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Abstract: In our exploration, we aimed at identifying seismic anomalies using limited ionospheric
data for earthquake forecasting and we meticulously compiled datasets under conditions of minimal
geomagnetic disturbance. Our systematic evaluation affirmed the ITransformer as a potent tool for
the feature extraction of ionospheric data, standing out within the domain of transformer-based time
series prediction models. We integrated the maximum entropy principle to fully leverage the available
information, while minimizing the influence of presuppositions on our predictions. This led to the
creation of the MaxEnt SeismoSense Model, a novel composite model that combines the strengths of
the transformer architecture with the maximum entropy principle to improve prediction accuracy.
The application of this model demonstrated a proficient capability to detect seismic disturbances
in the ionosphere, showcasing an improvement in both recall rate and accuracy to 71% and 69%,
respectively, when compared to conventional baseline models. This indicates that the combined use
of transformer technology and the maximum entropy principle could allow pre-seismic anomalies in
the ionosphere to be sensed more efficiently and could offer a more reliable and precise approach to
earthquake prediction.

Keywords: transformer; maximum entropy; pre-earthquake anomalies; ionospheric plasma

1. Introduction

During the lead-up to a moderate or severe earthquake, there is typically a presence
of electromagnetic abnormalities in close proximity to the earthquake’s epicenter [1,2], as
evidenced by fluctuations in the total electron content (TEC). Extensive research has been
conducted in order to understand the ionospheric response to seismic activity, offering
promising insights into this phenomenon. However, the practical implementation of earth-
quake prediction based on ionospheric anomalies is still in its infancy and requires further
exploration [3,4]. Efforts directed towards studying TEC anomaly variations as earthquake
precursors primarily rely on observed TEC data. Traditional anomaly detection methods
include the mean and standard deviation method [5–7], the envelope method [8,9], the av-
erage method [10–12], quartile method, and sliding quartile method [13–16], among others.

These methods offer certain advantages; however, the subjective nature of thresh-
old value selection persists [17]. Moreover, many existing studies are conducted within
the context of specific earthquakes, lacking consistent analysis methods and anomaly
evaluation metrics. This inconsistency may yield disparate analysis results for the same
earthquakes [18]. However, deep learning can automatically learn feature representation
without manual selection or extraction of features, so people try to establish appropriate
and general methods through deep learning. Particularly, after the Global Navigation Satel-
lite System (GNSS) provides a large amount of ionospheric data, continuous space–time
attribute information regarding ionospheric data can be obtained and, thus, the application
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of long short-term memory (LSTM), gated recurrent unit (GRU), and other neural network
technologies has been rapidly popularized. Specifically, these models entail the establish-
ment of background field models aimed at predicting the structure and characteristics of the
ionosphere. Subsequently, seismic anomalies are identified based on these studies. Notably,
several well-established models already exist, predominantly comprising empirical models
derived from statistical data. Examples include the International Reference Ionosphere
(IRI) model [19], NeQuick model [20,21], Klobuchar model [22], Bent model [23], etc. The
accuracy of such models has become inadequate to meet the growing demand as human
exploration of ionospheric seismic anomalies deepens. Because these models, such as
IRI and Nequick, are typical global models, they are good at predicting long-term iono-
spheric changes, but they cannot be expected to be sensitive to phenomena occurring on
shorter time scales, such as rapid changes in the ionosphere caused by magnetic storms or
earthquakes [24,25].

Artificial intelligence (AI) technology introduces a novel approach to TEC prediction
and modeling by capturing the complexity inherent in various variables. It achieves
this by establishing a functional mapping relationship between input vectors and output
results through numerous neurons [26,27]. Given the pronounced temporal characteristics
of ionospheric TEC and its highly nonlinear spatiotemporal variations [28–31]. neural
networks excel in recognizing and capturing such intricate relationships. Consequently,
they outperform traditional methods in TEC modeling and prediction [32–34].

