
Citation: Cao, C.; Wang, Y.; Fan, L.;

Ding, J.; Chen, W. Assessment and

Prediction of Future Climate Change

in the Kaidu River Basin of Xinjiang

under Shared Socioeconomic Pathway

Scenarios. Atmosphere 2024, 15, 208.

https://doi.org/10.3390/

atmos15020208

Academic Editor: Dae Il Jeong

Received: 6 December 2023

Revised: 17 January 2024

Accepted: 24 January 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Assessment and Prediction of Future Climate Change in the
Kaidu River Basin of Xinjiang under Shared Socioeconomic
Pathway Scenarios
Chenglin Cao 1, Yi Wang 1,*, Lei Fan 1, Junwei Ding 1 and Wen Chen 2

1 School of Water Resources and Hydropower Engineering, North China Electric Power University,
Beijing 102206, China; ccl1209@ncepu.edu.cn (C.C.); fanlei@ncepu.edu.cn (L.F.);
120212238021@ncepu.edu.cn (J.D.)

2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
wchen@niglas.ac.cn

* Correspondence: wangyi28@ncepu.edu.cn

Abstract: Xinjiang, located in the arid region of the northwest, is one of the areas most sensitive to
global changes. The Kaidu River Basin, situated in the heart of Xinjiang, is one of the sources of
China’s largest inland river—the Tarim River. The Kaidu River not only bears the responsibility for
supplying water for industrial use and agricultural production and people’s daily life in the basin,
but also plays a crucial role in ecological water supply to the Tarim River. Studying and analyzing the
characteristics and trends of meteorological condition in the future under climate change can provide
important references and a basis for a deeper understanding of changes in the hydrological process
and water resources in the basin. Therefore, this paper selects seven precipitation bias correction
methods and four temperature bias correction methods to adjust the precipitation and temperature
output data of eight general circulation models of the Sixth Coupled Model Intercomparison Project
(CMIP6) within the Kaidu River Basin. The applicability of different bias correction methods in the
study area is evaluated, and based on the corrected future meteorological data and calculated extreme
meteorological index, the trends of meteorological data (precipitation, temperature) in the future
period (2025–2050) under four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) in the Kaidu
River Basin are analyzed. The results show that: (1) Different types of bias correction methods have
different correction focus and effects; their reflections on evaluation indicators are also different. (2) In
the future period (2025–2050), the annual precipitation and average temperature in the Kaidu River
Basin are higher than those in the historical period (1975–2014). The average annual temperature
shows an upward trend in the future, but the annual precipitation shows a downward trend in
the future except for the SSP2-4.5 scenario. (3) Compared with the historical period, the extreme
precipitation in the future period under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios is higher than
that in the historical period, and the number of rainless days decreases. In the future, under the
SSP1-2.6 and SSP5-8.5 scenarios, the probability of meteorological drought events occurring due to
high temperatures in the basin may further increase, while under the SSP2-4.5 scenario, the situation
of high temperatures and heavy rain in the basin may continue to increase.

Keywords: Kaidu river basin; CMIP6; SSP scenarios; water resources change; climate change

1. Introduction

As human activities intensify their impact on the climate, the effects of climate change
and human activities on water resource systems are becoming increasingly apparent.
The hydrological cycle system in river basins is undergoing significant and profound
changes, with climate change primarily affecting and altering factors such as precipitation
and temperature, thereby affecting the terrestrial water cycle system and the process of
hydrological runoff [1–3]. The Intergovernmental Panel on Climate Change (IPCC) pointed
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out in its Sixth Assessment Report (AR6) that climate change has significantly altered the
global water cycle process since the mid-20th century, causing serious negative impacts
on water resources [4]. Extreme weather and climate events caused by climate change are
undergoing drastic changes in frequency, intensity, and spatiotemporal scope, affecting
not only the global distribution of water resources and ecological environment systems,
but also the sustainable development of the global economy and society [5]. Therefore, it
is necessary to predict the future climate conditions and extreme meteorological events
caused by global warming [6]. Currently, extreme weather indices are one of the principal
tools for investigating extreme weather events. The 27 indices recommended by the World
Meteorological Organization (WMO) are extensively utilized in the study of such events.

