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Abstract: During rapid urbanization, microclimate environment deterioration through events such as
haze pollution and heat waves has continuously occurred in cities, which greatly affects the living en-
vironment, production activities, and health of urban residents. Therefore, it is particularly necessary
to explore methods for controlling and optimizing the urban microclimate environment. In this paper,
based on the mechanism of the effect of urban spatial structure at street-level on the distribution
of atmospheric particulate matter, an indicator system that can be employed to comprehensively
describe and quantify urban morphological structure at street-level was constructed from eight
aspects: the spatial morphology of street-valleys, intensity of land use and development, geometric
structure of buildings, inhomogeneity of buildings, roughness of the underlying surface, distribution
of ecological landscapes, 3D architectural landscape morphology, and ventilation potential. Further-
more, using satellite remote sensing images and vector thematic maps of Shanghai, indicator factors
were quantified by applying GIS technique. The intrinsic mechanism of the influence of the urban
morphology on the diffusion and transport of atmospheric particulate matter was comprehensively
analyzed by combining statistical methods and data mining algorithm, and eight key dominant
factors were identified that can be considered to improve the urban ventilation conditions and help
control urban air pollution, namely, the land use intensity, urban canopy resistance, vegetation cover,
spatial congestion rate, comprehensive porosity, height-to-gross floor area ratio, building density, and
average building volume ratio. As such, according to the quantitative analysis results for various
combinations of the dominant factors, a spatial optimization strategy at street-level that can help
improve the urban air quality was proposed in terms of identifying the pathways through which
urban spatial elements affect the distribution of particulate matter, i.e., controlling the source–flow
diversion–flow convergence process.

Keywords: PM2.5; urban morphology indicators; spatial optimization strategies; source control–
diversion–convergence; decision tree

1. Introduction

China is currently experiencing a stage of rapid urbanization development character-
ized by population increase, land expansion, and changes in surface properties. Urbaniza-
tion has profoundly impacted the local climate and environment, for example, the urban
heat island effect, atmospheric pollution, and weakening of air exchange have become
important issues that must be urgently resolved for ensuring the sustainable development
of cities [1–4].

A large number of studies have proved that there is a significant influence between
some factors in the process of urban development and the distribution of PM2.5 pollution,
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and it has been found that measures such as constructing a reasonable urban form, scientif-
ically adjusting the density of the road network, the density of buildings, the proportion
of the population, and upgrading the green space within the city [5] have a significant
effect on the reduction in PM2.5 concentration. Studies on the impact of the urban mor-
phological structure on the air quality have focused mainly on the architectural planning
industry. Ref. [6] demonstrated that air pollution is closely related to various factors,
such as the intensity of land use and development, layout of urban spatial structures, and
transportation road networks. When exploring the influence of land use types on the
distribution and dispersion of PM2.5 in cities, the built-up green space, residential land, and
cultivated land are the main research objects. Studies have shown that different green land
landscape patterns affect the distribution of the PM2.5 concentration [7]. It has also been
reported [8] that increasing the vegetation cover in districts can effectively improve the
air quality. Ref. [9] showed that green coverage contributes to a high degree of change in
PM2.5. Ref. [10] revealed that the size of the fallow forest area is related to the distribution
of the PM2.5 concentration.

Researchers have used street-level morphological indicators to study the relationship
between the distribution of atmospheric pollutants concentration and the three-dimensional
spatial structure of cities, usually. Ref. [11] investigated the volume, orientation, and plan
layout of buildings and reported that the morphological structure of a building can impose
different degrees of influences on the diffusion and transport of atmospheric particulate
matter. In addition, indicators such as the standard deviation of the building height,
average building height, and average building volume are highly correlated with the dis-
persion of air pollutants in high-density districts and neighborhoods [12]. Ref. [13] showed
that the height and density of building complexes significantly affects the distribution
of atmospheric particulate matter. Ref. [14] reported that the building density, building
height, and building volume significantly affect PM2.5. Ref. [15] recently showed that the
building-to-volume ratio affects the distribution of the PM2.5 concentration.

Many studies have focused on evaluating the correlation between the urban mor-
phology and the distribution and dispersion of atmospheric particulate matter. Ref. [16]
investigated the correlation between PM2.5 distribution and urban form parameters in
a cold climate city in China using gradient boosted regression trees, and quantitatively
analyzed the influencing factors and found that building density had a greater impact on
PM2.5 concentration. However, research on the urban spatial morphology lacks a set of
comprehensive quantitative analysis methods, which cannot be applied in the optimization
of urban spaces. Therefore, from the perspectives of urban planning and design, statistical
and data mining methods are adopted in this paper to identify the dominant factors and
their combinations affecting the diffusion of atmospheric particulate pollutants, and the
intrinsic mechanism through which the street-level morphology affects the distribution and
diffusion of atmospheric particulate matter is revealed by constructing a model to quantify
the indicator system of the urban morphology. Then, an indicator system applicable to
urban space optimization is derived, and a set of urban space optimization design strategies
based on various combinations of the dominant factors is proposed. Finally, several block
space optimization design strategies are proposed based on different combinations of the
dominant factors to provide a scientific basis and decision-making suggestions for the opti-
mization of urban block space structures to improve the urban microclimate environment
and provide a liveable and comfortable living environment for urban residents.

The study and visualization of the spatial and temporal distribution characteristics
of PM2.5 pollution and its influencing factors are of reference value for the study of the
diffusion, control, and prevention of PM2.5 pollution. Secondly, using scientific methods to
systematically study the relationship between urban neighborhood morphology and PM2.5
concentration can help the government environmental protection department to carry
out the renovation of old cities and the expansion of new cities in a more reasonable way
according to the degree of pollution in different areas. Thirdly, we can better understand the
characteristics of the urban morphology, explore the environmentally friendly urbanization
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mode, and provide a scientific basis for decision-making to improve the air quality as well
as the rational urban planning.