The utilization of neural network models in ionospheric prediction has garnered in-
creasing attention from researchers, as evidenced by successful applications documented
in the recent literature [35–38]. Notably, many ionospheric grid point-prediction models
have been developed using deep learning techniques, including recurrent neural networks
(RNNs), LSTM, and GRU architectures [39–44], etc. These methods effectively capture
the nonlinear characteristics of time series data, thereby enhancing prediction accuracy,
as corroborated by various studies. LSTM has been the predominant and widely rec-
ognized model until 2022. The advent of the transformer neural network architecture,
introduced by Google in 2017, has sparked considerable interest across diverse domains.
Post-2022, research on ionospheric prediction leveraging improved transformer-based
models has surged, yielding notable successes [45–48]. While LSTM and GRU, along
with their respective optimizations, have demonstrated commendable performance and
mitigated long-range dependencies in sequence tasks to a certain extent, their efficacy
diminishes notably with increasing sequence lengths. Several studies have provided evi-
dence that transformers outperform other time series prediction models, such as LSTMs
and GRUs [49].

A transformer represents a pioneering transduction model that exclusively relies on
self-attention mechanisms to compute representations, dispensing with sequence-aligned
recurrent neural network (RNN) or convolutional neural network (CNN) structures [50].
Departing from the conventional CNN and RNN architectures, the transformer network
is entirely composed of multi-head attention mechanisms. In contrast to CNN structures,
transformers can handle sequences of variable lengths, optimize memory usage, conduct
parallel computation for enhanced efficiency, and notably improve the model’s capacity
to capture long-term dependencies compared to RNNs, LSTMs, GRUs, and other conven-
tional methods. For tasks such as TEC prediction, the introduction of the self-attention
mechanism dynamically assigns varying weights to features, thereby reinforcing the tem-
poral dependencies crucial for accurate TEC prediction. Notably, the attention mechanism
incorporates location information in order to effectively capture spatial characteristics.

In fact, the transformer is a highly versatile model, which has been successfully applied
to text translation, sentiment analysis, question answering system, image processing, etc.
In terms of time series data processing, there are many excellent improved models based
on the transformer model. Because it can take into account the global information from
all elements in the sequence, it is more effective than RNN-based models (LSTM, GRU) in
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extracting complex features and capturing dynamic relationships in the sequence. However,
few studies have leveraged prediction results for seismic anomaly detection.

Therefore, from the perspective of ionospheric time series prediction, we use trans-
former architecture to model and sense seismic anomalies in the ionosphere. Specifically,
we conducted a comparative analysis of an improved transformer commonly utilized in
timing prediction, and Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root
mean square error (RMSE) were employed to evaluate the model’s performance. Our aim
was to use the improved transformer model to perform timing predictions of ionospheric
grid data and generate meaningful feature representations. Eventually, we selected ITrans-
former [51], a time series prediction model developed by Tsinghua University, as a feature
extractor for TEC map data. In order to leverage the potent information extraction capabili-
ties of transformers, we developed a combined model, termed the MaxEnt SeismoSense
Model, which integrates the improved transformer model with the maximum entropy
principle; the data we used were ionospheric grid datasets covering a comprehensive time
and spatial scale before an earthquake. This combined model aims to effectively identify
and perceive seismic anomalies in the ionosphere. The results show that the time series
prediction regression based on the transformer has high accuracy when performing the
ionospheric seismic anomaly-sensing task.

2. Data

The primary datasets utilized include the International GNSS Service (IGS) TEC Grid
data product [52], the US Geological Survey Seismic Event Catalogue [53], and solar and
geomagnetic activity indices. The data sources are summarized in Table 1.

Table 1. Data for building the MaxEnt SeismoSense Model.

Data Timespan Source

TEC grid product 2000–2023
Ionosphere Associate Analysis Centers

(IAACs) of the International
GNSS Service

Earthquake catalogue 2000–2023 US Geological Survey
Kp & F10.7 2000–2023 GFZ
AE & Dst 2000–2023 Geomagnetism at the University of Kyoto

2.1. TEC Grid Product

We used the Global Ionospheric Maps (GIM TEC) provided by the IGS, which is an
authority for international academic cooperation and information services, founded in 1993
with the support of many government agencies, and its data and analysis center members
are first-class research institutions in the field.