General Circulation Models (GCMs) provide detailed depictions of the temporal varia-
tions in atmospheric circulation, heat exchange, and interactions among the ocean, land,
and ice [7,8]. They are pivotal tools for studying the mechanisms of past climate changes
and for projecting future climatic shifts. These models have been adept at simulating
large-scale changes in meteorological elements such as atmospheric circulation, global
precipitation and temperature, and have been widely applied over the past decade or
so [9–12]. The Sixth Coupled Model Intercomparison Project (CMIP6) has introduced
Shared Socioeconomic Pathways (SSPs), which illustrate the relationship between future
societal radiative forcing and socioeconomic development [13]. The GCM data released by
CMIP6 offer robust support for future climate change research. However, due to their low
resolution and uncertainty, they cannot provide reliable information on local scales [14–16],
thus it is not recommended to directly apply them in regional climate change studies.
Additionally, in the unique terrain of China, with its complex climate types and circula-
tion patterns, different general circulation models also yield varying simulation results in
different regions. Given the substantial uncertainties in the structure and parameters of
GCMs, downscaling techniques are commonly employed to transform large-scale infor-
mation from GCMs to regional scales, thereby enhancing their resolution [12]. Popular
downscaling methods include dynamic and statistical downscaling; the latter requires
less computational effort, with models that are easier to construct, offering a variety of
methods with flexible forms [17,18]. Bias correction methods, a type of empirical statistical
downscaling, primarily involve adjustments based on mean, variance, and other statistical
parameters, as well as probability distribution corrections [19]. These methods effectively
reduce discrepancies between simulated and observed values, forming the foundational
premise for utilizing GCM data in assessing the impacts of climate change.

The arid region of Northwest China is located in the mid-latitude region, with vast
territory, complex terrain, uneven distribution of meteorological conditions, and scarce
precipitation [20,21]. It is one of the driest regions in the world at the same latitude, and
due to its inherent climatic conditions and water resource constraints, this region is one of
the most sensitive areas in response to global climate change [22]. Xinjiang, serving as the
strategic barrier in the northwest of China, is not only the crucial core area of the Belt and
Road Initiative and the base of strategic resources, but also an important national reserve
granary. The Tarim River, located in Xinjiang, is the largest inland river in China and the
most important water resource and core guarantee for regional development. The Kaidu
River Basin is one of the four sources of the Tarim River Basin, and it plays a decisive role
in the water resources supply for the production, domestic, economic development, and
ecological civilization construction of the Basin. Since the year 2000, the Kaidu River has
also taken on the vital task of ecological water conveyance to the Tarim River. And with
the growth of the population and large-scale development, the basin’s water resources are
also facing new crises under the impact of climate change and human activities. It is urgent
to solve the problem of reasonable development and utilization of basin water resources
and maintain the ecological health of the basin [23,24].

Therefore, under the background of global climate change, analyzing the character-
istics and changes of meteorological conditions in the Xinjiang Kaidu River Basin will
help to study the process of runoff changes in the basin in the future period and provide
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a solid foundation for coping with the impact of climate change on water resources in
the basin and sustainable management of water resources. Specifically, this paper takes
the Kaidu River Basin in the arid region of Northwest China as the research area. The
main objectives of this study include: (1) in the Kaidu River Basin of Xinjiang, comparing
station observation data and applying different bias correction methods to separately adjust
errors in the temperature and precipitation data outputted by CMIP6; (2) evaluating and
analyzing the effects, intrinsic reasons, and applicability of bias correction methods within
the study area; (3) based on the corrected data for future periods, analyzing the trends and
evolution patterns of meteorological elements within the basin, as well as future climatic
characteristics; (4) selecting extreme precipitation elements such as the total precipitation
amount for days exceeding the 95% percentile of daily rainfall (R95p), Consecutive Dry
Days (CDD), and the daily maximum average temperature element to further study and
analyze the evolution patterns of these extreme meteorological elements during future
periods. The innovation of this study lies in the in-depth analysis and evaluation of the
applicability of different bias correction methods in the typical basins of the arid northwest
region where site data are scarce. Furthermore, it deciphers the changes and trends of future
extreme climate events in the basin under the SSP scenarios, providing robust support for
researching future water resource changes in the arid northwest region’s basins.

2. Study Area and Data
2.1. Study Area

Situated on the southern slope of Xinjiang’s Tianshan Mountains and the northern fringe of
the Yanqi Basin, the Kaidu River Basin spans between 82◦52′–86◦55′ E and 41◦47′–43◦21′ N. It
accounts for a large amount of the water production in the Bayingolin Mongol Autonomous
Prefecture in Xinjiang. It is also the largest river flowing into the Yanqi Basin. The moun-
tainous region of the basin boasts an average altitude of 3100 m, with a topography that
descends from north to south, exhibiting a complex terrain. The catchment area above the
mountain outlet approximates 1.9 × 104 km2, and the river stretches 560 km from its source
to the point where it feeds into the lake. It is the sole river that perennially replenishes
Bosten Lake, China’s largest inland freshwater lake [25,26]. The Kaidu river is a mixed-
type river, replenished by both snowmelt and precipitation. Seasonal snowmelt in spring
and high mountain snowmelt coupled with mountain precipitation in summer primarily
contribute to the river’s flow. Mixed rain and snow precipitation constitute 45.3% of the
total runoff, while glacier meltwater accounts for 14.1%. The basin experiences an uneven
distribution of annual precipitation, with noticeable seasonal influences. The maximum
precipitation occurs from May to August. The distribution of evaporation throughout the
year is uneven, with an annual evaporation of about 680 mm. The average annual runoff
over multiple years is approximately 35.31 × 108 m3, with 73.8% occurring during the flood
season from April to September, and 26.2% during the dry season from October to March
of the following year. A detailed overview of the basin is depicted in Figure 1.

