
Citation: Kebalepile, M.M.; Dzikiti,

L.N.; Voyi, K. Using Diverse Data

Sources to Impute Missing Air Quality

Data Collected in a Resource-Limited

Setting. Atmosphere 2024, 15, 303.

https://doi.org/10.3390/

atmos15030303

Academic Editor: Stephan

Havemann

Received: 24 November 2023

Revised: 5 February 2024

Accepted: 27 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Using Diverse Data Sources to Impute Missing Air Quality Data
Collected in a Resource-Limited Setting
Moses Mogakolodi Kebalepile 1,* , Loveness Nyaradzo Dzikiti 2,3 and Kuku Voyi 2

1 School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2050, South Africa
2 School of Health Systems and Public Health, University of Pretoria, Pretoria 0007, South Africa;

loveness.dzikiti@up.ac.za (L.N.D.); kuku.voyi@up.ac.za (K.V.)
3 Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
* Correspondence: moses.kebalepile@wits.ac.za; Tel.: +27-11-717-2990

Abstract: The sustainable operation of ambient air quality monitoring stations in developing countries
is not always possible. Intermittent failures and breakdowns at air quality monitoring stations often
affect the continuous measurement of data as required. These failures and breakdowns result in
missing data. This study aimed to impute NO2, SO2, O3, and PM 10 to produce complete data sets
of daily average exposures from 2010 to 2017. Models were built for (a) an individual pollutant at a
monitoring station, (b) a combined model for the same pollutant from different stations, and (c) a
data set with all the pollutants from all the monitoring stations. This study sought to evaluate the
efficacy of the Multiple Imputation by Chain Equations (MICE) algorithm in successfully imputing
air quality data that are missing at random. The application of classification and regression trees
(CART) analysis using the MICE package in the R statistical programming language was compared
with the predictive mean matching (PMM) method. The CART method performed better, with the
pooled R-squared statistics of the imputed data ranging from 0.3 to 0.7, compared to a range of 0.02
to 0.25 for PMM. The MICE algorithm successfully resolved the incompleteness of the data. It was
concluded that the CART method produced better reliable data than the PMM method. However, in
this study, the pooled R2 values were accurate for NO2, but not so much for other pollutants.

Keywords: MICE imputation; air quality; missing data; classification and regression trees

1. Introduction

The World Health Organization (WHO) documents that healthier environments, such
as those with clean air, have the potential to reduce the global burden of disease by nearly
a quarter [1,2]. Therefore, the organization has recommendations and action plans pre-
scribed for the mitigation of environmental pollutants and directives for the maintenance
of healthier environments [3–5]. Following the statutes, recommendations, and guidelines
of the WHO, South Africa has adopted a strategic national action plan prepared to ensure
healthier environments. Concerning air quality, the National Framework for Air Quality
Management in the Republic of South Africa requires that air quality be monitored using
acceptable methods and that compliance with national standards is mandatory [6]. How-
ever, the sustainable operation of ambient air quality monitoring stations in South Africa
has not always been possible. Intermittent failures and breakdowns at the monitoring
stations have often affected the continuous measurement of data as required. These failures
in the running of monitoring stations result in missing data, and this incompleteness of
data can present limitations and prevent public health research that studies environmental
health, environmental epidemiology, and environmental toxicology. This study seeks to
evaluate the efficacy of a data imputation approach using two methods (CART and PMM)
applied using the MICE package.

As an outcome of the requirements of the South African National Environmental Man-
agement: Air Quality Act, of 2004 (Act No. 39 of 2004), the air quality management planning
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manual requires that all departments mandated to develop environmental implementation
plans include an air quality management plan (AQMP).

However, the primary data challenge experienced with the study data was that many
stations had experienced periods of no data collection due to breakdowns, lack of station
maintenance, and other technical problems. The missing data patterns were different for
different monitoring stations, as the causes were not always the same.

It was established, through interaction with data custodians, that all missing data were
missing completely at random. The shutdowns of the monitoring stations were unplanned,
unscheduled, and therefore occurred at random. In pre-processing, when computing daily
averages, only records that had 10 min data recordings of a full day were used. This choice
resulted in additional incompleteness of the data.

Figures 1–4 demonstrate that, although all stations had missing data, the patterns
of missing data differed. It was possible to have data at one monitoring station for a
specific period, while data for the same pollutant were missing at another station. This
data overlap provided data that, if found to be adequately correlated, could be used for the
data imputation process.
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The patterns of incompleteness in the data were different for different monitoring
stations. The availability of specific pollutant data was also different between monitoring
stations. However, there were patterns of data availability that overlapped.

Figure 1 shows the overlapping of NO2 data at nine monitoring stations. NO2 data
were completely missing at all stations for the period from 2015 to the first quarter of 2016.
Figure 2 shows the overlapping of SO2 data at eight monitoring stations. A pattern of data
incompleteness almost similar to that of NO2 was observed.
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Figure 3 shows the overlapping of PM10 data at eight monitoring stations. An almost
similar pattern of total data incompleteness was observed to that of NO2 and SO2.

Figure 4 shows the overlapping of O3 data at eight monitoring stations. An almost
similar pattern of total data incompleteness was observed to that of NO2 and SO2.

As shown in Figures 1–4, using all other stations’ available data, it was observed
that the data were available for most of the study period. Therefore, the study tested
whether data available at some monitoring stations could be useful for data imputation
to complete the incompleteness of data at other stations and within stations. Although
monitoring stations might have had the equipment to measure some pollutants, the stations
did not always measure the said pollutants. Furthermore, some stations did not have the
equipment to measure all the studied pollutants. For example, in the current study period,
Ekandustria did not monitor PM10 and O3, and Newtown did not measure SO2.