The ionospheric TEC grid products obtained by weighting the ionospheric TEC grid
products of each analysis center are stored in the data-sharing center server in the form
of IONEX files; each IONEX file contains 12 ionospheric maps of the day and the first
ionospheric map of the next day, a total of 13. The global ionospheric TEC grid product
included in each map is the result of modeling and interpolating the ionospheric total
electron content (TEC) using GNSS data to reflect the spatial distribution and temporal
variation of the ionosphere. Among them, the time resolution is 2 h, and the spatial
resolution is 2.5◦ latitude and 5◦ longitude.

2.2. Earthquake Catalogue

The earthquake catalogue is sourced from the United States Geological Survey (USGS)
and includes information such as earthquake date, magnitude, depth, and epicenter. In
screening seismic data, previous studies were considered, which indicated that higher mag-
nitude earthquakes are more likely to induce ionospheric anomalies [54–56]. Additionally,
studies have shown that earthquakes with a source depth exceeding 50 km are less likely
to cause ionospheric anomalies [57–59]. Therefore, thresholds for ionospheric sensitivity
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were set based on these findings. Specifically, seismic events with magnitudes greater than
five and focal depths less than 50 km were screened from 2000 to 2023.

2.3. Other Disturbance Indicators

In addition to the unusual disturbances that may occur before an earthquake, the
ionosphere is more commonly affected by solar and geomagnetic activity. Such as solar
flares [60] and geomagnetic storms [61,62]. Solar flares are the result of a sudden release of
magnetic energy from the sun, which releases a lot of radiation that causes changes in the
degree of ionization in the upper layers of the Earth, known as sudden disturbances in the
ionosphere. Geomagnetic storms are caused by the interaction of the solar wind with the
Earth’s magnetic field, which also affects the ionospheric electron density and distribution.
It is necessary to avoid confusing these phenomena with ionospheric pre-seismic anomalies
in the study, so we introduce the factors that characterize solar activity and geomagnetic
activity as F10.7, Kp, Dst, and AE.

According to the indicators commonly used in research to determine the calm of
geomagnetic activity and solar activity. The criteria used for screening seismic events were
as follows [18,63,64]: Kp < 3, F10.7 < 120, Dst > −30, and AE < 500.

These criteria yielded a total of 18,409 seismic events, as illustrated in Figure 1.
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Figure 1. The red dots are all seismic events occurring between 2000 and 2023 under conditions of
quiet geomagnetic and solar activity, with magnitude > 5 and depth < 50 km.

When constructing the dataset, we centered the space on the epicenter and defined
a grid range of 20 × 20, with a height of 450 km determined by IGS data. The resolution
of the TEC data is 2 h. We meticulously assessed the length of each event input sequence
and the overall training data length to ensure compatibility with the model. Sequences of
16 days were selected to minimize noise introduction in positive samples.

Numerous scholars have conducted studies on a substantial dataset of earthquake
events [65], revealing an increased likelihood of ionospheric anomalies in the week leading
up to an earthquake. Despite these findings, various studies have identified differing
anomaly periods associated with distinct spatiotemporal conditions and characteristics of
earthquakes, including periods of one, three, and four days [66] per earthquake, as well as
three [67,68] and five days [69,70] prior. To minimize the inclusion of noise in the positive
sample set, our approach aims to narrow the anomaly period while preserving predictive
relevance. Consequently, we have defined the critical period for seismic anomalies as
spanning from three days before the earthquake to the day of the earthquake itself, assigning
a label of one to these intervals. All other periods were assigned a label of 0. The design
and functionality of the composite model we developed are illustrated in Figure 2.



Atmosphere 2024, 15, 419 5 of 16

Atmosphere 2024, 15, x FOR PEER REVIEW 5 of 17 
 

 

predictive relevance. Consequently, we have defined the critical period for seismic anom-
alies as spanning from three days before the earthquake to the day of the earthquake itself, 
assigning a label of one to these intervals. All other periods were assigned a label of 0. The 
design and functionality of the composite model we developed are illustrated in Figure 2. 

 
Figure 2. The construction of the dataset and the architecture of MaxEnt SeismoSense Model. Here, 𝑋  represents the input time series data, with ‘t’ denoting consecutive days, while P represents the 
prediction of seismic anomalies. 