2.2. Data

The research basin has only one meteorological station—the Bayanbulak Station. The
Bayanbulak Station serves as the meteorological control station for the entire basin, with
long-term series of observed data such as precipitation and temperature. Currently, many
studies on the Kaidu River Basin also use data from this station to calculate and analyze the
meteorological conditions and changes within the basin [27,28]. This study utilizes meteo-
rological data from the Bayanbulak station in the Kaidu River Basin, encompassing daily
temperature and precipitation measurements from 1975 to 2014, sourced from the China
Meteorological Data website (http://data.cma.cn (accessed on 20 November 2018)). To
analyze future meteorological changes, the Shared Socioeconomic Pathway (SSP) scenario
(https://wcrp-cmip.org/model-intercomparison-projects-mips/scenariomip/ (accessed
on 30 November 2023)) data under the IPCC’s sixth Coupled Model Intercomparison Project
(CMIP6) were used in this study. The Shared Socioeconomic Pathways (SSPs), developed
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from the Representative Concentration Pathways (RCPs), quantitatively depict the interplay
between climate change and socioeconomic trajectories, reflecting future societal challenges
in climate change adaptation and mitigation [29,30]. These scenarios provide detailed
projections of future population, economic growth, technological advancement, lifestyle,
policy, and other social factors, outlining five socioeconomic development pathways: the
sustainable development pathway (SSP1), the middle-of-the-road pathway (SSP2), the
regional rivalry pathway (SSP3), the inequality pathway (SSP4), and the fossil-fueled devel-
opment pathway (SSP5) [13,31–33]. We selected the CMIP6 model dataset released by eight
global research institutions, which includes daily temperature and precipitation data for
the Kaidu River Basin from 2025 to 2050 under four scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5. These data serve to analyze the basin’s future climate change patterns and
trends (Table 1). The reference period is 1975–2014, and 2025–2050 is the future period.
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Table 1. List of selected CMIP6 models used in this study.

ID Model Name Country Institution Experiment Resolution

A BCC-CSM2-MR China Beijing Climate Center r1i1p1f1 100 km
B CAMS-CSM1-0 China Chinese Academy of Meteorological Sciences r2i1p1f1 100 km
C CAS-FGOALS-g3 China Chinese Academy of Sciences r1i1p1f1 250 km
D MPI-ESM1-2-HR Germany Max Planck Institute for Meteorology r1i1p1f1 100 km
E MRI-ESM2-0 Japan Meteorological Research Institute r1i1p1f1 100 km
F IPSL-CM6A-LR France Institut Pierre Simon Laplace r1i1p1f1 250 km
G GFDL-ESM4 USA Geophysical Fluid Dynamics Laboratory r1i1p1f1 100 km
H UKESM1-0-LL UK Met Office Hadley Centre r1i1p1f2 250 km

3. Methods
3.1. Bias Correction Methods

Bias correction theory is based on the assumption that the statistical relationship
between the data obtained from the current data sequence is still valid under future climate
change scenarios, and uses statistical methods to reduce the bias between simulated values
and observed values. The commonly used bias correction methods can be divided into
two categories, one of which is based on statistical parameters such as mean and variance
for correction, and the other is mainly based on probability distribution for correction [12].
In this study, seven methods that are both based on statistical parameter correction and
probability distribution correction, such as linear scaling method (LS method) [34], DT
method [35], EQM method [36,37], LOCI method [38], Gamma distribution mapping
method [39,40], LOCI_QM combination method, and LOCI_Gamma combination method,
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are used to correct precipitation, and four methods such as linear scaling method (LS
method), DT method, EQM method, and Normal distribution mapping method [41] are
used to correct temperature. The specific introduction is as follows.

3.1.1. LS Method

The Linear Scaling method conducts a monthly-scale adjustment based on the discrep-
ancy between the actual measured data and the original data, ensuring that the revised
simulated monthly averages align with the actual measurements. Specifically, precipitation
is adjusted using a factor derived from the ratio of the long-term monthly average of actual
measurements to the simulated values. Meanwhile, temperature is corrected through the
difference between the average actual observation data and the simulated values [42,43].
The detailed formula is presented below.

Prcor, f ur,d = Prraw, f ur,d ×
(

µ
(

Probs,re f ,m

)
/µ

(
Prraw,re f ,m

))
(1)

Tcor, f ur,d = Traw, f ur,d + µ
(

Tobs,re f ,m

)
− µ

(
Traw,re f ,m

)
(2)

In the formula, “Pr” and “T” represent precipitation and temperature, respectively,
“raw” and “cor” represent the original output data of CMIP6 and bias-corrected data,
respectively, “ref ” and “fur” represent reference period and future period, respectively, “d”
and “m” represent day and month, respectively, “µ” represents mean.