The idea of using observed data to estimate missing data has been used before to
varying degrees of success in environmental epidemiology and other fields of study. In 2014,
a study that sought to establish new insights into handling missing data in environmental
epidemiological studies concluded that although no single data imputation method may
be the absolute best, when using single imputation methods is found to be limited, it is
often possible to achieve a satisfactory outcome if joint modeling approaches are used [7].
The study concluded that the latter may even be possible and more efficient when large
amounts of data are missing. This study examined incomplete data of varying degrees,
that is, 50% missing data up to 95% missing data [7]. A case study in Chile on the plausible
use of imputation methods to reconstruct missing data sets from air quality monitoring
stations reported good performance in terms of completeness, errors, and bias, even when
challenged against the validation sets [8].

The multiple imputation method in the current study included variables with missing
data, particularly where correlations were demonstrated. This inclusion of variables with
missing data has been reported to be beneficial in two ways: (a) it reduces bias and makes
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the assumption of missing at random more plausible, and (b) adding the variables shown
to have missing data reduces the standard errors of the estimates [9].

There are three types of missing data. Data may be (1) completely missing at random
(MCAR), which implies that data were missing independently of both observed and missing
data. In this type of missing data, the observations with missing values are a random subset
of all the other observations; (2) missing at random (MAR), where data are generally
missing based on observed data. In this type of missing data, the missing values can be
accounted for using variables with available values. This ability to account for the missing
values is due to the fact that the missing values are not random and follow a pattern; and
(3) not missing at random (MNAR), which represents data missing in a variable of interest
in a pattern, and can be by design [10].

In MCAR the pattern of missing values is totally random. It does not depend on the
value of the variable itself, and it also does not depend on any other variable. In this regard,
concluding that data are missing completely at random may involve making many strong
assumptions. An example would be to conclude that ambient air quality data were missing
because the monitoring equipment malfunctioned at that specific data point.

In the current study, it was assumed that the data were completely missing at ran-
dom based on reports from air quality technicians. This conjecture was tested using the
md.pattern function in the R software’s (Version 3.16.0) MICE package. The pattern was
found to be completely random.

The most common method for dealing with missing data is to use only complete
observations or to drop observations when there are missing data. This method is easy
to implement, but where data are limited, it may significantly reduce the power of the
study. Also, valuable insights can be lost by dropping missing data. However, over the
years, other methods for dealing with missing data have been developed, tested, and
validated. The deletion of observations with missing data is a simple imputation method.
This simple imputation method generally performs a single value imputation. The most
common method would be the mean imputation, where the mean of the variable replaces
the missing value. In longitudinal studies, the previous value can be carried forward [10].

As discussed in Ref. [7], simple imputation may present limitations, in which case
joint modelling approach methods may be required. This alternative approach has led to
the development of more modern and sophisticated methods for dealing with missing data.
These methods depend on the type of incomplete data and the patterns of incomplete data.
The current study used MICE, applying two methods: (1) a classification and regression
trees method, and (2) the predictive mean matching method.

The MICE imputation method follows an iterative process that goes through four
primary steps. In the first step, a simple mean imputation is performed for every missing
value, and it functions as a placeholder. In the second step, the placeholder is then iteratively
set back to miss. In the third step, an appropriate regression is performed between observed
values of the missing variable against another variable, and the missing value is estimated
in the fourth step using a regression model [10]. In the CART method, the regression
technique uses decision tree regression to estimate the missing value. This method utilizes
the Gini impurity and entropy to determine the most potent predictors to estimate the
mean as the replacement value, where there is a missing value [10]. The alternative would
be the predictive mean approach in PMM, where the missing values are replaced by the
mean. In contrast to simple mean imputation, in multiple imputation PMM allows for
multiple variable imputations simultaneously, using the four described steps [10]. This
multiple imputation approach generates a k number of values for a single missing datum
(where k is a user-defined number, usually set to 3–10) [10].

2. Materials and Methods

The current study used ambient air quality data from the cities of Johannesburg
and Tshwane. The study period was from 2010 to 2017. Data were obtained from the
South African Air Quality Information System (SAAQIS), developed by the Department
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of Environmental Affairs (DoEA). SAAQIS is the data custodian of the DoEA. The air
quality data collected were nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and
particulate matter less than 10 microns (PM10). Nitric oxide (NO) and carbon monoxide
(CO) were other pollutants measured by the monitoring station in the study area. However,
the data were not always available and not all the monitoring stations measured NO and
CO. Therefore, although the two pollutants are also very important urban pollutants, they
were not included in the current study. Figure 5 shows the monitoring stations used in the
current study.
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Figure 5. Air quality monitoring stations in the cities of Johannesburg and Tshwane.

The names of the monitoring stations and cities are abbreviated in the figures. The
Boding station is abbreviated BG, the Buccleuch station is abbreviated BH, the Booysens
station is abbreviated BS, the Olievenhoutbosch station is abbreviated OH, the Mamelodi
station is abbreviated MI, the Rosslyn station is abbreviated RN, the Ekandustria station is
abbreviated EA, the Newtown station is abbreviated NN, and the Tshwane West station is
abbreviated PT. Pta means Pretoria, also known as Tshwane. Jhb means Johannesburg.

Data were shared as hourly averages during the study period, although they were
recorded at a finer resolution. Sets of monthly averaged data were also received. Data
recorded in parts per billion (ppb) and parts per million (ppm) units were converted to SI
units, in micrograms per cubic liter (µg/m3).