2. Study Area and Materials
2.1. Study Area

Shanghai is located at longitudes 120◦51′~122◦12′ E and latitudes 30◦40′~31◦53′ N,
with a total area of approximately 8239 km2. The average elevation of Shanghai is approxi-
mately 4 m above sea level, and except for a few hilly mountain ranges in the southwestern
part of the city, the terrain is flat, with a small relative altitude difference. Shanghai has a
typical subtropical monsoon climate, with a significant difference in the dominant wind
direction between summer and winter. Notably, the dominant wind directions in sum-
mer are east-northeast and north-northeast, and in winter, the dominant wind direction
is north. Due to the limited land resources, Shanghai has gradually developed into the
largest economic center and the largest industrial and commercial port city in China. As a
high-density megacity, Shanghai can provide sufficient samples for the study of the urban
morphology and atmospheric environment. In this paper, 60 sample districts were selected
from the built-up areas in Shanghai (Figure 1). Ref. [17] studied the influence of the building
forms and layout on the dispersion of air pollutants and showed that the concentration of
pollutants at small area scales is slightly affected by more distant emission sources because
districts and neighborhoods encompass complex spatial structures that can notably affect
pollutant migration. Thus, in this paper, a circular area with a radius of 200 m was selected
as the scope of the study area, a total of 60 sample areas were selected as the study objects,
and Figure 2 shows remote sensing images for eight of these sample areas.
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Figure 2. Quickbird images of the sample areas with a radius of 200 m for the eight monitoring
stations (a–h). (a). Changning Xianxia monitoring station (121◦23′25′′ E, 31◦12′21′′ N); (b). Jin-
shan New City monitoring station (121◦20′9′′ E, 30◦44′44′′ N); (c). Hongkou monitoring station
(121◦28′1′′ E, 31◦18′3′′ N); (d). Baoshan Miaohang monitoring station (121◦25′54′′ E, 31◦19′56′′ N);
(e). Minhang Pujiang monitoring station (121◦29′59′′ E, 31◦4′26′′ N); (f). Qingpu Xujing monitor-
ing station (121◦17′19′′ E, 31◦9′59′′ N); (g). Pudong New Area monitoring station (121◦31′58′′ E,
31◦13′42′′ N); (h). Pudong Zhangjiang monitoring station (121◦34′37′′ E, 31◦12′26′′ N).

2.2. Data Sources

PM2.5 concentration data for 2021 were obtained from the official website of the
China Environmental Monitoring General Station (http://www.cnemc.cn/sssj/) (accessed
on 1 February 2022). and from PM2.5 concentration field inversion results (Figure 3),
which were computed by using Gaofen-1 WFV4 imagery data and data retrieved from
state-controlled PM2.5 monitoring stations in Shanghai [18]. Additionally, WFV4 image
data were obtained from the official website of the China Resource Satellite Applica-
tion Center (https://www.cresda.com/zgzywxyyzx/index.html) (accessed on 1 February
2022). Building morphology data of the sample areas were obtained from building dis-
tribution data of Baidu Maps. The values of the urban morphological indicators were
calculated using the Baidu e-map of Shanghai, GlobeLand30 land use data of Shanghai
(Hauke et al., 2011, [19]), and Quickbird satellite remote sensing images and analysed
by tools in ArcGIS version 10.5 program. Meteorological data such as the wind direc-
tion and wind speed were obtained from the monitoring data of state-controlled mete-
orological stations. By statistically analyzing the meteorological data obtained from the
Shanghai National Meteorological Reference Station for the past 11 years (2011–2021),
and using Python version 3.9 program to produce the wind rose diagrams (Figure 4) for
summer and winter, respectively, the dominant wind directions of Shanghai in winter and
summer were obtained. In summer, the wind direction in Shanghai is mainly easterly.
The average wind speed in summer is 3–4 m/s. In winter, the wind direction is mainly
northerly. The average wind speed in winter is 3–4 m/s. The wind direction in winter is
mainly northerly.

http://www.cnemc.cn/sssj/
https://www.cresda.com/zgzywxyyzx/index.html
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3. Methods
3.1. Data Indicators

In this paper, 35 secondary indicator factors were selected from eight aspects, namely,
the spatial morphology of street-valleys, land use and development intensity, building
geometry, building inhomogeneity, subsurface roughness, ecological landscape distribu-
tion, three-dimensional architectural landscape morphology, and ventilation potential, to
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construct an indicator system that can be used to comprehensively quantify the urban
morphology and structure at street-level. The specific indicators and their categorization
are provided in Table 1.

Table 1. Urban morphological indicators and their abbreviations.

First-Level Indicators Secondary Indicators Abbreviations

Street-Valley Space Patterns Building density DEB
Average width of street canyons AVSW
Average height-to-width ratio of the
canyon RASHW

Direction of the street DIS
Direction of the building DIB
Compactness index C

Land use and development
intensity Degree of land use mixing SLU

Land use intensity LU
Density of the road network DER
Impervious surface coverage ISC

Building geometry Average height of buildings (arithmetic
mean) AVHA

Average height of buildings (weighted
mean) AVHB

Average building volume AVV
Average building aspect ratio RABWH
Ratio of the average building length to
the height RABLH

Ratio of the height to the total floor area RAHFA
Unevenness of construction Combined nonlinear coefficient R

Standard deviation of the building
volume σV

Standard deviation of the building height σH
Roughness of under-cushion
surface Surface roughness height Z0

Comprehensive porosity Po
Closure Oc
Ventilation obstruction ratio VOB
Zero-plane displacement Zd

Ecological landscape distribution Vegetation cover VC
Proportion of water area WC

3D architectural landscape forms Average floor area ratio of buildings AVFAR
Average body shape coefficient AVBSC
Basic evenness index BEI
Space congestion rate SCD

Ventilation potential Frontal area index FAI
Frontal area density (0–15 m) FAD0to15
Frontal area density (15–60 m) FAD15to60
Frontal area density (0–60 m) FAD0to60
Urban canopy resistance CF

A detailed description of the indicators and formulas can be referred to the Supplementary Materials.

3.2. Statistical Analyses

In this paper, we combined correlation analysis, normality tests, and principal com-
ponent analysis to extract features and reduce dimension, and preliminarily screened the
morphological indicators related to the diffusion and distribution of air pollutants to im-
prove the efficiency and accuracy of the subsequent data mining algorithms. Spearman
correlation analysis [19] was conducted to determine the indicators significantly correlated
with the PM2.5 concentration. Furthermore, the normality test was employed to analyze
whether the data followed a normal distribution, and the data not normally distributed
were normalized. Since the dispersion of air pollutants in urban areas is affected by several
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factors, we applied a dimensionality reduction process to these indicator data to identify
several types of dominant factors and indicators that notably contribute to the identified
dominant factors for subsequent decision tree analysis. Based on the application scope of
factor and principal component analysis, principal component analysis was adopted in this
paper, which focuses on comprehensively evaluating the influence of the contribution of
information [20].

3.3. Data Modeling

The complexity and diversity of urban forms make it more difficult to predict the
transport and dispersion of air pollutants in cities. Buildings and other objects in cities can
influence the speed and direction of air movement, and thus the transport of pollutants.
Different urban morphologies may result in varying air pollutant transport and dispersion
patterns, which makes it difficult to establish a comprehensive indicator to assess the
extent to which the urban morphology affects pollutant diffusion and transport. Therefore,
the purpose of this paper was to construct an indicator system that can be used to com-
prehensively quantify the urban morphology and structure at street-level. Based on the
35 indicator factors mentioned above, the dominant factor combinations were identified
to construct a set of quantitative models that can be used to accurately assess the degree
of influence of the urban morphological structure on air pollutant transport. After com-
paring many data mining methods, decision tree analysis was adopted to identify which
features are most important for predicting the output through feature selection, and based
on this algorithm, a set of classification prediction models could be trained with known
samples [21].