3.1.2. DT Method

The DT method is a technique that establishes the relationship between the actual
measured daily precipitation or temperature (at different percentiles) and the raw simulated
data through distribution mapping technology. This method corrects the errors in the raw
simulated data by multiplying or adding the percentile ratio (for precipitation) or difference
(for temperature) between the actual measured data and the raw simulated data to each
percentile of the future time series [19,44,45]. The specific formula is as follows.

Prcor, f ur,d = Prraw, f ur,d ×
(

Q
(

Probs,re f ,m

)
/Q

(
Prraw,re f ,m

))
(3)

Tcor, f ur,d = Traw, f ur,d + Q
(

Tobs,re f ,m

)
− Q

(
Traw,re f ,m

)
(4)

In the formula, “Q” represents percentile, others are as Formulas (1) and (2).

3.1.3. EQM Method

The QM method is a non-parametric bias correction method, generally applicable to all
possible distributions of precipitation or temperature, without the need for assumptions [46,47].
The QM method corrects meteorological data based on the daily empirical cumulative
distribution functions (ECDFs) constructed at each point. In Empirical Quantile Mapping
(EQM), the error correction of meteorological data is achieved by calculating the empirical
cumulative distribution functions (ECDFs) based on the measured and simulated values,
and taking the inverse function of the empirical cumulative distribution functions [36,37,48].
The specific formula is as follows.

Prcor, f ur,d = ecd f−1
obs,re f ,m(ecd fraw,re f ,m(Prraw, f ur,d)) (5)

Tcor, f ur,d = ecd f−1
obs,re f ,m(ecd fraw,re f ,m(Traw, f ur,d)) (6)

In the formula, “ecdf ” stands for empirical cumulative distribution functions. The rest
is as Formulas (1) and (2).

3.1.4. DM Method

The Distribution Mapping (DM) method is a technique that assumes that the actual
measured data and the model output values follow the same distribution. This method can
be used to adjust the mean, standard deviation, and percentiles, and it retains extreme cases.
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For precipitation, the gamma distribution with shape parameters and scale parameters
is commonly used and has been proven to be the most effective [39,46]. Due to the fact
that the annual temperature in this research area shows a characteristic of being high in
the middle and low at both ends, it conforms to the normal distribution based on the
assumption of mean and standard deviation. Therefore, this study uses normal distribution
to correct temperature [42,46]. The specific correction-transformation process is illustrated
in Figure 2, exemplified by the Gamma partial mapping method. The specific formula is
as follows.

Prcor, f ur,d = F−1
obs,re f ,m(Fraw,re f ,m(Prraw, f ur,d; αraw,re f ,m, βraw,re f ,m); αobs,re f ,m, βobs,re f ,m) (7)

Tcor, f ur,d = F−1
obs,re f ,m(Fraw,re f ,m(Traw, f ur,d; µraw,re f ,m, σraw,re f ,m); µobs,re f ,m, σobs,re f ,m) (8)
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In the formula “F” represents cumulative distribution functions. Assuming that
precipitation follows Gamma distribution, “α” and “β” stand for shape parameter and
scale parameter. Temperature follows Normal distribution and “µ” and “σ” stand for mean
value and standard deviation. The rest is as Formulas (1) and (2).

3.1.5. LOCI Method

The LOCI method is a technique for correcting the frequency and intensity of wet
days, aiming to effectively improve the excessive “drizzle” in the simulated raw data.
This method usually includes two steps: (1) determining the wet-day threshold for each
month based on the original precipitation series, to ensure that the frequency exceeding
the threshold matches the measured wet-day frequency; (2) calculating the scale factor Sm
based on the wet-day threshold, and applying it to the correction of future precipitation
series [38,49,50]. The specific formula is as follows.

sm =
µ(Probs,re f ,d ≥ Probs,thres)− Probs,thres

µ(Prraw,re f ,d ≥ Prraw,thres)− Prraw,thres
(9)

Prcor, f ur,d = max[(Probs,thres + (Prraw, f ur,d − Prraw,thres))× sm, 0] (10)

In this formula “S” stands for scaling factor and “thres” stands for precipitation
threshold, other terms are similar to Formulas (1) and (2).

3.1.6. Combine Method

In this study, based on the individual application of the LOCI method, EQM method,
and Gamma distribution mapping method for the correction of precipitation series, the com-
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bines of the LOCI method with the QM method and the combines of Gamma method were
further developed, respectively. The LOCI_QM combination method and the LOCI_Gamma
combination method are used, respectively, for the correction of the precipitation series.
The specifics are as follows.