The pre-processing and cleaning of the data included testing for outliers (using box
and whisker plots), checking data skewness (applying the Shapiro–Wilk test), and testing
for any autocorrelations using the variable inflation factor (VIF) method. It is important to
test the normality of the data to establish if the log transformation and exponentiation are
necessary steps. Extreme values that represented known incidents of equipment calibration
were removed. No other assumptions, such as noise, were made about extreme values in
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the data. It was assumed that these points might have represented actual high exposure
(“novelty”) [11].

After removing obvious outliers (for example, an ambient temperature of 100 ◦C) and
converting the recorded parameters to SI units, the date format was changed, and daily
average exposures were computed. Scatter plots were used to establish any patterns in
the data. This exploration demonstrated the seasonality of the data and further assisted
in inspecting the patterns of incompleteness in the data visually. Figure 6 reflects the data
process used in the study. In Step 1, data were received from the DoEA. Data were evaluated
for incompleteness after all data pre-processing, as discussed. Only monitoring stations
with data incompleteness not more than 80% were included in the analysis. Therefore,
monitoring stations such as Delta Park and Alexandra were excluded. In Step 2, correlations
within and between data from different monitoring stations and the ECMWF sourced data
were tested. Once correlations were established, the resultant imputation predictor matrices
were developed. These predictor matrices were fed into a CART or PMM MICE imputation
algorithm, in statistical software R (Version 4.2.2 (2022-10-31 ucrt)).
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Figure 6. A flow diagram of the study data process.

Before imputing values, satellite data from the European Centre for Medium Range
Weather Forecasts (ECMWF) were downloaded for the two study areas. The downloaded
ECMWF data parameters included (1) temperature 2 m above the surface (T2m), (2) boundary
layer height (blh), (3) wind speed (ws), (4) total precipitation (tp), and (5) wind direction (wd).

ECMWF utilizes an atmospheric model and data assimilation system which is called
the Integrated Forecasting System (IFS) [12]. The structure of the IFS algorithm processes
the data in a cyclic approach broadly represented by two computational processes: (a) grid
point computations and (b) spectral calculations [12]. The methodology has been adequately
published in scientific journals and has been revised and iterated over the years [13].
Forecasting requires that the data be fed into a numerical weather estimation (NWP)
model [13]. ECMWF has various data processes (e.g., forecasting and reanalysis) and
supports member states with varying capacities of weather forecasting, including the
estimation of adverse weather incidents. The aspect of ECMWF data used in the current
study related to the phenomenon of data reanalysis as developed, tested, and validated by
ECMWF [13]. ECMWF provides data on current forecasts, and reanalyzes climate data sets.
These data sets are available on the web, in point-to-point dissemination, in data servers,
and in broadcasting. Surface reanalysis data sets from 1 January 2010 to 31 December 2017
were used. The data download followed a three-step approach every six hours starting
at midnight.
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The current study used MICE to impute the missing data. The MICE package uses
predictive correlation matrices to select variables that can be used to estimate missing
values in other variables. Therefore, to establish initial predictor matrices, correlations
were performed between complete data from the ECMWF and air quality data from the
monitoring stations. Correlations of 0.2 and less led to the elimination of a predictor from
the predictor matrix. Equally, an anticorrelation led to the exclusion of the predictor variable
from the predictor matrix. Various regression or classification techniques can be used to
perform MICE, but classification and regression trees (CART) analysis and predictive mean
matching methods were used in the current study.

CART was chosen because the algorithm can keep the range of estimated values in
a positive range between 0 and the observed maximum value. PMM typically works by
selecting a data point from the observed data that has an estimated value close to the
estimated value of the missing sample [14]. In certain disciplines of research, constraining
data within a specific range may produce an unwanted bias. In such research, multiple
imputations are allowed and are believed to achieve better processing estimations when
values outside the range are allowed [14].

3. Results

The results are here discussed, initially focusing on the data before the imputations
were performed, followed by the results after the imputations. Air quality data from the
local monitoring stations were compared with the ECMWF reanalyzed data and correlated
to identify relations that were useful for multiple imputations.

3.1. Correlation Studies

Within air quality monitoring stations, correlations between parameters were tested.
Correlations were further tested between monitoring stations and further using ECMWF
data. Tables 1–3 show the correlations of NO2, SO2, O3, and PM10, (a) with other pollu-
tants within a specific station, (b) with the same pollutant at another station, and (c) the
correlations of these pollutants with the ECMWF data.

Table 1. The predictor matrices of NO2, SO2, O3, and PM10 in the air quality data of the Bodibeng,
Buccleuch, and Booysens stations.

NO2 SO2 PM10 O3

Bodibeng

Within
station

NO (r = 0.75) PM10 (r = 0.42) Humidity (r = −0.51) Wind speed (r = 0.34)

CO (r = 0.58) NO (r = 0.25) NO2 (r = 0.61) Temperature (r = 0.32)

PM10 (r = 0.61) NO (r = 0.70)

Between
stations

Tshwane west NO2
(r = 0.62) Ekandustria SO2 (r = 0.63) Tshwane west PM10 (r = 0.72) Buccleuch O3 (r = 0.45)

Rosslyn NO2 (r = 0.47) Rosslyn SO2 (r = 0.53) Rosslyn PM10 (r = 0.50) Booysens O3 (r = 0.54)

Olievenhoutbosch NO2
(r = 0.37) Mamelodi SO2 (r = 0.25) Mamelodi PM10 (r = 0.16) Mamelodi O3 (r = 0.64)

Newtown NO2 (r = 0.53) Booysens SO2 (r = 0.43) Booysens PM10 (r = 0.63) Rosslyn O3 (r = 0.64)

Booysens NO2 (r = 0.44) Tshwane west SO2 (r = 0.34) Olievenhoutbosch PM10
(r = 0.59)