Decision tree analysis is a popular data mining and machine learning technique that
has the following advantages: the analysis results are easy to understand and interpret, it
can produce high-quality models in a short period of time, it is suitable for classification
and regression analysis of various types of data, and it has strong robustness in the face of
missing data or abnormal data.

Since the data in this paper all include continuous attributes, both the C5.0 and CART
algorithms can be applied [22]. For this reason, the accuracy of these two algorithms was
compared through a large number of data analysis results, and it was found that the CART
algorithm yielded better results and was more suitable for decision analysis of the data in
this study.

The PM2.5 concentration data from the 60 sample points were first categorized into
6 classes, and the classification was based on the daily average PM2.5 classification standard
of the UK DAQI classification standard. An analysis of the PM2.5 concentration retrieval
results [17] revealed that the PM2.5 concentration in the built-up areas of Shanghai mainly
ranges from 20 to 58 µg/m3, and the non-built-up areas are not within the scope of this
paper; therefore, the PM2.5 concentration data of the 60 sample areas were classified into
the 6 categories of DAQI2 (12–23 µg/m3), DAQI3 (24–35 µg/m3), DAQI4 (36–41 µg/m3),
DAQI5 (42–47 µg/m3), DAQI6 (48–53 µg/m3), and DAQI7 (54–58 µg/m3). These six classes
cover the three categories of good, fair, and poor urban air quality levels. Therefore, this
classification method can meet the needs of this study.

Based on the Spearman rank correlation analysis and principal component analysis
results, the key combinations of indicators were selected for decision tree analysis. Based
on the CART algorithm model, these indicators were used as independent variables, the
PM2.5 concentration was used as the dependent variable for decision tree modeling, and
according to the number of samples, the cross-validation method was chosen in this study.

4. Results
4.1. Correlation Analysis

The correlation analysis results (Table 2) revealed that the ventilation obstruction
ratio is strongly correlated with the PM2.5 concentration, and the correlation coefficient is
greater than 0.8, which indicates that the ventilation obstruction ratio exhibits a direct and
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significant relationship with the diffusion of atmospheric particulate matter (PM2.5) in the
urban canopy. The ventilation obstruction ratio is an important index for characterizing
the roughness of the urban subsurface. In a study of the effect of the subsurface roughness
on the diffusion of atmospheric particulate matter, [23] found that an increase in the
ground roughness leads to turbulent motion enhancement in the near-surface air layer.
This accelerates the exchange of materials in the near-surface air layer along the vertical
direction, thus leading to the phenomenon of atmospheric particulate matter washing
down, resulting in an increase in the concentration of atmospheric pollutants near the
surface. The results provided in Table 2 show that the PM2.5 concentration increases with
increasing ventilation obstruction ratio, which also indicates that the roughness of the
subsurface exerts a notable influence on the diffusion of urban pollutants.

Table 2. Spearman rank correlation coefficient (r) for 35 indicators and PM2.5 concentration.

Indicators PM2.5 Concentration

Building density (DEB) 0.778 **
Average width of street canyons (AVSW) −0.697 **
Average height-to-width ratio of the canyon (RASHW) 0.488 **
Direction of the street (DIS) −0.037
Direction of the building (DIB) 0.181
Compactness index (C) 0.593 **
Degree of land use mix (SLU) −0.557 **
Land use intensity (LU) 0.634 **
Density of the road network (DER) −0.24
Impervious surface coverage (ISC) 0.639 **
Average height of buildings (AVHA) 0.289 *
Average height of buildings (AVHB) 0.305 *
Average building volume (AVV) 0.622 **
Average building aspect ratio (RABWH) 0.186
Ratio of the average building length to the height (RABLH) 0.357 **
Ratio of the height to the total floor area (RAHFA) −0.761 **
Combined nonlinear coefficient (R) −0.218
Standard deviation of the building volume (σV) 0.618 **
Standard deviation of building height (σH) −0.037
Surface roughness height (Z0) 0.028
Comprehensive porosity (Po) −0.755 **
Closure (Oc) 0.544 **
Ventilation obstruction ratio (VOB) 0.810 **
Zero-plane displacement (Zd) 0.565 **
Vegetation cover (VC) −0.556 **
Proportion of water area (WC) −0.516 **
Average floor area ratio of buildings (AVFAR) 0.680 **
Average body shape coefficient (AVBSC) −0.229
Basic evenness index (BEI) −0.562 **
Space congestion rate (SCD) 0.756 **
Frontal area index (FAI) 0.599 **
Frontal area density (FAD0to15) 0.564 **
Frontal area density (FAD15to60) 0.344 **
Frontal area density (FAD0to60) 0.462 **
Urban canopy resistance(CF) 0.669 **

* p < 0.05; ** p < 0.01.

In addition, the correlations between the compactness index, building density, stan-
dard deviation of the building volume, average building volume, average building volume
ratio, frontal area index, impervious surface coverage, land use intensity, urban canopy
resistance, spatial congestion rate, average width of street canyons, comprehensive porosity,
and PM2.5 concentration were significant, with correlation coefficients greater than 0.59.
Among them, the compactness index, building density, standard deviation of the building
volume, average building volume, average building volume ratio, frontal area index, imper-
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vious surface coverage, land use intensity, urban canopy resistance, and spatial congestion
rate were positively correlated with the PM2.5 concentration, while the ratio of the height
to the total floor area, average width of street canyons, and comprehensive porosity were
negatively correlated with the PM2.5 concentration.

Both the compactness index and building density are factors reflecting the density of
building clusters in districts. Due to the small spacing between buildings, high-density
districts and neighborhoods produce vortex zones between buildings that lead to the
retention of air pollutants, and due to the poor air exchange in vortex zones, air pollutants
collect near building clusters. Several studies have shown that urban central blocks are
densely populated with high-rise buildings, often resulting in a wind speed near the
ground of only 1/4~1/2 of the total wind speed across the city [24]. Therefore, the higher
the compactness index and building density of the districts and neighborhoods are, the
higher the PM2.5 concentration.

The ratio of the height to the total floor area and the average volume of buildings
are indicators that characterize the geometric structure of buildings. Usually, the larger
the building volume, the more likely it is that ventilation in the neighborhood will be
obstructed and the more unfavorable the ventilation is for air pollutant transmission and
diffusion, causing atmospheric particulate matter to accumulate locally, which can lead to
an increase in the PM2.5 concentration.

The standard deviation of the building volume is a quantity that reflects the degree
of uniformity of the building volume in the study area; in general, the larger the standard
deviation of the building volume, the larger the difference in the building volume is, the
less uniform the building is, and the more conducive the building is to ventilation in the
neighborhood and thus to the diffusion of atmospheric particulate matter. However, the
building volume standard deviation in this study was positively correlated with the PM2.5
concentration. This may be due to the large differences in the density and volume of
buildings distributed in the different study areas, and the study areas with large building
volume standard deviations exhibit dense distributions of high-rise buildings. By analyzing
the correlation between the building volume standard deviation and the average volume
of buildings (R = 0.981, p < 0.01), the average height of buildings (R = 0.404, p < 0.01), the
density of buildings (R = 0.506, p < 0.01), and the average building volume ratio (R = 0.808,
p < 0.01), it can be found that the standard deviation of the building volume exhibits
a significant positive correlation with the other four indicators, suggesting that most of
the study areas with a large standard deviation of the building volume are also densely
packed with buildings providing a poor ventilation environment, which is not conducive
to pollution diffusion.