3. Methods 
3.1. Transformer 

A transformer is mainly composed of input, encoder, decoder, and output. The ad-
vantage of the transformer’s structure is that the positional encoding in the input takes 
into account the order of sequence data, which is critical for data containing space–time 
continuity. As shown in Figure 3, the self-attention in the encoder and decoder enables the 
transformer to capture long distance dependencies more directly and with higher compu-
tational efficiency, and the multi-head attention mechanism allows the model to learn in-
formation from multiple representation spaces, improving the model’s ability to capture 
different types of dependencies. The Feed Forward Network (FFN) in the encoder and 
decoder allows the model to learn more complex representations at different levels, in-
creasing the expressiveness of the model. 

Based on the architecture of a standard transformer, the improvements of ITrans-
former, Flashformer, Reformer, Informer, and Flowformer are briefly described, and they 
will be used for subsequent feature extraction and model evaluation. 
1. ITransformer 

ITransformer’s improvement, based on a standard transformer, is the ability to em-
bed the entire time series of each variable as a token, independently. As shown in Figure 
4, self-attention and the FFN is employed for each variable token to learn nonlinear fea-
tures within the TEC data. This focus on embedded variable tokens enhances interpreta-
bility, elucidating multivariable correlations and, particularly in this study, improving 
feature extraction of spatiotemporal correlations across TEC sequence data. 
2. Flashformer 

In the original transformer, there was a multi-head self-attention mechanism and 
FFN. In Flashformer, FFN is replaced by a Gated Attention Unit (GAU), and mixed-chunk 
attention is proposed as a fast method to calculate attention. As shown in Figure 5, this 
model’s architecture enables faster computation and less memory usage. 
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prediction of seismic anomalies.

3. Methods
3.1. Transformer

A transformer is mainly composed of input, encoder, decoder, and output. The
advantage of the transformer’s structure is that the positional encoding in the input takes
into account the order of sequence data, which is critical for data containing space–time
continuity. As shown in Figure 3, the self-attention in the encoder and decoder enables
the transformer to capture long distance dependencies more directly and with higher
computational efficiency, and the multi-head attention mechanism allows the model to
learn information from multiple representation spaces, improving the model’s ability to
capture different types of dependencies. The Feed Forward Network (FFN) in the encoder
and decoder allows the model to learn more complex representations at different levels,
increasing the expressiveness of the model.

Based on the architecture of a standard transformer, the improvements of ITransformer,
Flashformer, Reformer, Informer, and Flowformer are briefly described, and they will be
used for subsequent feature extraction and model evaluation.

1. ITransformer

ITransformer’s improvement, based on a standard transformer, is the ability to embed
the entire time series of each variable as a token, independently. As shown in Figure 4,
self-attention and the FFN is employed for each variable token to learn nonlinear features
within the TEC data. This focus on embedded variable tokens enhances interpretability,
elucidating multivariable correlations and, particularly in this study, improving feature
extraction of spatiotemporal correlations across TEC sequence data.

2. Flashformer

In the original transformer, there was a multi-head self-attention mechanism and
FFN. In Flashformer, FFN is replaced by a Gated Attention Unit (GAU), and mixed-chunk
attention is proposed as a fast method to calculate attention. As shown in Figure 5, this
model’s architecture enables faster computation and less memory usage.

3. Reformer

Reformer realized efficient processing of long sequences by introducing a Locality-
Sensitive Hashing (LSH) attention mechanism. The standard transformer uses a fully
self-attentional mechanism where each element interacts with every other element in the
sequence, resulting in computational complexity and memory consumption growing over
the square of the sequence length. Reformer introduces the LSH attention mechanism, as
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shown in Figure 6, by hashing input elements into LSH bucketing so that only elements
in the same or similar bucket will perform attention calculations. This approach reduces
the complexity from O(n2) to close to O(n), greatly improving the efficiency of processing
long sequences.
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4. Informer

The attention score of the self-attention mechanism in the standard transformer
presents a long-tail distribution, that is, only a small number of points are directly and
strongly related to other stores. Informer proposed a ProbSparse self-attention mechanism,
which removes useless queries and reduces the computational amount in the process of
calculating attention. In a standard transformer, the structure of the self-attention layer is
usually flat, with no obvious hierarchical division when processing sequences. Informer
adopted the self-attention layer of hierarchical structure and halved the shape of the se-
quence to gradually reduce the number of self-attention extraction layers and highlight the
main attention, that is, the operation at red circle 2 in Figure 7. A generative decoder that
obtains the result directly based on the input step is used. Compared with the step-by-step
decoder in the original transformer, the inference speed of long sequence prediction is
greatly improved.
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5. Flowformer