Olievenhoutbosch O3
(r = 0.64)

Mamelodi NO2 (r = 0.39) Olievenhoutbosch SO2
(r = 0.33) Buccleuch PM10 (r = 0.56) Newtown O3 (r = 0.13)

Buccleuch NO2 (r = −0.40) Buccleuch SO2 (r = −0.13) Newtown PM10 (r = 0.56)

Ekandustria NO2 (r = 0.12)

ECMWF

Tshwane wind direction
(r = −0.27)

Tshwane total precipitation
(r = −0.15)

Tshwane total precipitation
(r = −0.22)

Tshwane temperature @2m
(r = 0.31)

Tshwane temperature @2m
(r = −0.12)

Tshwane temperature @2m
(r = −0.22) Tshwane blh (r = 0.25)

Tshwane total precipitation
(r = −0.16)
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Table 1. Cont.

NO2 SO2 PM10 O3

Buccleuch

Within
station

NO (r = 0.36) Humidity (r = −0.51) NO (r = 0.39) Wind speed (r = −0.15)

Ambient temperature
(r = 0.23) PM10 (r = 0.27) SO2 (r = 0.27) SO2 (r = −0.27)

SO2 (r = 0.15) 03 (r = −0.28) Humidity (r = −0.15)

Between
stations

Newtown NO2 (r = −0.65) Olievenhoutbosch SO2
(r = 0.63) Bodibeng PM10 (r = 0.56) Bodibeng O3 (r = 0.45)

Olievenhoutbosch NO2
(r = −0.48) Ekandustria SO2 (r = 0.67) Tshwane west PM10 (r = 0.50) Mamelodi O3 (r = 0.27)

Tshwane west NO2
(r = −0.38) Mamelodi SO2 (r = 0.37) Mamelodi PM10 (r = 0.44) Tshwane west O3 (r = 0.21)

Bodibeng NO2 (r = −0.40) Rosslyn SO2 (r = 0.30) Booysens PM10 (r = 0.24) Olievenhoutbosch O3
(r = 0.16)

Ekandustria NO2
(r = −0.23) Bodibeng SO2 (r = −0.13) Olievenhoutbosch PM10

(r = 0.33)

Booysens NO2 (r = 0.10) Booysens SO2 (r = 0.043) Rosslyn PM10 (r = 0.29)

Newtown PM10 (r = 0.57)

ECMWF

Johannesburg temperature
@2m (r = 0.29)

Johannesburg total
precipitation (r = −0.20)

Johannesburg wind speed
(r = 0.14)

Johannesburg blh (r = 0.18) Johannesburg temperature
@2m (r = −0.15)

Booysens

Within
station

NO (r = 0.37) 03 (r = −0.36) NO (r = 0.56) Wind speed (r = 0.36)

Ambient temperature
(r = −0.46) NO (r = 0.28) Ambient temperature

(r = −0.42) Temperature (r = 0.25)

PM10 (r = 0.28) NO2 (r = 0.28)

Wind speed (r = −0.33)

Between
stations

Rosslyn NO2 (r = 0.64) Olievenhoutbosch SO2
(r = 0.47)

Olievenhoutbosch PM10
(r = 0.65) Bodibeng O3 (r = 0.64)

Newtown NO2 (r = 0.62) Mamelodi SO2 (r = 0.42) Bodibeng PM10 (r = 0.63) Mamelodi O3 (r = 0.75)

Olievenhoutbosch NO2
(r = 0.49) Rosslyn SO2 (r = 0.42) Buccleuch PM10 (r = 0.24) Olievenhoutbosch O3

(r = 0.55)

Mamelodi NO2 (r = 0.44) Bodibeng SO2 (r = 0.43) Tshwane west PM10 (r = 0.21) Tshwane west O3 (r = 0.79)

Bodibeng NO2 (r = 0.44) Ekandustria SO2 (r = 0.35) Rosslyn PM10 (r = 0.14) Rosslyn O3 (r = 0.41)

Ekandustria NO2 (r = 0.28) Newtown PM10 (r = 0.58)

Buccleuch NO2 (r = 0.10) Buccleuch SO2 (r = 0.043) Mamelodi PM10 (r = 0.008)

ECMWF

Tshwane total precipitation
(r = −0.16)

Tshwane temperature @2m
(r = −0.11)

Tshwane wind direction
(r = −0.15)

Tshwane temperature @2m
(r = 0.27)

Tshwane temperature @2m
(r = −0.22)

Tshwane wind speed
(r = −0.12)

Tshwane total precipitation
(r = −0.13) Tshwane blh (r = 0.21)

Tshwane wind direction
(r = 0.13)

NO2 in the monitoring stations of Olievenhoutbosch, Ekandustria, and Mamelodi had
a very strong significance within station correlations with NO.

Some stations did not monitor all the parameters of interest or had no data, i.e., as
shown in Table 2, the Ekandustria monitoring station had no PM10 and O3 data. Table 3
shows that the Newtown monitoring station also did not have SO2 data.

The predictor matrices were specified in the CART MICE imputation, where 20 im-
puted data sets were performed in 10 iterative processes.
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Table 2. The predictor matrices of NO2, SO2, O3, and PM10 in the air quality data of the Olievenhout-
bosch, Ekandustria, and Mamelodi stations.