The frontal area index and urban canopy resistance are indicators that characterize the
ventilation condition. The former is simpler and more intuitive in reflecting the ventilation
effect of the city, while the latter adds building morphological parameters and the wind
speed on the basis of the former, which comprehensively considers the building morpho-
logical characteristics and the meteorological conditions, and thus can characterize the
friction between the airflow and building in a more comprehensive way.

Street canyons are narrow passages between buildings on either side of a city, and they
impact urban ventilation. When the height of the buildings on both sides of the street is
certain, the smaller the width of the street canyon is, the lower the wind speed perpendicular
to the ground, which can lead to unstable air flow in the canyon. Additionally, phenomena
such as vortices and eddies can appear locally, thus affecting the diffusion of pollutants [25].
Therefore, when the building height is certain, the smaller the average width of the street
canyon is, the higher the PM2.5 concentration.

The spatial congestion rate and average volume ratio of buildings reflect the density
of urban buildings from a three-dimensional perspective; the denser the buildings are in
the built-up area, the smaller the width of street canyons, the worse the canyon ventilation,
and the higher the difficultly of air pollutant diffusion [26]. Therefore, the higher the spatial
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congestion rate and the average building-to-volume ratio in the study area are, the higher
the PM2.5 concentration.

The impervious surface coverage and land use intensity are indicators of the intensity
of urban development. The greater the values of the impervious surface coverage and land
use intensity are, the higher the development intensity in the area, and the presence of
man-made structures, such as buildings, roads, and squares, significantly increases the
roughness of the ground surface, weakening the ventilation conditions of the city, and thus
affecting pollutant diffusion.

The comprehensive porosity is an important indicator used to evaluate internal ven-
tilation in districts and is defined as the presence of passages such as street canyons and
urban transportation arteries that allow for smooth air flows. The higher the comprehensive
porosity is, the better the ventilation conditions and the lower the PM2.5 concentration.
Therefore, a significant negative correlation occurred between the comprehensive porosity
and PM2.5 concentration.

The above statistical analysis results reveal that there are many factors affecting the
dispersion of urban air pollutants. However, no single indicator can effectively reflect
changes in the urban pollutant concentration; therefore, the direct use of bivariate correlation
analysis cannot reveal the most important combinations of the key elements of the impact
mechanism. For this reason, further information mining of these indicators is needed.

4.2. Normality Test Analysis and Principal Component Analysis Results

According to the Kolmogorov-Smirnov (K-S) test results, a total of three indicators,
namely, the degree of land use mixing, ratio of the height to the total floor area, and
uniformity index, did not significantly differ (p > 0.05), suggesting that these three indicators
are normally distributed. In addition, the absolute values of the skewness and kurtosis
coefficients of the building density, composite nonlinear coefficient, average body shape
coefficient, street orientation and building orientation are less than 1. These values are
close to those of the normal distribution and do not require further processing. The original
data for the other 27 indicators were normalized to satisfy the absolute normal distribution
requirement (23 indicators) and nearly normal distribution requirement (12 indicators).

The first six principal components extracted by principal component analysis had
eigenvalues higher than 1, and the variance explained by these six principal components
was 50.293%, 12.690%, 9.547%, 4.554%, 4.114%, and 3.275%, with a cumulative variance
explained rate of 84.473%. Usually, principal components with a cumulative variance
explained rate of 80% can basically represent the amount of information covered by the
original data. Thus, the indicators with a high contribution rate among the first six principal
components were selected for subsequent decision tree analysis. As indicated in Table 3, the
common degree value corresponding to all the indicator factors is greater than 0.4, which
indicates that there is a strong correlation between the indicator factors and the principal
components and that the principal components can effectively capture the original informa-
tion. After ensuring that the principal components can capture most of the information on
the indicator factors, we analyzed the correspondence between the principal components
and indicator factors. When the absolute value of the loading coefficient is greater than 0.4,
this suggests that the item exhibits a certain correspondence with the principal components.
The contribution rates of the indicators demonstrated that the land use intensity, average
building volume ratio, urban canopy resistance, and frontal area index have higher loadings
on the first principal component. Regarding the second principal component, the surface
roughness, standard deviation of the building height, and vegetation cover have high
loadings. Regarding the third principal component, the average length-to-height ratio of
the building, average body shape system, and average width-to-height ratio of the building
have high loadings. Regarding the fourth principal component, the building orientation
and street orientation have high loadings. Regarding the fifth principal component, the
ratio of the height to the total floor area has a high loading factor, and regarding the sixth
principal component, the road network density has a high loading factor.
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Table 3. Load factors table for 35 indicator factors.

Indicators
Loading Factor

Commonality
(Communalities)Principal

Component 1
Principal

Component 2
Principal

Component 3
Principal

Component 4
Principal

Component 5
Principal

Component 6

Building density (DEB) 0.842 −0.365 −0.109 0.062 0.075 −0.182 0.897
Average width of street canyons

(AVSW) −0.817 0.222 −0.14 0.09 0.014 −0.135 0.763

Average height-to-width ratio of the
canyon (RASHW) 0.861 0.415 −0.011 −0.105 0.096 0.209 0.977

Direction of the street (DIS) −0.02 0.17 0.237 0.688 0.372 −0.141 0.717
Direction of the building (DIB) 0.051 0.044 −0.045 0.745 0.265 0.364 0.764

Compactness index (C) 0.878 0.089 −0.123 0.069 −0.027 −0.196 0.838
Degree of land use mix (SLU) −0.361 0.609 0.378 −0.161 0.094 −0.204 0.72

Land use intensity (LU) 0.918 0.028 0.063 0.164 −0.019 −0.149 0.896
Density of the road network (DER) 0.097 0.706 0.267 0.018 0.093 −0.413 0.759
Impervious surface coverage (ISC) 0.874 −0.167 −0.154 0.192 −0.083 0.005 0.86

Average height of buildings (AVHA) 0.784 0.537 0.035 −0.095 0.108 0.177 0.957
Average height of buildings (AVHB) 0.792 0.535 0.022 −0.099 0.104 0.192 0.972

Average building volume (AVV) 0.852 0.111 0.328 −0.133 0.23 0.091 0.916
Average building aspect ratio (RABWH) 0.366 −0.229 0.812 −0.097 0.122 −0.143 0.891
Ratio of the average building length to

the height (RABLH) 0.462 −0.302 0.764 −0.059 0.121 −0.109 0.919

Ratio of the height to the total floor
area (RAHFA) 0 0.176 0.446 0.362 −0.685 0.216 0.876

