Figure 18. Time series of area-averaged (a) SST (°C), (b) enthalpy flux (W/m2) within 100 km radius, 

(c) minimum central pressure (hPa), and (d) 10 m maximum wind speed (m/s) for JEBI1. Vertical 

red dashed lines indicate the time period when the storm passed over WCE. 
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Figure 18. Time series of area-averaged (a) SST (◦C), (b) enthalpy flux (W/m2) within 100 km radius,
(c) minimum central pressure (hPa), and (d) 10 m maximum wind speed (m/s) for JEBI1. Vertical red
dashed lines indicate the time period when the storm passed over WCE.
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Figure 19. Same as Figure 18, but for JEBI2.

To better understand the impact of WCEs on TC intensity, the area-averaged SSTs, and
enthalpy fluxes within a 100 km radius of the storm center are included in Figures 18–23.
Vertical dashed lines indicate the periods when the storms passed over the WCEs, deter-
mined by the time from when the storm’s radius of maximum wind enters and exits the
WCE area. These lines only serve as reference points. It is important to note that the effects
of the interaction between the TCs and the WCEs extended beyond these time periods,
as evident in the figures. In the WCE experiments, the cooling of the ocean surface was
inhibited over the eddies, as illustrated by the higher area-averaged SSTs compared to the
control experiments in all three TCs (Figures 18a, 19a, 20a, 21a, 22a and 23a). This inhibition
is due to the presence of deep warm water with a high OHC within the WCE, as illustrated
in Figure 11. This warm water acts as a barrier between the TC and the colder ocean water
below [12].
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Consequently, the reduced SST cooling resulted in higher enthalpy fluxes
(Figures 18b, 19b, 20b, 21b, 22b and 23b), transferring more heat energy from the ocean to
the storms. The storm intensity increased during and after the eddy passage. The most
significant increase in TC intensity is observed in Trami (Figures 20 and 21), where the
differences in the SST cooling and enthalpy fluxes over the eddy are the largest.
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Figure 20. Same as Figure 18, but for TRAMI1.
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Figure 21. Same as Figure 18, but for TRAMI2.

To quantitatively assess and compare the impacts of WCEs on SST, enthalpy fluxes,
and TC intensity across all TC cases, we introduce a Maximum WCE Potential Index
(MWPI). MWPI is defined as

MWPI =
∆IWCE
∆Iuncpl

× 100 (2)

where ∆Iuncpl represents the maximum difference between the uncoupled and CTRL ex-
periments, and ∆IWCE represents the maximum difference between the WCE and CTRL
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experiments. The maximum differences are calculated during the period starting when the
storm enters the WCE until one day after it exits the WCE. Table 2 presents the values of
∆Iuncpl and ∆IWCE for the area-averaged SST, the area-averaged enthalpy flux (EF), and
the minimum central pressure (Pmin), along with the calculated values of MWPI for TCs
Jebi, Trami, and Kong-rey. Since we conducted two sets of experiments, 12 h apart, for each
TC, the table displays the average values of ∆Iuncpl , ∆IWCE, and MWPI between the two
sets. Note that we did not calculate MWPI for the maximum wind speed due to its high-
frequency fluctuations. The highest values of ∆Iuncpl and ∆IWCE for SST and enthalpy flux
are observed in TC Trami. In the CTRL experiment, the maximum SST cooling underneath
the storm is ∆Iuncpl = 3.36 ◦C. However, in the WCE experiment, this cooling is reduced
by ∆IWCE = 1.07 ◦C. This reduction in SST cooling, combined with an increase in wind
speed, results in a significant rise in enthalpy flux by ∆IWCE = 181.59 W/m2. Consequently,
Trami experienced the largest increase in the minimum central pressure (9 hPa) among the
simulated TCs.
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Figure 22. Same as Figure 18, but for KONG-REY1.
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Figure 23. Same as Figure 18, but for KONG-REY2.
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Table 2. Average maximum delta values and MWPI of two sets of experiments for each TC.

TC SST (◦C) EF (W/m2) Pmin (hPa)

∆IWCE 0.43 100.51 6.00
JEBI ∆Iuncpl 1.27 256.97 12.50

MWPI 33.9% 39.1% 48.0%

∆IWCE 1.07 181.59 9.00
TRAMI ∆Iuncpl 3.36 735.99 43.50

MWPI 31.8% 24.7% 20.7%

∆IWCE 0.52 71.70 3.50
KONG-REY ∆Iuncpl 1.41 219.52 13.00

MWPI 36.9% 32.7% 26.9%

Despite these significant changes, the MWPI value for Trami is only 24.7% for the
enthalpy flux and 20.7% for Pmin. This is mainly due to the very strong SST cooling in this
case, which led to the very large differences in enthalpy flux (∆Iuncpl = 735.99 W/m2) and
minimum pressure (43.5 hPa) between the CTRL and uncoupled experiments. The highest
MWPI value for Pmin is found in Jebi (48%), followed by Kong-rey (26.9%). Overall, MWPI
ranges from 31.8% to 36.9% for SST, 24.7 to 39.1% for enthalpy flux, and from 20.7 to 79.3%
for minimum pressure across all experiments.

To investigate the influence of WCE size on storm intensification, we conducted
additional sensitivity experiments using the JEBI1, TRAMI1, and KONG-REY1 cases, in
which the WCE radii were set to 140, 200, and 300 km. Table 3 presents the calculated
values of ∆Iuncpl , ∆IWCE, and MWPI for SST and Pmin in these experiments. In most of
these cases, TC interaction with a larger size WCE resulted in higher values of ∆IWCE and
MWPI. The differences in the impact of WCE on TC intensity are particularly significant
between the small and large eddies in Jebi and Kong-rey, with MWPI for Pmin changing
from 18.8% to 31.3% for Jebi, and 11.1% to 50% for Kong-rey. Trami’s MWPI for intensity
exhibits less sensitivity to WCE size, varying from 27.3% to 31.8%, likely due to its slower
translational speed.