NO2 SO2 PM10 O3

O
lievenhoutbosch

Within
station

NO (r = 0.77) NO2 (r = 0.31) NO2 (r = 0.62) Wind speed (r = 0.28)

CO (r = 0.57) CO (r = 0.29) CO (r = 0.52) Temperature (r = 0.23)

PM10 (r = 0.62) PM10 (r = 0.24) NO (r = 0.50)

Between
stations

Mamelodi NO2 (r = 0.71) Mamelodi SO2 (r = 0.52) Bodibeng PM10 (r = 0.59) Bodibeng O3 (r = 0.64)

Rosslyn NO2 (r = 0.62) Buccleuch SO2 (r = 0.63) Booysens PM10 (r = 0.65) Mamelodi O3 (r = 0.66)

Tshwane west NO2
(r = 0.47) Ekandustria SO2 (r = 0.55) Newtown PM10 (r = 0.52) Booysens O3 (r = 0.55)

Booysens NO2 (r = 0.49) Booysens SO2 (r = 0.47) Mamelodi PM10 (r = 0.18) Tshwane west O3 (r = 0.37)

Buccleuch NO2 (r = −0.48) Bodibeng SO2 (r = 0.33) Tshwane west PM10 (r = 0.32) Rosslyn O3 (r = 0.63)

Newtown NO2 (r = 0.46) Rosslyn SO2 (r = 0.44) Rosslyn PM10 (r = 0.32)

Bodibeng NO2 (r = 0.37) Buccleuch PM10 (r = 0.52)

ECMWF

Tshwane wind speed
(r = −0.21)

Tshwane wind direction
(r = 0.23)

Tshwane total precipitation
(r = −0.21)

Tshwane temperature @2m
(r = 0.28)

Tshwane temperature @2m
(r = −0.26)

Tshwane wind speed
(r = −0.18)

Tshwane temperature @2m
(r = −0.20) Tshwane blh (r = 0.23)

Tshwane total precipitation
(r = −0.16)

Ekandustria

Within
station NO (r = 0.82) Wind speed (r = −0.16)

Between
stations

Mamelodi NO2 (r = 0.34) Bodibeng SO2 (r = 0.63)

Rosslyn NO2 (r = −0.28) Rosslyn SO2 (r = 0.56)

Booysens NO2 (r = −0.28) Olievenhoutbosch SO2
(r = 0.55)

Bodibeng NO2 (r = 0.12) Buccleuch SO2 (r = 0.67)

Booysens SO2 (r = 0.35)

Mamelodi SO2 (r = 0.26)

ECMWF

Tshwane wind speed
(r = −0.18)

Tshwane wind speed
(r = −0.31)

Tshwane temperature @2m
(r = −0.20)

Tshwane wind direction
(r = 0.18)

Tshwane temperature @2m
(r = −0.13)

M
am

elodi

Within
station

NO (r = 0.87) PM10 (r = −0.27) NO2 (r = 0.31) Wind speed (r = 0.42)

Humidity (r = −0.51) NO2 (r = 0.20) NO (r = 0.36) Temperature (r = 0.31)

PM10 (r = 0.62) Ambient temperature
(r = −0.20) SO2 (r = 0.27) PM10 (r = 0.25)

Between
stations

Rosslyn NO2 (r = 0.71) Olievenhoutbosch SO2
(r = 0.52) Tshwane west PM10 (r = 0.57) Bodibeng O3 (r = 0.64)

Olievenhoutbosch NO2
(r = 0.71) Booysens SO2 (r = 0.42) Rosslyn PM10 (r = 0.73) Booysens O3 (r = 0.75)

Booysens NO2 (r = 0.44) Bodibeng SO2 (r = 0.25) Buccleuch PM10 (r = −0.44) Buccleuch O3 (r = 0.27)

Tshwane west NO2
(r = 0.19) Tshwane west SO2 (r = 0.28) Olievenhoutbosch PM10

(r = 0.18) Newtown O3 (r = 0.33)

Bodibeng NO2 (r = 0.39) Rosslyn SO2 (r = 0.33) Bodibeng PM10 (r = 0.16) Tshwane west O3 (r = 0.24)

Ekandustria NO2 (r = 0.34) Ekandustria SO2 (r = 0.26) Booysens PM10 (r = 0.008) Rosslyn O3 (r = 0.75)

Newtown NO2 (r = −0.15) Buccleuch SO2 (r = 0.37) Olievenhoutbosch O3
(r = 0.66)

ECMWF

Tshwane temperature @2m
(r = −0.11)

Tshwane temperature @2m
(r = −0.17)

Tshwane temperature @2m
(r = −0.16)

Tshwane temperature @2m
(r = 0.34)

Tshwane wind direction
(r = 0.18) Tshwane blh (r = 0.23)
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Table 3. The predictor matrices of NO2, SO2, O3, and PM10 in the air quality data of the Tshwane
West, Rosslyn, and Newtown stations.

NO2 SO2 PM10 O3

Tshw
ane

w
est

Within
station

Wind speed (r = −0.57) Wind direction (r = −0.22) NO (r = 0.57) Wind speed (r = 0.49)

NO (r = 0.51) O3 (r = −0.23) NO2 (r = 0.42) Temperature (r = −0.28)

PM10 (r = 0.42) CO (r = 0.70) SO2 (r = −0.23)

Between
stations

Olievenhoutbosch NO2
(r = 0.47) Ekandustria SO2 (r = 0.44) Bodibeng PM10 (r = 0.72) Mamelodi O3 (r = 0.24)

Rosslyn NO2 (r = 0.55) Olievenhoutbosch SO2 (r = 0.10) Mamelodi PM10 (r = 0.57) Booysens O3 (r = 0.79)

Bodibeng NO2 (r = 0.62) Mamelodi SO2 (r = 0.28) Newtown PM10 (r = 0.71) Buccleuch O3 (r = 0.27)

Mamelodi NO2 (r = 0.19) Bodibeng SO2 (r = 0.34) Rosslyn PM10 (r = 0.54) Newtown O3 (r = 0.33)