Combined non-linear coefficient (R) −0.466 −0.014 0.251 0.148 0.298 0.141 0.427
Standard deviation of the building

volume (σV) 0.839 0.051 0.192 −0.071 0.066 0.11 0.912

Standard deviation of the building
height (σH) 0.331 0.748 −0.264 0.174 −0.078 −0.094 0.784

Surface roughness height (Z0) 0.312 0.747 −0.254 −0.127 0.11 0.288 0.832
Comprehensive porosity (Po) −0.893 0.309 0.079 −0.029 −0.031 0.13 0.919

Closure (Oc) 0.59 −0.282 0.417 −0.263 0.143 0.39 0.843
Ventilation obstruction ratio (VOB) 0.804 −0.513 −0.079 0.034 0.073 −0.069 0.926

Zero-plane displacement (Zd) 0.852 0.271 −0.145 −0.03 0.115 0.022 0.942
Vegetation cover (VC) −0.52 0.515 0.402 −0.156 0.043 −0.183 0.757

Proportion of water area (WC) −0.862 0.001 0.001 −0.23 0.017 0.253 0.86
Average floor area ratio of buildings

(AVFAR) 0.972 0.066 −0.096 −0.017 0.08 −0.01 0.965

Average body shape coefficient
(AVBSC) 0.012 0.326 0.766 0.126 −0.441 0.168 0.932

Basic evenness index (BEI) −0.662 0.279 −0.263 −0.14 0.103 0.024 0.617
Space congestion rate (SCD) 0.893 −0.26 0.035 −0.076 0.174 0.074 0.908

Frontal area index (FAI) 0.931 0.129 −0.144 −0.029 −0.146 −0.037 0.927
Frontal area density (FAD0to15) 0.678 −0.239 −0.207 −0.053 −0.299 0.071 0.657
Frontal area density (FAD15to60) 0.794 0.327 −0.275 −0.002 −0.148 −0.089 0.843
Frontal area density (FAD0to60) 0.888 0.202 −0.14 −0.005 −0.201 −0.101 0.899
Urban canopy resistance (CF) 0.901 −0.108 0.12 −0.01 −0.219 −0.129 0.902
Zero-plane displacement (Zd) 0.852 0.271 −0.145 −0.03 0.115 0.022 0.942
Surface roughness height (Z0) 0.312 0.747 −0.254 −0.127 0.11 0.288 0.832

Standard deviation of the building
height (σH) 0.331 0.748 −0.264 0.174 −0.078 −0.094 0.784

Land use intensity (LU) 0.918 0.028 0.063 0.164 −0.019 −0.149 0.896
Closure (Oc) 0.59 −0.282 0.417 −0.263 0.143 0.39 0.843

Average height of buildings (AVHA) 0.784 0.537 0.035 −0.095 0.108 0.177 0.957
Compactness index (C) 0.878 0.089 −0.123 0.069 −0.027 −0.196 0.838

Density of the road network (DER) 0.097 0.706 0.267 0.018 0.093 −0.413 0.759
Ratio of the average building length to

the height (RABLH) 0.462 −0.302 0.764 −0.059 0.121 −0.109 0.919

Building density (DEB) 0.842 −0.365 −0.109 0.062 0.075 −0.182 0.897
Ventilation obstruction ratio (VOB) 0.804 −0.513 −0.079 0.034 0.073 −0.069 0.926
Impervious surface coverage (ISC) 0.874 −0.167 −0.154 0.192 −0.083 0.005 0.86

Frontal area density (FAD0to15) 0.678 −0.239 −0.207 −0.053 −0.299 0.071 0.657
Basic evenness index (BEI) −0.662 0.279 −0.263 −0.14 0.103 0.024 0.617

Combined non-linear coefficient (R) −0.466 −0.014 0.251 0.148 0.298 0.141 0.427
Proportion of water area (WC) −0.862 0.001 0.001 −0.23 0.017 0.253 0.86
Direction of the building (DIB) 0.051 0.044 −0.045 0.745 0.265 0.364 0.764

Ratio of the height to the total floor
area (RAHFA) 0 0.176 0.446 0.362 −0.685 0.216 0.876

Direction of the street (DIS) −0.02 0.17 0.237 0.688 0.372 −0.141 0.717
Average body shape coefficient

(AVBSC) 0.012 0.326 0.766 0.126 −0.441 0.168 0.932

Degree of land use mix (SLU) −0.361 0.609 0.378 −0.161 0.094 −0.204 0.72
Average width of street canyons

(AVSW) −0.817 0.222 −0.14 0.09 0.014 −0.135 0.763

Frontal area density (FAD15to60) 0.794 0.327 −0.275 −0.002 −0.148 −0.089 0.843
Frontal area density (FAD0to60) 0.888 0.202 −0.14 −0.005 −0.201 −0.101 0.899

Average floor area ratio of buildings
(AVFAR) 0.972 0.066 −0.096 −0.017 0.08 −0.01 0.965

Urban canopy resistance (CF) 0.901 −0.108 0.12 −0.01 −0.219 −0.129 0.902
Standard deviation of the building

volume (σV) 0.839 0.051 0.192 −0.071 0.066 0.11 0.912
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Table 3. Cont.

Indicators
Loading Factor

Commonality
(Communalities)Principal

Component 1
Principal

Component 2
Principal

Component 3
Principal

Component 4
Principal

Component 5
Principal

Component 6

Average building volume (AVV) 0.852 0.111 0.328 −0.133 0.23 0.091 0.916
Frontal area index (FAI) 0.931 0.129 −0.144 −0.029 −0.146 −0.037 0.927
Vegetation cover (VC) −0.52 0.515 0.402 −0.156 0.043 −0.183 0.757

Average building aspect ratio (RABWH) 0.366 −0.229 0.812 −0.097 0.122 −0.143 0.891
Average height-to-width ratio of the

canyon (RASHW) 0.861 0.415 −0.011 −0.105 0.096 0.209 0.977

Comprehensive porosity (Po) −0.893 0.309 0.079 −0.029 −0.031 0.13 0.919
Space congestion rate (SCD) 0.893 −0.26 0.035 −0.076 0.174 0.074 0.908

Average height of buildings (AVHB) 0.792 0.535 0.022 −0.099 0.104 0.192 0.972

Based on the Spearman rank correlation analysis and principal component analysis re-
sults described above, 20 indicators were ultimately selected for subsequent analysis. First,
indicators with more significant correlations were chosen (compactness index, impervious
surface cover, average width of street canyons, comprehensive porosity, spatial congestion
rate, building density, and closure). Second, indicators with a higher contribution based
on the principal components were selected (first principal component: average building-
to-volume ratio, urban canopy resistance, frontal area index, frontal area density (0–60 m),
proportion of the watershed area, and land use intensity; second principal component:
vegetation cover and average height of buildings (weighted average); third principal com-
ponent: average width-to-height ratio of buildings; fourth principal component: orientation
of buildings and orientation of streets; fifth principal component: height-to-gross floor area
ratio; sixth principal component: road network density). These 20 indicators fully cover
the eight major categories initially classified by the indicator system (i.e., land use and
development, building geometry, street-valley spatial morphology, subsurface roughness,
three-dimensional architectural landscape evaluation indices, building inhomogeneity,
ecological landscape, and ventilation indices), which ensures the comprehensiveness of the
data considered in decision tree analysis.