Prcor, f ur,d = cd f−1
obs,re f ,m(cd fLOCI,re f ,m(PrLOCI, f ur,d)) (11)

Prcor, f ur,d = F−1
obs,re f ,m(FLOCI,re f ,m(PrLOCI, f ur,d; αLOCI,re f ,m, βLOCI,re f ,m); αobs,re f ,m, βobs,re f ,m) (12)

In the formula “F” denotes cumulative distribution functions, “LOCI” represent data
corrected by the LOCI method. “cd fobs,re f ,m” is calculated from observed data during
reference period, “cd fLOCI,re f ,m” represents the cumulative distribution function calculated
from data corrected by the LOCI method during the reference period. The rest is as
Formulas (1) and (2).

3.1.7. Evaluation Indicators

This study selects indicators based on frequency and time series to evaluate the
performance of bias correction methods. The frequency indicators mainly include mean,
standard deviation, median, percentiles, frequency of wet days (precipitation), intensity
of wet days (precipitation), etc. The time-series indicators mainly include Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE), etc. Among them, the smaller the
values of MAE and RMSE, the closer the bias-corrected values are to the measured values.
The specific formula is as follows.

MAE =
∑n

i=1

∣∣∣Yobs
i − Ycor

i

∣∣∣
n

(13)

RMSE =

√
∑n

i=1 (Y
cor
i − Yobs

i )
2

n
(14)

Yobs
i and Ycor

i refer to the ith elements of the data series.

3.2. Extreme Climate Indicators

In order to better understand and analyze the future trend of meteorological condi-
tions in the Kaidu River Basin, in this study, based on the analysis of precipitation and
temperature trends, the extreme climate indicators were selected to study future extreme
climate events in the Kaidu River Basin. For precipitation, in order to explore the trend of
extreme precipitation intensity and frequency in the future, we selected indicators such as
R95p and CDD for analysis, where the total precipitation amount for days exceeding the
95% percentile of daily rainfall is denoted as R95p, while CDD represents the maximum
number of consecutive days with precipitation less than 1 mm [51–54]. For temperature,
based on daily average temperature data, the maximum daily average temperatures of
each month were selected for the analysis.

4. Results
4.1. Analysis of Bias Correction Methods

For precipitation, this paper evaluates the correction effects of various methods based
on frequency evaluation indicators such as mean, standard deviation, median, percentiles,
wet-day frequency and intensity, and time-series evaluation indicators such as RMSE and
MAE. Table 2 presents the evaluation metrics following the correction of output data by
seven different precipitation bias correction methods from various institutions, as well
as the average results after computing the mean of the metrics from eight institutions.
Specifically, Nos. 1–9 display the results of the evaluation metrics after bias correction
for each institution’s data, while No. 10 shows the result after averaging the evaluation
metrics from all eight institutions. The purpose is to eliminate the influence of individual
institutional data to more clearly assess the corrective effectiveness of the bias correction
methods. As can be seen from Table 2, all seven correction methods have a certain corrective
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effect on the frequency and time-series indicators of raw data outputs, and after corrections
by various methods, each metric has become more closely aligned with the observed values.
Compared with raw data, the LS method has the best correction effect on the mean with a
relative deviation of 0. However, the LS method has unsatisfactory correction effects on
other indicators and has a larger error compared to the measured data. The DT method
has obvious correction effects on the median, 90% percentile and 75% percentile with
their relative deviations being, respectively, 0%, 1.5%, and −5%. The EQM method and
LOCI_QM method have effects on the standard deviation and 95% percentile with their
relative deviations both being 0 and −1.36%. Additionally, a comparison between the two
methods reveals that combining LOCI with QM yields correction results that are essentially
similar to those of the EQM method. Meanwhile, the Gamma distribution mapping method
and LOCI_Gamma method have optimal corrections for wet-day intensity and frequency
with their respective relative deviations being approximately 4.29% and 0.4%. Moreover,
when examining the results of wet-day frequency correction, the LOCI_Gamma method
outperforms the Gamma method. It can be seen that different methods have different
focuses in correcting frequency indicators based on their principles.

Table 2. Comparation of evaluation results of observed, raw and corrected daily precipitation at
Bayanbulak station (1975–2014).