Newtown NO2 (r = 0.42) Rosslyn SO2 (r = 0.24) Buccleuch PM10 (r = 0.50) Olievenhoutbosch O3
(r = 0.37)

Olievenhoutbosch PM10
(r = 0.32)

ECMWF

Tshwane total precipitation
(r = −0.14)

Tshwane total wind direction
(r = 0.14)

Tshwane total precipitation
(r = −0.18)

Tshwane temperature
@2m (r = 0.31)

Tshwane temperature @2m
(r = −0.13) Tshwane blh (r = 0.35)

R
osslyn

Within
station

NO (r = 0.81) NO2 (r = 0.47) NO2 (r = 0.55) Wind speed (r = 0.34)

PM10 (r = 0.55) NO (r = 0.45) NO (r = 0.57) Temperature (r = 0.50)

SO2 (r = 0.47) SO2 (r = 0.25) NO (r = −0.41)

Ambient temperature
(r = −0.48) NO2 (r = −0.36)

Between
stations

Mamelodi NO2 (r = 0.71) Ekandustria SO2 (r = 0.56) Bodibeng PM10 (r = 0.50) Mamelodi O3 (r = 0.75)

Olievenhoutbosch NO2
(r = 0.62) Bodibeng SO2 (r = 0.53) Tshwane west PM10 (r = 0.54) Booysens O3 (r = 0.41)

Booysens NO2 (r = 0.64) Booysens SO2 (r = 0.42) Mamelodi PM10 (r = 0.73) Tshwane west O3
(r = 0.56)

Tshwane west NO2 (r = 0.55) Tshwane west SO2 (r = 0.24) Newtown PM10 (r = 0.28) Bodibeng O3 (r = 0.49)

Ekandustria NO2 (r = 0.28) Olievenhoutbosch SO2 (r = 0.44) Buccleuch PM10 (r = 0.29) Olievenhoutbosch O3
(r = 0.63)

Bodibeng NO2 (r = 0.47) Mamelodi SO2 (r = 0.33) Olievenhoutbosch PM10
(r = 0.32)

Newtown NO2 (r = 0.18) Buccleuch SO2 (r = 0.67) Booysens PM10 (r = 0.14)

ECMWF

Tshwane temperature @2m
(r = −0.28)

Tshwane temperature @2m
(r = −0.12)

Tshwane temperature @2m
(r = −0.11)

Tshwane temperature
@2m (r = 0.48)

Tshwane total precipitation
(r = −0.15) Tshwane blh (r = 0.39)

N
ew

tow
n

Within
station

Wind speed (r = −0.30) NO (r = 0.49) Wind speed (r = 0.23)

Wind speed (r = −0.31) Temperature (r = 0.21)

NO2 (r = 0.28)

Between
stations

Buccleuch NO2 (r = −0.65) Tshwane west PM10 (r = 0.71) Mamelodi O3 (r = 0.33)

Booysens NO2 (r = 0.62) Booysens PM10 (r = 0.58) Olievenhoutbosch O3
(r = 0.17)

Bodibeng (r = 0.53) Buccleuch PM10 (r = −0.57)

Tshwane west NO2 (r = 0.42) Rosslyn PM10 (r = −0.28)

Olievenhoutbosch NO2
(r = 0.46) Bodibeng PM10 (r = 0.56)

Rosslyn NO2 (r = 0.18) Olievenhoutbosch PM10
(r = 0.52)

ECMWF
Johannesburg blh (r = −0.19) Johannesburg total

precipitation (r = −0.13)

Johannesburg Wind speed
(r = −0.18)
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3.2. MICE Imputation Algorithm

The predictive ability of pollutants at one monitoring station was varied at other
monitoring stations. It was possible to have a prediction matrix which indicated NO2 at
one monitoring station predict NO2 at the other monitoring stations. This was however
not true for all stations, as was also reflected by the anticorrelations in Tables 1–3. The
same result was found for SO2, O3, and PM10. ECMWF parameters were found to have
mild correlations to varying degrees with NO2, SO2, and PM10 at the monitoring stations
in both Johannesburg and Tshwane. Where the correlation coefficients were less than 0.18,
the correlation was taken to be very low, or no correlation existed, and the parameters were
excluded in the imputation predictor matrix.

Nine different NO2 models, eight SO2 models, eight O3 models, and eight PM10
models were developed. Furthermore, a combined NO2 model was developed using the
NO2 data sets of the nine monitoring stations. Similarly, a combined SO2 model and a
combined PM10 model based on the nine monitoring stations were also developed. Finally,
a composite model was developed using all NO2, SO2, O3, and PM10 data sets.

The regression using both the CART and PMM algorithms estimated the missing
values for NO2, SO2, O3, and PM10 at all monitoring stations in both the cities of Johan-
nesburg and Tshwane. The predicted point estimates were mean values. At the end of
the computations, there were no missing values. It was found that the range of estimated
values fit well with the range of observed values. The mean estimated NO2 ranged from
21.55 µg/m3 to 54.64 µg/m3, estimated SO2 means ranged between 11.17 µg/m3 and
25.66 µg/m3, and the mean estimated PM10 ranged from 1 µg/m3 to 95.28 µg/m3.

3.3. Post-Imputation Test

To assess the quality of the imputation performed, linear regression models using
the imputed k data sets were performed and the R-squared statistics of the models were
pooled. Table 4 shows the pooled results of the imputed data sets using the CART method
and Table 5 reflects the results of the PMM method. The results shown are for pollutants
under study at every station and the combined station data for the same pollutants.

Table 4. Pooled R-squared estimates using classification and regression trees (CART)-imputed data.