4.3. Decision Tree Analysis

Based on the CART algorithm model, decision tree modeling was performed with the
above 20 indicators as independent variables and the PM2.5 concentration as the dependent
variable. The decision tree analysis results are shown in Figure 5. The first line of each
node is the name of the attribute used to split the node, i.e., the splitting indicator (X[9] is
the land use intensity, X[1] is the comprehensive porosity, X[16] is the ratio of the height to
the total floor area, X[2] is the urban canopy resistance, X[4] is the vegetation cover, X[7] is
the spatial congestion rate, X[6] is the building density, and X[0] is the average building
plot ratio). The second line is the Gini index, which is a measure for assessing the purity.
The Gini coefficient reflects the probability that two samples are randomly drawn from
the dataset D and the categories are not the same. When using CART decision trees, the
Gini index can help us find the best way to split nodes. The lower the Gini index, the more
homogeneous the samples contained in the nodes and the higher the purity of the nodes.
Therefore, in the construction process of the decision tree, choosing the feature with the
smallest Gini index as the criterion for node splitting can make the sub-nodes constructed
by the decision tree relatively more pure, which improves the accuracy of the prediction.
The label samples denote the number of samples contained in the node. The value indicates
how many samples are contained in the different categories, and the one with the largest
number of samples is the category of the node. In addition, the different categories of
values comprise the six levels of the PM2.5 concentration (from left to right), namely, the
DAQI2, DAQI3, DAQI4, DAQI5, DAQI6, and DAQI7 classes. The decision tree depicted in
Figure 5 was organized to obtain the following classification rules (Table 4). The variables
in the table are as follows: LU is the land use intensity, CF is the urban canopy resistance,
VC is the vegetation cover, SCD is the spatial congestion rate, Po is the comprehensive
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porosity, RAHFA is the ratio of the height to the total floor area, DEB is the building density,
and AVFAR is the average floor area ratio of buildings.
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Table 4. Classification rules for PM2.5 exposure levels and combinations of dominant morphologi-
cal factors.

Number Rules

1 LU ≤ 285.5ΛCF ≤ 0.053 → DAQI3(21)
2 LU ≤ 285.5ΛCF > 0.053ΛVC ≤ 0.282ΛSCD ≤ 6.525% → DAQI2(3)
3 LU ≤ 285.5ΛCF > 0.053ΛVC ≤ 0.282ΛSCD > 6.525%ΛSCD ≤ 29.985% → DAQI3(7)
4 LU ≤ 285.5ΛCF > 0.053ΛVC ≤ 0.282ΛSCD > 29.985% → DAQI4(7)
5 LU ≤ 285.5ΛCF > 0.053ΛVC > 0.282 → DAQI2(4)
6 LU > 285.5ΛPo ≤ 0.042 → DAQI7(4)
7 LU > 285.5ΛPo > 0.042ΛRAHFA ≤ 0.008 → DAQI5(4)
8 LU > 285.5ΛPo > 0.042ΛRAHFA > 0.008ΛLU ≤ 297.5ΛDEB ≤ 0.66 → DAQI4(10)
9 LU > 285.5ΛPo > 0.042ΛRAHFA > 0.008ΛLU ≤ 297.5ΛDEB > 0.66 → DAQI5(1)
10 LU > 285.5ΛPo > 0.042ΛRAHFA > 0.008ΛLU > 297.5ΛAVFAR ≤ 2.745ΛPo ≤ 0.085 → DAQI5(1)
11 LU > 285.5ΛPo > 0.042ΛRAHFA > 0.008ΛLU > 297.5ΛAVFAR ≤ 2.745ΛPo > 0.085 → DAQI2(2)
12 LU > 285.5ΛPo > 0.042ΛRAHFA > 0.008ΛLU > 297.5ΛAVFAR > 2.745 → DAQI6(2)

Table 4 lists the PM2.5 concentration class distributions and their classification rules
among the influencing factors. Among them, Classification rule 1 indicates that when the
land use intensity of the neighborhood and block is not higher than 285.5 and the urban
canopy resistance is not higher than 0.053, the PM2.5 concentration varies between 24 and
35 µg/m3, and DAQI3 (21) indicates that 21 samples satisfy the DAQI3 class classification
conditions. Rule 2 states that when the land use intensity of the neighborhood and block is
not higher than 285.5, the urban canopy resistance is higher than 0.053, the vegetation cover
is not higher than 0.282, and the spatial congestion rate is not higher than 6.525%. Similarly,
the PM2.5 concentration in the neighborhood and block ranges from 12 to 23 µg/m3. Rule 3
states that when the land use intensity is not greater than 285.5, the urban canopy resistance
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is greater than 0.053, the vegetation cover is not greater than 0.282, the spatial congestion
rate is greater than 6.525% but less than 29.985%, and the PM2.5 concentration ranges from
24 to 35 µg/m3. Rule 4 states that when the land use intensity is not higher than 285.5,
the urban canopy resistance is higher than 0.053, the vegetation cover is not higher than
0.282, and the spatial congestion rate is higher than 29.985%, the PM2.5 concentration varies
between 36 and 41 µg/m3. Rules 2, 3, and 4 reveal that the spatial congestion rate is closely
related to the distribution of the PM2.5 concentration, i.e., under certain conditions, the
higher the spatial congestion rate is, the higher the PM2.5 concentration. Rule 5 states that
when the land use intensity is not higher than 285.5, the urban canopy resistance is higher
than 0.053, and the vegetation cover is higher than 0.282, the PM2.5 concentration ranges
from 12 to 23 µg/m3. According to rules 1 and 5, when the urban canopy resistance is
greater than the critical value of 0.053, the vegetation cover is the key indicator, i.e., under
certain conditions, the higher the vegetation cover is, the lower the PM2.5 concentration.
Rules 2, 3, 4, and 5 indicate that when the vegetation cover is less than the critical value
of 0.282, the spatial congestion rate becomes an important judgement indicator. Rule 6
states that when the land use intensity is greater than 285.5 and the comprehensive porosity
is not greater than 0.042, the PM2.5 concentration ranges from 54 to 58 µg/m3. Rule 7
states that when the land use intensity is greater than 285.5, the comprehensive porosity
is greater than 0.042, and the height-to-total floor area ratio is not greater than 0.008, the
PM2.5 concentration varies between 42 and 47 µg/m3. Rules 6 and 7 reveal that when the
comprehensive porosity is higher than the critical value of 0.042, the ratio of the height to
the total floor area becomes a key indicator. As determined by rules 7, 8, and 9, when the
land use intensity varies between 285.5 and 297.5 and the ratio of the height to the total floor
area is greater than the critical value of 0.008, the building density is directly related to the
distribution of the PM2.5 concentration in the neighborhood and block, i.e., under certain
conditions, the PM2.5 concentration increases with increasing building density. Rules 7 and
12 demonstrate that when the land use intensity is higher than 297.5 and the ratio of the
height to the total floor area is higher than the critical value of 0.008, the average floor area
ratio of the building becomes an important indicator. According to rules 10 and 11, when
the average building volume ratio is not greater than 2.745, the comprehensive porosity
exhibits a close relationship with the PM2.5 concentration, i.e., under certain conditions, the
PM2.5 concentration decreases with increasing comprehensive porosity. Since the PM2.5
concentration in the built-up areas of Shanghai mainly varies between 20 and 58 µg/m3, the
PM2.5 concentration data of the sample areas were categorized into six levels, i.e., DAQI2
(12–23 µg/m3), DAQI3 (24–35 µg/m3), DAQI4 (36–41 µg/m3), DAQI5 (42–41 µg/m3),
DAQI5 (42–47 µg/m3), DAQI6 (48–53 µg/m3), and DAQI7 (54–58 µg/m3). Therefore,
DAQI1 was not included in the above decision tree classification rule.