The advantages of Flowformer are as follows: First, the flow-based attention mecha-
nism. The standard transformer model uses a fully self-attentional mechanism where each
element interacts with all other elements in the sequence, causing computational complexity
and memory consumption to grow over the square of the length of the sequence. Flow-
former introduces a streaming attention mechanism that processes data through streams, as
shown in Figure 8, which allows the model to focus only on the local context of the current
element when processing a sequence, significantly reducing computational complexity and
memory consumption. This approach allows Flowformer to efficiently handle very long
sequences. Second, optimized memory management. When dealing with long sequences
of data, the standard transformer needs to store a large number of intermediate states
in its memory, which is very demanding on memory resources. Flowformer optimizes
memory management through its streaming processing mechanism, reducing the need
to store intermediate states and thus reducing memory consumption when processing
long sequences.
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3.2. Maximum Entropy

Several studies have investigated the entropy variation of seismic anomalies in the
ionosphere [71–73]. Each anomaly observed across various geophysical domains (such as
surface temperature, electromagnetic radiation, ionospheric variations, etc.) is perceived
not as an isolated occurrence but as part of a self-organizing process aimed at reaching a
state of maximum entropy [74]. The maximum entropy principle involves deriving the
probability distribution of an unknown event based on the provided known information.
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It entails selecting the distribution with the highest entropy among those that conform to
the specified constraints, thus eliminating subjective assumptions regarding the unknown
data. This principle can be expressed mathematically as follows:

p(y|x) = 1
Z(x)

exp(∑n
i λi i(x, y)

p(y|x): the probability of earthquake anomaly under given TEC conditions.
Z(x): normalized factor, ensure that the sum of probabilities is 1.
λi: the weight parameter of the charateristic function i(x, y).
As mentioned earlier, we input all precise known information into the transformer

feature extractor. Subsequently, we employ the maximum entropy model for classification
prediction. The Grid-search method is used to find the best parameter combination on the
predefined hyperparameter space to improve the performance of the model.

3.3. Grid Search and Cross-Validation

Cross-validation is an essential technique for assessing model performance; it involves
partitioning the dataset into training and validation sets multiple times, using different
combinations of data in each iteration. The most prevalent form of this technique is K-
fold cross-validation, where the dataset is split into K equal parts. Each part is used as
a validation set once, with the remaining parts serving as the training set. The process
iterates K times, with the average performance metric across all iterations serving as the
model’s final evaluation. This method enhances model evaluation accuracy and mitigates
randomness-induced errors by utilizing diverse training and validation sets.

Grid search is employed for hyperparameter tuning, aiming to identify the optimal
set of parameters for model prediction. Unlike model parameters learned during training,
hyperparameters are set manually at the model construction stage. Grid search performs
an exhaustive search over a pre-defined range of hyperparameter values, evaluating each
combination to determine the most effective one.

Integrating grid search with cross-validation for model tuning and evaluation ensures
a comprehensive search for the optimal hyperparameters while rigorously assessing model
performance. In our methodology, we adopt a 10-fold cross-validation approach, dividing
the dataset into ten equal parts. For each iteration, nine parts are used for training, and
one part is used for validation. This cycle repeats ten times, each with a unique validation
subset, allowing for a thorough evaluation of model performance across various sets.

4. Results

In this section, first, a prediction task is performed on the dataset and model per-
formance is evaluated using MAE, MSE, and RMSE. Subsequently, leveraging the best-
performing model, ITransformer, we extract features from the dataset and design an ablation
experiment. The aim of this experiment is to compare the performance of the maximum
entropy model in classifying original TEC data with the performance of datasets based on
feature extraction in classification prediction.