No. GCM Method Mean Standard
Deviation Median

Percentile Frequency of
Wet Days

Intensity of
Wet Days RMSE MAE

95% 90% 75%

1 Observed 0.75 2.45 0.00 4.40 2.00 0.20 32.12 2.33

2
BCC-

CSM2-
MR

raw 1.00 2.06 0.19 4.70 2.89 1.06 57.58 1.73 3.19 1.47
DT 0.76 2.41 0.00 4.49 2.00 0.20 28.60 2.64 3.26 1.23
LS 0.75 2.41 0.06 3.77 1.77 0.42 43.89 1.68 3.27 1.19

EQM 0.74 2.45 0.00 4.35 1.96 0.18 27.42 2.68 3.29 1.21
Gamma 0.75 2.44 0.00 4.22 2.07 0.27 31.29 2.39 3.28 1.21

LOCI 0.74 2.47 0.00 4.00 1.97 0.33 32.36 2.28 3.31 1.21
LOCI_QM 0.74 2.45 0.00 4.35 1.96 0.18 27.42 2.68 3.29 1.21

LOCI_Gamma 0.76 2.44 0.00 4.28 2.14 0.26 29.88 2.53 3.28 1.22

3 CAMS-
CSM1-0

raw 1.33 2.68 0.13 6.92 4.35 1.31 52.31 2.52 3.72 1.82
DT 0.74 2.52 0.00 4.40 1.99 0.10 24.09 3.07 3.36 1.24
LS 0.75 3.17 0.02 3.30 1.07 0.27 35.65 2.07 3.86 1.27

EQM 0.89 2.44 0.00 4.35 1.95 1.20 39.47 2.25 3.24 1.24
Gamma 0.71 2.45 0.00 4.22 1.74 0.11 25.22 2.81 3.31 1.22

LOCI 0.59 2.07 0.04 3.07 1.27 0.15 43.46 1.35 3.09 1.12
LOCI_QM 0.89 2.44 0.00 4.35 1.95 1.20 39.47 2.25 3.24 1.24

LOCI_Gamma 0.81 2.42 0.00 4.17 1.76 0.72 40.27 2.00 3.26 1.23

4
CAS-

FGOALS-
g3

raw 1.37 2.75 0.36 6.23 3.71 1.41 68.92 1.98 3.58 1.66
DT 0.77 2.55 0.00 4.50 2.05 0.20 28.50 2.70 3.34 1.24
LS 0.75 1.85 0.12 3.53 2.00 0.59 52.98 1.39 2.85 1.13

EQM 0.74 2.45 0.00 4.34 1.95 0.17 27.32 2.68 3.27 1.20
Gamma 0.73 2.49 0.01 3.81 1.72 0.28 32.82 2.20 3.30 1.19

LOCI 0.75 2.30 0.00 4.05 2.02 0.36 32.20 2.31 3.16 1.19
LOCI_QM 0.74 2.45 0.00 4.34 1.95 0.17 27.27 2.69 3.27 1.20

LOCI_Gamma 0.75 2.45 0.00 4.20 2.00 0.26 29.26 2.57 3.26 1.21

5
MPI-

ESM1-
2-HR

raw 2.19 4.12 0.03 11.14 7.51 2.72 46.00 4.76 5.08 2.64
DT 0.76 2.52 0.00 4.44 1.95 0.19 25.85 2.91 3.38 1.24
LS 0.75 3.00 0.01 3.36 1.22 0.30 36.24 2.05 3.75 1.25

EQM 0.82 2.44 0.00 4.33 1.95 0.55 35.82 2.26 3.28 1.23
Gamma 0.72 2.42 0.00 4.31 1.68 0.16 27.11 2.64 3.31 1.22

LOCI 0.66 2.27 0.04 3.51 1.43 0.16 45.72 1.43 3.22 1.16
LOCI_QM 0.82 2.44 0.00 4.33 1.95 0.55 35.84 2.26 3.28 1.23

LOCI_Gamma 0.80 2.41 0.00 4.29 1.70 0.58 41.81 1.91 3.28 1.23
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Table 2. Cont.

No. GCM Method Mean Standard
Deviation Median

Percentile Frequency of
Wet Days

Intensity of
Wet Days RMSE MAE

95% 90% 75%

6 MRI-
ESM2-0

raw 3.75 5.14 1.52 14.37 10.80 5.53 77.85 4.81 6.13 3.62
DT 0.81 2.68 0.00 4.67 2.09 0.20 28.19 2.84 3.47 1.27
LS 0.75 1.25 0.19 3.48 2.40 0.89 58.56 1.26 2.52 1.07

EQM 0.73 2.45 0.00 4.35 1.95 0.17 27.22 2.69 3.31 1.21
Gamma 0.76 2.23 0.00 4.44 2.14 0.33 33.35 2.26 3.13 1.20

LOCI 0.75 1.82 0.00 4.53 2.58 0.46 32.17 2.32 2.86 1.16
LOCI_QM 0.73 2.45 0.00 4.35 1.95 0.17 27.24 2.69 3.31 1.21

LOCI_Gamma 0.79 2.34 0.00 4.98 2.39 0.22 28.13 2.81 3.20 1.24

7
IPSL-

CM6A-
LR

raw 2.00 4.21 0.19 9.13 6.00 2.24 53.87 3.71 4.87 2.28
DT 0.78 2.51 0.00 4.53 2.08 0.20 28.33 2.72 3.32 1.24
LS 0.75 2.08 0.03 3.89 2.32 0.43 40.81 1.81 3.02 1.17