Table 3. Maximum delta values and MWPI in the WCE size sensitivity experiments for JEBI1,
TRAMI1, and KONG-REY1.

Name
SST (◦C) Pmin (hPa)

140 km 200 km 300 km 140 km 200 km 300 km

∆IWCE 0.31 0.40 0.42 3 5 5
JEBI1 ∆Iuncpl 1.14 1.14 1.14 16 16 16

MWPI 27.2% 35.1% 36.8% 18.8% 31.3% 31.3%

∆IWCE 0.77 0.80 0.97 12 13 14
TRAMI1 ∆Iuncpl 3.75 3.75 3.75 44 44 44

MWPI 20.5% 21.3% 25.9% 27.3% 29.5% 31.8%

∆IWCE 0.50 0.66 0.73 2 3 9
KONG-REY1 ∆Iuncpl 1.69 1.69 1.69 18 18 18

MWPI 29.6% 39.1% 43.2% 11.1% 16.7% 50.0%

4. Summary and Discussions

This numerical modeling study uses the HWRF atmospheric model coupled with the
MPIPOM-TC ocean model to investigate the impact of warm core eddies (WCEs) on storm
intensity in three Northwest Pacific tropical cyclones, Trami, Kong-rey, and Jebi, during
2018, representing slow-, medium, and fast-moving storms. To assess the impact of WCEs
on TC intensity, three experiments are conducted for each storm: without WCE (control
experiment), with fixed SST (uncoupled experiment), and with WCE included. In the
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WCE experiments, idealized WCEs are embedded into the three-dimensional MPIPOM-TC
model fields.

The results of the control experiments demonstrate that SST distribution alone along
the storm’s track cannot explain the simulated changes in storm intensity, as it does not
account for storm-induced cooling. In all simulated TCs, the ocean heat content (OHC)
along the track significantly influenced the storm intensity. For example, in Jebi and
Kong-rey, the gradual intensification observed during the first day of simulations can be
attributed to high OHC values along their respective tracks. These elevated OHC values, as
observed in the North Equatorial Current (NEC) between 8◦ N and 17◦ N [51], reduce SST
cooling, thus providing more heat energy for storm intensification. Despite the presence
of high OHCs, the simulated rapid weakening of Trami is attributed to significant SST
cooling caused by strong vertical mixing and upwelling underneath the storm due to its
slow translation speed. In very slow-moving storms, upwelling reaches its peak in the
storm’s eyewall region, where wind-induced mixing is the strongest.

This study uses uncoupled experiments with fixed SSTs as a reference for the TC maxi-
mum potential intensity, allowing for an unlimited energy supply for storm intensification.
The largest TC intensity difference between the coupled and uncoupled simulations is
found in Trami, mainly due to its slowest translation speed and largest SST cooling.

To investigate the impact of WCEs, experiments with and without an embedded WCE
are conducted and compared. WCEs are placed at the same latitude in all experiments,
with their centers positioned along the TC track to examine the maximum impact on storm
intensity. To quantify the WCE effect, area-averaged values of SST and enthalpy flux within
a 100 km radius of the storm center are calculated. The results indicate that in all TCs,
regardless of the storm translation speed, the presence of WCEs reduces the storm-induced
upper ocean cooling and increases enthalpy flux. The most significant impact of WCEs
on reducing SST cooling is found in Trami, which is the slowest-moving TC. Although
strong upwelling generated by Trami is capable of penetrating through the WCE warm
layer, the mixed layer cooling is still considerably less than in the CTRL experiment. In
all TC experiments, more heat energy is supplied to the storms during their passage over
WCEs, leading to intensification as indicated by the decrease in central pressure and the
increase in maximum wind speed.

To quantitatively assess the impact of WCEs on ocean response and TC intensity across
all the simulated TC cases, a Maximum WCE Potential Index (MWPI) is introduced. For a
WCE with a 200 km radius, MWPI ranges from 31.8% to 36.9% in reducing the SST cooling
and from 24.7% to 39.1% in increasing enthalpy fluxes. MWPI varies from 26.9% to 48% in
increasing TC intensity, measured by the minimum central pressure (Pmin). These results
indicate that although all simulated TCs interact with practically the same WCE, MWPI can
vary significantly due to the differences in storm intensity and translation speed. Sensitivity
experiments with small (140 km radius) and large (300 km radius) WCEs reveal higher
MWPI values when TCs interact with larger WCEs. MWPI differences in Pmin between
the small and large eddies range from 18.8% to 31.3% for Jebi, 27.3% to 31.8% for Trami,
and 11.1% to 50% for Kong-rey. The lower sensitivity of the MWPI values to WCE size in
Trami is likely due to its slower translational speed.

In our study, we assimilated real-time GFS SSTs into the initial temperature fields.
Although the GFS SST has a relatively coarse resolution, we successfully captured the
intensity evolution of TCs, similar to previous studies that utilized higher-resolution
HYCOM SST data. However, we recognize the importance of accurately representing SST
conditions to fully capture the dynamics of TCs and their interactions with WCEs.

While this study models real TCs, using artificial WCEs introduces certain limitations
in making accurate assessments of storm intensity changes. To improve our understanding
of the role of WCEs in TCs and quantify their impacts, it is imperative to undertake more
realistic modeling studies in the future, using fully coupled TC–ocean models in conjunction
with field observations. Such studies are important for improving TC intensity prediction,
which remains a challenging problem.
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