The dominant factors extracted by the decision tree CART algorithm are the land use
intensity, urban canopy resistance, vegetation cover, spatial congestion rate, comprehensive
porosity, height-to-GFA ratio, building density, and average building volume ratio, covering
seven building aspects, including building geometry, ecological landscape distribution,
subsurface roughness, street-valley spatial morphology, three-dimensional architectural
landscape evaluation, land use and development intensity, and ventilation evaluation index
aspects. The feature weighting diagram in Figure 6 shows the importance of these eight
indicators to the model. The weight of the land use intensity is 38.58%, the weight of the
comprehensive porosity is 13.76%, the weight of the urban canopy resistance is 13.22%,
and the weight of the vegetation cover is 10.40%. Moreover, the weights of the ratio of the
height to the total floor area, spatial congestion rate, average building volume ratio, and
building density are 8.91%, 6.48%, 4.38%, and 4.26%, respectively. Specifically, the weight
of the land use intensity is significantly greater than that of the other indicators, indicating
that this indicator plays a key role in model construction.
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According to the decision tree classification rules (Table 4) and the feature weight
diagram (Figure 6), the weight of the land use intensity is significantly higher than that of
the other indicators, indicating that it is the most critical indicator. The results of correlation
analysis with the PM2.5 concentration (Table 2) also showed that the land use intensity and
PM2.5 concentration were significantly positively correlated, i.e., within a certain range, the
concentration of urban air pollutants increased with increasing land use intensity. The land
use intensity is an indicator for evaluating the degree of land use and development. The
higher the land use intensity is, the higher the degree of urbanization. An increase in the
hard surface area in cities causes the gradual erosion of bare land and land with vegetation
cover, increasing the likelihood that air pollutants will stay and accumulate in the air, thus
increasing the concentration of air pollutants in cities.

When the land use intensity is greater than the critical value of 285.5, the comprehen-
sive porosity becomes the secondary judgement criterion, and the comprehensive porosity
is an index that characterizes the roughness of the urban subsurface. The roughness of the
urban subsurface mainly includes the height and unevenness of various man-made and
natural objects, such as buildings, roads, squares, and green belts. These uneven surfaces
can affect the diffusion and deposition processes of atmospheric pollutants in cities, thus
affecting the urban air quality. In addition, the comprehensive porosity is an indicator for
evaluating urban spatial ventilation. The higher the porosity of the urban canopy is, the
more developed the urban ventilation channels, including street canyons and traffic vessels,
thus contributing to air flow and promoting the diffusion and transport of air pollutants.

The third judgement criterion is the urban canopy resistance, which is an indicator
of the effectiveness of urban ventilation. A higher urban canopy resistance indicates that
city ventilation is poorer, which is not conducive to air pollutant diffusion, and the PM2.5
concentration is higher.

When the urban canopy resistance is higher than the critical value of 0.053, the vegeta-
tion cover becomes the fourth judgement indicator. According to the correlation analysis
results in Table 2, the vegetation cover is significantly negatively correlated with the PM2.5
concentration. Notably, under certain conditions, the higher the vegetation coverage is,
the lower the PM2.5 concentration. This mainly occurs because within a certain area, the
higher the vegetation coverage is, the sparser the distribution of buildings, and the obstruc-
tion of air flow by the under-cushion surface is reduced, which is conducive to pollutant
diffusion [27]. In addition, according to relevant studies [28], plant adsorption plays an
important role in reducing atmospheric particulate matter pollution and can effectively
improve the air quality.

The fifth criterion is the ratio of the height to the total floor area, which is an indicator
of the building geometry. Different building forms exert different effects on pollutant
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dispersion. This occurs because the building shape affects the surrounding air flow, which
in turn affects the dispersion of pollutants.

The sixth criterion is the spatial congestion rate, which usually suggests that the denser
the urban space is, the worse the air quality. This occurs because a higher spatial congestion
rate at street-level indicates a larger population per unit area, which is associated with more
human activities and traffic, and thus more air pollutants. In addition, dense buildings and
narrow streets can affect the ventilation conditions, which in turn affects the dispersion of
air pollutants. For example, in a poorly ventilated closed space, air pollutants are difficult
to remove and thus continuously accumulate, leading to air quality deterioration. However,
a well-ventilated open space facilitates pollutant diffusion and dilution and can reduce the
concentration of air pollutants.

The seventh criterion is the average building floor area ratio. Similar to the previous
analysis, the higher the average building floor area ratio, the more detrimental this is to
the air flow, resulting in a large amount of atmospheric particulate matter accumulating in
street canyons and contributing to higher PM2.5 concentrations.

The building density is the last criterion, and the general trend is that the smaller the
width of the street canyon, the less conducive this is to pollutant dispersion. This occurs
because high-density buildings affect air circulation, resulting in atmospheric pollutants
not being effectively diffused, thus creating localized areas of pollution. In addition, dense
building complexes increase the traffic flow and population density, which in turn increase
pollutant emissions. In terms of meteorological conditions, high-density cities usually
experience a significant heat island effect, which can lead to higher temperatures and lower
wind speeds in the city, thus affecting pollutant diffusion [29].