EQM 0.73 2.45 0.00 4.35 1.94 0.17 27.28 2.68 3.28 1.20
Gamma 0.76 2.44 0.00 4.06 2.29 0.23 28.80 2.62 3.27 1.21

LOCI 0.75 2.13 0.00 3.97 2.42 0.38 35.53 2.10 3.05 1.18
LOCI_QM 0.73 2.45 0.00 4.35 1.94 0.17 27.29 2.68 3.28 1.20

LOCI_Gamma 0.76 2.44 0.00 4.05 2.30 0.22 27.97 2.70 3.27 1.22

8 GFDL-
ESM4

raw 1.54 2.65 0.46 6.33 4.41 1.97 66.25 2.32 3.61 1.87
DT 0.78 2.52 0.00 4.62 2.06 0.20 28.23 2.75 3.33 1.25
LS 0.75 1.91 0.11 3.73 1.98 0.56 51.73 1.43 2.89 1.15

EQM 0.74 2.45 0.00 4.35 1.95 0.18 27.29 2.69 3.27 1.21
Gamma 0.75 2.44 0.00 4.06 1.95 0.32 32.88 2.26 3.26 1.21

LOCI 0.75 2.20 0.00 4.18 2.16 0.40 32.20 2.31 3.09 1.20
LOCI_QM 0.74 2.45 0.00 4.35 1.95 0.18 27.28 2.69 3.27 1.21

LOCI_Gamma 0.77 2.43 0.00 4.33 2.15 0.25 28.58 2.67 3.26 1.23

9 UKESM1-
0-LL

raw 0.79 2.38 0.03 4.21 2.07 0.37 37.66 2.06 3.35 1.29
DT 0.75 2.38 0.00 4.48 2.00 0.20 29.69 2.50 3.26 1.21
LS 0.75 2.89 0.02 3.52 1.58 0.28 33.37 2.21 3.64 1.23

EQM 0.73 2.45 0.00 4.30 1.94 0.18 27.48 2.66 3.30 1.21
Gamma 0.76 2.44 0.00 4.11 2.09 0.33 33.35 2.27 3.29 1.21

LOCI 0.75 2.88 0.05 3.55 1.60 0.24 32.53 2.25 3.64 1.23
LOCI_QM 0.73 2.45 0.00 4.30 1.94 0.18 27.48 2.66 3.30 1.21

LOCI_Gamma 0.76 2.44 0.00 4.15 2.12 0.30 32.11 2.37 3.29 1.21

10 Average

raw 1.75 3.25 0.36 7.88 5.22 2.08 57.55 2.99 4.19 2.08
DT 0.77 2.51 0.00 4.52 2.03 0.19 27.69 2.77 3.34 1.24
LS 0.75 2.32 0.07 3.57 1.80 0.47 44.15 1.74 3.23 1.18

EQM 0.76 2.45 0.00 4.34 1.95 0.35 29.91 2.57 3.28 1.21
Gamma 0.74 2.42 0.00 4.15 1.96 0.25 30.60 2.43 3.27 1.21

LOCI 0.72 2.27 0.02 3.86 1.93 0.31 35.77 2.04 3.18 1.18
LOCI_QM 0.76 2.45 0.00 4.34 1.95 0.35 29.91 2.57 3.28 1.21

LOCI_Gamma 0.78 2.42 0.00 4.31 2.07 0.35 32.25 2.44 3.26 1.22

In terms of evaluation metrics for time series, compared to the raw data series, all
seven bias correction methods show improvements, with the RMSE and MAE values of the
seven methods not differing significantly. The results corrected by the LOCI method, when
compared with actual measured data, yield the smallest RMSE and MAE. This indicates
that the LOCI method outperforms the other six methods in time-series correction. Based
upon bias correction methodology assessment results, LOCI_Gamma is selected to correct
the precipitation data for subsequent analysis.

Regarding temperature, the four correction methods employed in this study all demon-
strated effective correction results. The frequency indicators included mean, standard
deviation, median, and percentiles, while the time-series indicators comprised MAE and
RMSE. Subsequently, these indicators were used to evaluate the calibration effectiveness of
various bias correction methods. Table 3 displays the evaluation metrics results for four
temperature bias correction methods applied to the output data from various institutions,
as well as the average results after calculating the mean of the metrics from eight institu-
tions. Specifically, Nos. 1–9 show the individual results of the evaluation metrics after error
adjustment for each institution’s data, while No. 10 presents the result after averaging the
evaluation metrics across all eight institutions.
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Table 3. Comparation of evaluation results of observed, raw and corrected daily temperature data at
Bayanbulak station (1975–2014).