Station NO2 SO2 PM10 O3

Bodibeng 0.58 (0.54–0.62) 0.50 (0.42–0.57) 0.68 (0.65–0.71) 0.50 (0.47–0.54)

Buccleuch 0.39 (0.28–0.45) 0.44 (0.41–0.48) 0.45 (0.36–0.53) 0.14 (0.01–0.35)

Booysens 0.37 (0.29–0.45) 0.34 (0.28–0.40) 0.48 (0.41–0.54) 0.65 (0.61–0.68)

Olievenhoutbosch 0.72 (0.66–0.77) 0.51 (0.44–0.58) 0.45 (0.39–0.52) 0.61 (0.55–0.67)

Ekandustria 0.73 (0.67–0.78) 0.48 (0.43–0.53)

Mamelodi 0.63 (0.58–0.68) 0.34 (0.28–0.39) 0.49 (0.40–0.57) 0.64 (0.59–0.69)

Pretoria 0.36 (0.28–0.45) 0.24 (0.12–0.38) 0.52 (0.31–0.69) 0.43 (0.31–0.96)

Rosslyn 0.77 (0.74–0.79) 0.38 (0.32–0.43) 0.47 (0.38–0.56) 0.66 (0.61–0.72)

Newtown 0.36 (0.28–0.45) 0.43 (0.40–0.54) 0.33 (0.22–0.44)

All combined 0.61 (0.40–0.76) 0.48 (0.42–0.54) 0.47 (0.39–0.54) 0.13 (0.03–0.28)

The PMM results (Table 5) showed a reduced ability to predict missing data. This
result was represented by lower values of the pooled R2 statistics compared to those found
when using CART.

The pooled R-squared results of the linear regression model from the imputation
performed using CART for all data sets were 0.47 (0.38–0.56), compared to 0.32 (0.30–0.35)
for PMM.
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Table 5. Pooled R-squared estimates using predictive mean matching (PMM)-imputed data.

Station NO2 SO2 PM10 O3

Bodibeng 0.57 (0.55–0.59) 0.28 (0.25–0.31) 0.52 (0.49–0.54) 0.31 (0.28–0.34)

Buccleuch 0.26 (0.24–0.29) 0.26 (0.23–0.29) 0.16 (0.13–0.19) 0.06 (0.05–0.08)

Booysens 0.15 (0.13–0.17) 0.11 (0.09–0.13) 0.33 (0.30–0.36) 0.24 (0.21–0.26)

Olievenhoutbosch 0.63 (0.61–0.65) 0.26 (0.23–0.29) 0.35 (0.32–0.38) 0.35 (0.33–0.38)

Ekandustria 0.03 (0.02–0.04) 0.16 (0.14–0.19)

Mamelodi 0.48 (0.45–0.51) 0.16 (0.13–0.18) 0.13 (0.10–0.15) 0.44 (0.41–0.46)

Pretoria 0.28 (0.25–0.31) 0.05 (0.04–0.07) 0.21 (0.18–0.24) 0.16 (0.14–0.19)

Rosslyn 0.77 (0.74–0.79) 0.23 (0.20–0.26) 0.36 (0.33–0.39) 0.38 (0.35–0.41)

Newtown 0.14 (0.12–0.17) 0.25 (0.22–0.28) 0.03 (0.02–0.04)

Stations combined 0.23 (0.20–0.26) 0.25 (0.23–0.28) 0.25 (0.23–0.28) 0.02 (0.01–0.03)

4. Discussion

The main objective of this study was to use the MICE algorithms (CART and PMM) to
impute incomplete air quality data. The data sets had observations missing completely at
random. Data sets for monitoring stations that had missing data with incompleteness over
80% showed considerable differences in correlation tests pre- and post-imputation. These
monitoring stations showing greater incompleteness (more than 80%) were excluded. The
Alexandra and Delta Park monitoring stations had more than 80% missing data and the
post-imputation tests using correlations showed a significant difference between the pre-
and post-imputation data correlations.

4.1. Correlation Studies

Although the aim was to impute NO2, SO2, O3, and PM10 data sets, other pollutants
received in the data from the monitoring stations were useful. It was important to test the
correlations with additional parameters (such as ambient temperature, ozone, and relative
humidity measured at a monitoring station) to also establish if they could be useful for
the imputation process. Consequently, it was found that O3 at monitoring stations had a
moderate positive correlation with the wind speed measured at the monitoring station, but
it had a mild positive correlation with the wind speed extracted from the ECMWF data. The
two observed correlations were similar. The correlation of ECMWF data might be lower
than that measured at the monitoring station due to geographical differences. ECMWF
data were downloaded for the Greater Johannesburg and Tshwane metropolises, while the
monitoring station data were collected at specific geographic points. Ozone also generally
showed a positive correlation with ECMWF T2m and blh. The effects of blh, mixing layer
height, and their importance in determining atmospheric pollution have been adequately
discussed in the literature [15]. The planetary boundary layer was shown to be correlated
with O3 concentration levels in the current study. These observed and reported correlations
allowed the researchers to use the available reanalyzed ECMWF blh to compute multiple
imputations by chain equations using the CART decision trees regression method.

Ozone also showed negative correlations with SO2 and humidity measured at the
monitoring stations. Although NOx species, NO2 in particular, are understood to be the
main precursor for the production of O3, the correlation between NO2 and O3 was not
stronger than that between O3 and SO2 [16]. These correlations, however, were useful to
develop an estimation matrix for computing multiple imputations on the missing data.