4.1. Evaluation of Improvement Model

Itransformer, Flashformer [75], Reformer [76], Informer [77], and Flowformer are
selected to assess their performance on the dataset. Regarding the dataset, the IGS TEC
map data from 2000 to 2023 are partitioned into training (70% of the total), testing (20% of
the total), and validation (10% of the total) datasets. The input consists of four days’ worth
of 48 TEC map data (with a time resolution of 2 h, totaling 12 map data for one day), while
the output is the subsequent four days’ 48 TEC map data. The initial learning rate is set to
lr = 0.0001, with a maximum of 30 training cycles. The model with the best training results
is saved and updated during the iteration process.
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Accuracy Evaluation

Mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE),
and mean square percentage error (MSPE) are selected for evaluation, and their equations
are as follows. MAE is a robust evaluation measure that is insensitive to outliers, whereas
MSE is greatly affected by outliers and can reflect the absolute size of the error. RMSE has
the same units as the original data and is easier to interpret, but it is just as susceptible to
outliers as MSE.

MSE =
1
n∑n

i=1(ŷi − yi)
2 (1)

MAE =
1
n∑n

i=1|ŷi − yi| (2)

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (3)

The parameter settings for all models in the controlled experiment were consistent, as
described in the Methods section. The forecasting results are listed in Table 2, with the best
in bold. The lower MSE/MAE/RMSE indicates the more accurate prediction result.

Table 2. The performance of all models on the data set.

ITransformer Flashformer Reformer Informer Flowformer

MSE
(

/TECU2
)

0.106 1 0.587 3.537 8.122 0.756

MAE (/TECU ) 0.221 1 0.601 1.192 1.891 0.684
RMSE

(/TECU) 0.325 1 0.766 1.881 2.849 0.869

1 Bold represents the best results.

Our analysis reveals that ITransformer excels in time series prediction tasks compared
to other baseline models. To provide a visual representation of the model test results, we
present a comparison of real input values and predicted values in Figure 9. Notably, ITrans-
former demonstrates superior performance compared to other models under identical
input conditions.

We can observe that, except for ITransformer, other models exhibit notable errors in
prediction. Specifically, model (4) tends to inaccurately predict high values, while models
(3) and (5) tend to inaccurately predict low values. Models (2) and (5) show a tendency to
predict with an advance, while model (3) tends to produce excessively smooth predictions.
While these models are capable of handling long time series prediction tasks, they differ
in their emphasis on improving the original model. Flashformer prioritizes optimizing
computational efficiency, whereas Reformer excels in enhancing computing efficiency,
reducing memory consumption, and processing long sequences effectively. While they
may indirectly enhance the processing capacity of ionospheric data, they lack a targeted
resolution mechanism for volatile nonlinear data.

We tried to analyze the reasons why ITransformer performed better in ionospheric
sequence data. Figure 10 shows the training process of the data set in ITransformer.
In Figure 10a, ITransformer aggregates changes across the entire sequence to create a
comprehensive sequence representation [51], which enables it to better handle signal data
with significant fluctuations. In Figure 10b, a self-attention mechanism is used to process the
embedded variable tokens to enhance interpretability and reveal the correlation between
the multiple variables. It is acknowledged that Xt in the standard transformer may not
precisely reflect the same actual event for all variables due to potential misalignment in
time between events captured by different variables. Seismic anomalies in the ionosphere
may manifest directionally and chronologically, even at the same altitude level. Therefore,
ITransformer accounts for system lag and differing statistical properties among variables.
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and longitude grid points are independently embedded as tokens. (b) Self-attention is applied to
embedded variate tokens. (c) Series representations of each token are extracted by the shared FFN.
(d) Layer normalization is adopted to reduce discrepancies among variates.
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4.2. Ablation Experiments

In order to verify the rationality of the transformer’s information extraction capability
to forecast tasks, we designed an ablation experiment to input the original time series data
directly into the maximum entropy model for classification prediction, aiming to observe
the impact of the feature extractor on prediction outcomes.