According to the final model test results (Figure 7), the final model obtained an
accuracy of 86.67% on the test set, a precision (combined) of 87.14%, a recall rate (combined)
of 86.67%, and an F1 score (combined) of 0.87, which indicates that the model is suitable to
achieve the purpose of this study.
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5. Discussion
5.1. Quantification and Thresholds for the Urban Morphological Indicators at Street-Level

According to related research [30], from an architectural perspective, the urban mor-
phology impacts the urban canopy microclimate in two main aspects, namely, the urban
street space and the morphology of the urban texture, both of which directly affect the
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urban canopy resistance and comprehensive porosity. The expression of the urban texture
can be divided into two levels: the first level comprises the familiar plot control indicators:
building density, building height, building volume, building space congestion rate, and av-
erage building volume ratio, which reflect the volume and total capacity of the texture; the
second level comprises the building group dispersion [31], neighborhood integration [32],
body shape coefficient, and building orientation indicators of the plot buildings, which
are indicators of the texture form. These indicators reflect the geometric structural form of
the morphology of texture. The combination of these two groups of indicators captures
the morphology of the urban fabric. The ratio of the height to the total floor area, building
density, spatial congestion rate, and average building volume ratio can be calculated using
the values of the building geometry parameters such as the building height, building
footprint and volume. The results of the two indicators, i.e., the urban canopy resistance
and comprehensive porosity can be obtained according to the street canyon width, and the
length, width, height, orientation and bulk coefficients of buildings.

Based on the principle of quantifying the above indicators and combined with statisti-
cal analysis and data mining methods, thresholds were obtained for the eight indicators,
namely, land use intensity, urban canopy resistance, vegetation cover, spatial congestion
rate, comprehensive porosity, height-to-total floor area ratio, building density, and average
building volume ratio, which could provide a scientific theoretical basis for street-level
refinement planning. Specifically, the land use intensity should not exceed 285.5, the urban
canopy resistance should be controlled within 0.053, the vegetation cover should not be
less than 28.2%, the spatial congestion rate should be controlled within 6.525%, the compre-
hensive porosity should not be less than 0.085, the height-to-total floor area ratio should be
controlled at approximately 0.008, the building density should be controlled within 66%,
and the average building volume ratio should be controlled within 2.745.

5.2. Urban Spatial Optimization Strategies at Street-Level

According to previous studies [33], the layout of urban forms exerts a significant
impact on the dispersion and distribution of air pollutants. These effects can be mitigated
in three ways: source control, diversion, and convergence [34]. Source control involves
controlling pollution by adjusting the land use types and optimizing the layout of road nets.
Diversion promotes the diffusion of air pollutants by optimizing the urban morphology
and improving the ventilation environment. Convergence promotes the deposition and
convergence of particulate matter by utilizing atmospheric particulate matter adsorption
and interception by urban green vegetation. Jointly, controlling pollution sources, guiding
particulate matter flow and diffusion, and eliminating pollutants and adsorbing pollutants
can effectively mitigate air pollution problems in urban districts and promote the develop-
ment of healthy urban environments. These approaches can be important references for
urban planners and policy-makers when formulating urban planning and environmental
protection policies.

The preceding paragraph identified eight key combinations of dominant factors (in-
cluding land use intensity, urban canopy resistance, vegetation cover, spatial congestion
rate, integrated porosity, height-to-gross floor area ratio, building density, and average
building floor area ratio) that can be considered to improve the ventilation and help control
urban air pollution conditions through decision tree analysis. These factors include build-
ing geometry, street-valley spatial morphology, subsurface roughness, three-dimensional
architectural landscape morphology, ecological landscape distribution, land use and devel-
opment intensity, and ventilation evaluation indices. In this paper, calculation results for
these eight indicators and their thresholds were introduced, and a three-pronged approach
involving source control, diversion and convergence was proposed for determining the
effect of urban morphology elements on atmospheric particulate matter. A spatial opti-
mization strategy at street-level was developed (Table 5). The whole set of optimization
strategies is based on the intrinsic mechanism of the effect of the urban morphology layout
on the distribution and diffusion of atmospheric particulate matter, which can provide the-
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oretical references for specific morphology planning and design of green spaces, buildings,
streets, etc.

Table 5. Urban optimization strategies at street-level.

Strategies Spatial Elements Indicators and Planning Recommendations

Source control City center Land use intensity: Control the intensity of construction and development; the intensity
should not exceed 285.5.
Composition: Optimize the layout of land use and the spatial combination pattern of
various types of land use, open up important urban ventilation corridors, introduce
natural wind into all corners of the districts and neighborhoods, and enhance the
ventilation and air exchange capacity.
Capability: Guide the development of a moderate mix of land functions.

Roads Density of the road network: Optimize the road network in the city and appropriately
increase the density of the road network, which should not be less than 1%.
Traffic pattern: Encourage public transportation and green travel.
Road connectivity: Increase the connectivity between urban roads, reduce the destination
detour distance, divert and relieve traffic congestion, improve the traffic efficiency, and
realize energy saving and emission reduction.

Diversion Building Building density: Control the building density, which should not exceed 66%.
Average floor area ratio of buildings: avoid high-rise and large-scale buildings and
maintain the plot ratio within 2.745.
Ratio of the height to the total floor area: Control the construction of large-volume single
buildings; the ratio of the height to the total floor area should be controlled at
approximately 0.008.
Spatial congestion rate: Appropriate decentralization of buildings and use of
differentiated layouts, with a target less than 6.252%.
Urban canopy resistance: Adopt a small-volume, decentralized building layout and rows
and columns of arranged building groups to increase the ventilation gap; control the
frontal area ratio by reducing the width and height of buildings along the upwind
direction, with the index controlled within 0.053.

Street canyon
Comprehensive porosity: Appropriately control the height and density of buildings on
both sides of the street, optimize the spatial layout of streets, and appropriately increase
the width of street canyons; the comprehensive porosity should be greater than 0.085.

Convergence Green space Vegetation cover: Appropriately increase green coverage, which should be no less than
28.2%.
Greenfield connectivity: A large number of wedge-shaped green spaces forming a grid
structure should be employed to improve the connectivity between green spaces.
Green space uniformity: Green spaces should be evenly distributed.

6. Conclusions

Statistical and data mining methods were used to analyze the quantitative relationship
between the urban morphological structure and the PM2.5 concentration. Land use intensity,
urban canopy resistance, vegetation cover, spatial congestion rate, integrated porosity,
height-to-gross floor area ratio, building density, and average building volume ratio were
identified as the key indicators for improving the urban ventilation conditions. These
factors are conducive to the control of air pollution and include land use and development
intensity, building geometry, street-valley spatial morphology, subsurface roughness, three-
dimensional architectural landscape morphology, ecological landscape distribution and
ventilation potential. By combining an in-depth examination of the intrinsic mechanism of
the influence of the urban morphology on the diffusion and transport of air pollutants with
the information mining results for the combinations of dominant morphological factors, a
street-level spatial optimization strategy was proposed to improve the urban air quality
in terms of source control, diversion and convergence, which could provide a theoretical
basis for improving the urban microclimate. Parameters such as air temperature, surface
temperature, humidity, wind direction, and wind speed will be introduced in future studies
to explore how to integrate urban spatial planning and design with urban ecosystems to
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enhance the synergy between urban spatial planning and urban ecosystems, so that the
whole set of optimization strategies not only offers new dimensions of urban planning and
design, but also contributes to the improvement in urban microclimate environments, such
as the alleviation of urban heat island effect and air pollution, thereby providing urban
residents with liveable and comfortable living environments.
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