NO2 measured at various monitoring stations also showed correlations with ECMWF
data. T2m and wind speed from ECMWF data both had a negative correlation with NO2,
except at Buccleuch. However, NO2 showed a positive correlation with NO and PM10
measured at the monitoring stations. SO2 and PM10 also showed correlations with ECMWF
data and within monitoring station data.
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All the above-discussed correlations of available data from monitoring stations, and
reanalyzed data extracted from ECMWF data, allowed for successful imputation of the
data collected from the Gauteng monitoring stations in the current study. The observed
correlations allowed the researchers to develop the predictor matrices. Due to the knowl-
edge of the correlation as observed in the study, it was possible to decide which predictors
to silence in the predictor matrix before running the MICE algorithm. This approach of
studying correlations before developing a final predictor matrix was greatly useful to allow
the inclusion of variables only shown to have a correlation with variables to which the
estimators were correlated. Also observed was that the performance of the imputation
models improved greatly with the inclusion of ECMWF data. All pooled R2 statistics
increased generally by more than 10% when the predictor matrices included ECMWF data.

4.2. MICE Imputation Algorithm

Our predictor matrix showed that NO2 was predictive and could be used as shown
by the imputation of missing SO2 and PM10. ECMWF blh, wd, and T2m were observed
to be significant predictors of NO2 (in the city), SO2, and PM10 at specific stations. The
closer the geographic location of the monitoring station was to the ECMWF geographic
point, the greater the estimative power of the ECMWF parameters on the missing data
of the monitoring station data. For example, although blh in Tshwane could estimate
NO2 in Newtown and Johannesburg, T2m in Tshwane was not predictive of NO2 in
Newtown. NO2, SO2, O3, and PM10 could be used to estimate missing values for one
another. The predictive relationship may be due to the photochemical relationship of these
pollutants [16–18]. Furthermore, the plausibility of the correlation between the pollutants,
i.e., NO2 and PM10, can be explained by possible common sources such as emissions from
vehicles in urban centres [19]. This impact of traffic density in urban areas was also reported
in a German study. The study established pollution hotspots (NO2 and PM10 pollution)
due to traffic density in three regions (Herne, Oberhausen, and Bochum had high NO2
from vehicle emission, while Herne, Oberhausen, and Gelsenkirchen also had high PM10
from vehicles) [19].

The CART method in MICE imputation produced highly plausible estimated means.
The estimated values fell within the restricted range and had no negative values. The use
of sequential trees has been preferred and has been shown to produce more plausible and
reliable inferences in epidemiology [20]. In fact, CART in MICE has been called ideal [20]. The
estimation of NO2 produced models with better pooled R2 statistics than SO2, O3, and PM10.

Although the current study showed successful imputation of air quality data using
CART and PMM in a MICE package, the use of real-time measurements, particularly in
urban areas with land use and anthropogenic activities known to increase emissions, is
recommended. This approach has been shown to be a promising approach and may be
more useful for developing countries [21]. Furthermore, future studies can explore the
use of other machine learning algorithms such as random forests. The use of low-cost
sensors has been proposed for the African context, and the potential use of this cheaper
option has been supported [22]. Amegah presents a critical discourse on the possible use of
low-cost sensors to enhance and augment the availability of air quality data in sub-Saharan
Africa [23]. The current study demonstrates that there is a need to explore these types of
sensors. This study recommends that a follow-up study run a pilot test of these types of
sensors in the current study setting.

4.3. Post-Imputation Test

The data sets that were imputed were continuous variables. Although the classification
and regression trees technique was employed, the regression model that tested the efficacy
of MICE in estimating the missing values followed was a linear regression model [24].
Therefore, to test the performance of the imputation results, a combined and fitted linear
regression model was performed. Significant model coefficients were observed. Pollutants
that were predetermined to be estimative of each other were significant in the data-imputing
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regression model. The regression models estimated means in place of missing values. This
is consistent with other studies [20]. Misconceptions about the veracity of MICE in imputing
missing data have been argued by some scholars, and yet the same misconceptions have
been addressed in the literature [24]. Some scholars have argued that predictors that have
missing data may not be used to estimate and impute missing values for other variables.
However, such a use of variables with incompleteness itself to run estimations in imputation
methods has been found to be beneficial [24].

Individual pollutant imputation models performed for each monitoring station pro-
duced varying estimation performance levels. Using CART, five of the nine stations with
NO2 imputations performed had a pooled R2 statistic ranging from 58% to 73%. This
post-imputation performance for NO2 was better than both SO2 and PM10. The composite
SO2 and PM10 imputation models yielded a pooled R2 statistic of well over 40%. This
pooled R2 statistic of 40% is viewed as moderate, which at present is reasonably good [25].
Although other significance test methods are possible to test the performance of imputation
estimations, the pooled R-squared statistic has been reported as the preferred method in
recent studies [26].

5. Conclusions

The use of correlated air quality data, both from monitoring stations and reanalyzed
data from ECMWF, proved useful for the imputation of missing air quality data. Correlation
testing was concluded to be a critical step in determining and developing predictor matrices
and selecting a variable to include in the regression models of MICE imputation algorithms.
The CART method was more predictive and produced more plausible data than PMM. The
current study concluded that although air quality data in developing countries settings
may be greatly missing, missing at random, or completely at random, it is scientifically
possible to utilize platforms like the MICE package to run algorithms such as CART and
PMM to estimate and impute missing data. When performed correctly, multiple imputation
of air quality data can produce reliable data sets. This was also shown in the Chilean study,
concluding that the data imputation yielded better results when covariates from a second
monitoring station in Temuco were used. These imputed data sets can reliably be used
to make inferences in general epidemiology and computational epidemiological studies.
The findings of a successful MICE imputation algorithm (CART) that completes air quality
data suggest that more research can be done successfully even when data are considered
too absent.
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