Because hyperparameters are very important for the training process and final per-
formance of the model. For example, in the maximum entropy model, the regularization
parameter can control the complexity of the model and increasing it can reduce the risk
of overfitting. The maximum number of iterations and the iteration stop threshold can
make the model converge in a limited time, so as to avoid premature fitting or premature
stop, and so on. Therefore, regardless of whether the transformer is utilized, we identified
the optimal hyperparameters for the model through a grid search employing the 10-fold
cross-validation method. There was a minor disparity in the hyperparameters for the
model with and without the transformer. However, after thorough testing, we concluded
that this difference had no discernible effect on the final outcome. Therefore, the recom-
mended hyperparameter settings are as follows: c = 0.07, max_iter = 800, solver = ‘lbfgs’.
Here, c represents the regularization parameter, max_iter denotes the maximum number of
iterations, and solver indicates the solver utilized.

Accuracy and recall rates were selected as evaluation metrics to assess changes in the
model. The accuracy rate quantifies the proportion of predicted seismic anomalies that
are true seismic anomalies, while the recall rate indicates the proportion of true seismic
anomalies correctly identified by the model. The corresponding mathematical expression
is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN
TP (True Positive): correctly predicted positive class sample.
FP (False Positive): negative class sample incorrectly predicted as positive class.
FN (False Negative): positive class sample incorrectly predicted as negative class.
The confusion matrix diagram, as shown in Figure 11, depicts the test results for

class zero and class one. It is evident that without the transformer as a feature extractor—
when ionospheric data are directly input into the maximum entropy model—the model’s
accuracy is lower compared to when the model is trained with features extracted using the
transformer. This highlights a significant improvement in accuracy achieved by employing
the transformer for feature extraction.
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The accuracy has increased to 69%, and the recall rate has improved to 71%. Upon
further scrutiny of the confusion matrix, it is evident that the miss probability has decreased
from 34% to 29%, while the false probability has dropped from 43% to 32%. This under-
scores the significant enhancement in the prediction of seismic anomalies facilitated by
ITransformer’s capability to extract information from ionospheric TEC data.

5. Discussion and Conclusions

Machine learning techniques have demonstrated a potential to analyze ionospheric
anomalies for earthquake prediction, with advancements now encompassing deep learning
methodologies [63]. Research by Chaplygina and Grafeeva [64], utilizing ionospheric sonde
readings around earthquake zones, reported a prediction accuracy of 100% within 25% of
the targeted region, albeit constrained by substantial data requirements. Similarly, Akyol
et al. [66] achieved a commendable prediction accuracy of approximately 91.6% through the
use of GPS-TEC data and geomagnetic indices for real-time earthquake precursor detection
in an Italian locale, albeit with a false alarm rate of 54.2%.

This study advances the application of deep learning by employing transformer
architecture, which exhibits superiority over LSTM and GRU models [49] from previous
investigations. We demonstrate that transformers can efficiently process single-mode TEC
spatiotemporal data, accurately identifying ionospheric seismic disturbances without prior
errors when integrated with the maximum entropy model. This increase in accuracy comes
from the transformer’s powerful information extraction and feature expression capabilities.
The most obvious challenge lies in the uninterpretability of neural networks. It is mainly
manifested in the following aspects: First, the implied nature of feature representation,
which is not easy to feel and understand intuitively. Second, the complexity of weight
parameters. Neural networks generate a large number of parameters in the training process
and are constantly optimized, but the specific meaning of these parameters is often unclear,
so it is difficult to infer the model decision process and logic from the model parameters.
This unexplained mechanism prevents us from making targeted improvements. However,
there may be another way to think about it. TEC variations are not the sole indicators of
seismic activities. Research has also identified anomalies in radon gas emissions [12,68–70]
and land surface temperatures [71–74] as precursors to earthquakes. Furthermore, a neural
network does not need to fit a formula in advance in order to describe the relationship
between input and output, and it can flexibly accept various input data of multiple modes,
extract high-order and nonlinear features, and establish the mapping relationship between
input and output, so as to carry out effective modeling and prediction.

The use of neural networks to establish a multi-modal ionospheric perception model
is very worthy of discussion. For the abnormal disturbance caused by earthquakes, we
may need more information to supplement TEC, such as ion temperature, O+ density,
and other information, which can improve the accuracy of the model and reduce false
positives. In addition, the parameters of geomagnetic activity and solar activity can also
help to establish multi-classification models to judge whether ionospheric anomalies are
caused by earthquakes. The realization of these visions requires more information with
greater precision.
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