No. GCM Method Mean Standard
Deviation Median

Percentile
RMSE MAE

95% 90% 75%

1 Observed −4.24 14.04 −0.20 12.30 11.00 8.10

2 BCC-CSM2-MR

raw 1.62 12.39 1.68 20.13 17.82 12.25 9.47 7.56
DT −4.25 14.03 −0.21 12.22 10.97 8.03 6.33 4.70
LS −4.23 14.26 −1.21 14.49 12.44 7.91 6.76 5.27

EQM −4.27 14.04 −0.24 12.21 10.96 8.04 6.32 4.70
Normal −4.23 14.04 −0.17 12.40 11.14 8.08 6.32 4.70

3 CAMS-CSM1-0

raw 0.18 11.06 0.81 16.12 14.20 9.49 8.61 6.44
DT −4.23 14.04 −0.21 12.27 10.98 8.07 6.32 4.70
LS −4.24 14.02 −0.54 13.36 11.65 7.67 6.29 4.80

EQM −4.28 14.04 −0.25 12.21 10.97 8.03 6.31 4.70
Normal −4.24 14.04 −0.23 12.46 11.18 7.94 6.32 4.71

4 CAS-FGOALS-g3

raw −1.81 11.58 −1.68 15.15 13.35 8.68 7.82 5.85
DT −4.24 14.05 −0.21 12.25 10.99 8.06 6.35 4.68
LS −4.23 14.03 −0.55 13.22 11.74 7.99 6.30 4.78

EQM −4.27 14.04 −0.24 12.21 10.97 8.04 6.32 4.66
Normal −4.23 14.04 −0.02 12.40 11.18 8.05 6.32 4.65

5 MPI-ESM1-2-HR

raw −1.24 11.95 −1.41 17.03 14.85 9.07 8.01 6.15
DT −4.25 14.05 −0.26 12.21 10.98 8.07 6.31 4.67
LS −4.24 14.07 −0.87 13.76 12.07 7.84 6.35 4.90

EQM −4.28 14.04 −0.26 12.21 10.96 8.03 6.28 4.66
Normal −4.24 14.04 −0.09 12.42 11.18 7.97 6.28 4.65

6 MRI-ESM2-0

raw −2.99 9.91 −2.87 11.51 10.02 5.97 7.56 5.68
DT −4.23 14.04 −0.21 12.25 10.98 8.05 6.25 4.63
LS −4.24 13.79 −0.65 13.01 11.61 8.05 5.77 4.43

EQM −4.28 14.04 −0.26 12.21 10.97 8.04 6.23 4.62
Normal −4.24 14.04 −0.10 12.40 11.18 8.09 6.22 4.63

7 IPSL-CM6A-LR

raw −6.76 11.93 −6.02 10.70 8.93 2.46 8.31 6.54
DT −4.25 14.06 −0.24 12.25 10.97 8.05 6.40 4.72
LS −4.24 14.26 −0.27 13.39 11.83 7.73 6.81 5.12

EQM −4.28 14.04 −0.25 12.21 10.96 8.04 6.38 4.71
Normal −4.24 14.04 −0.01 12.37 11.27 7.81 6.40 4.72

8 GFDL-ESM4

raw −3.58 10.33 −2.93 11.41 9.62 5.47 7.51 5.76
DT −4.22 14.03 −0.22 12.27 10.99 8.07 6.45 4.76
LS −4.23 13.86 −0.56 13.30 11.62 7.76 6.08 4.69

EQM −4.27 14.04 −0.24 12.21 10.96 8.04 6.44 4.76
Normal −4.23 14.04 0.07 12.36 11.07 8.00 6.44 4.76

9 UKESM1-0-LL

raw 2.18 12.01 4.07 18.37 16.81 12.82 8.96 7.24
DT −4.23 14.01 −0.20 12.25 10.99 8.04 6.16 4.56
LS −4.23 13.84 −0.60 13.13 11.65 7.98 5.83 4.47

EQM −4.27 14.02 −0.22 12.20 10.96 8.02 6.14 4.55
Normal −4.23 14.03 −0.04 12.24 11.11 8.07 6.14 4.55

10 Average

raw −1.55 11.40 −1.04 15.05 13.20 8.28 8.28 6.40
DT −4.24 14.04 −0.22 12.24 10.98 8.05 6.32 4.68
LS −4.23 14.02 −0.66 13.46 11.83 7.87 6.27 4.81

EQM −4.27 14.04 −0.25 12.21 10.96 8.03 6.30 4.67
Normal −4.23 14.04 −0.07 12.38 11.17 8.00 6.30 4.67

As can be seen from Table 3, the four correction methods used all have a certain
correction effect on the frequency and time-series indicators on the raw data. The four
methods exhibit minimal differences in their bias correction effectiveness, and compared to
the original data, the improvements in frequency indicators by each bias correction method
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are modest. However, the frequency indicators of the corrected data are relatively close
to the observed data, and the temperature series overall demonstrates a good simulation
effect. Among them, the DT method has the best correction effects on frequency indicators
such as the mean, standard deviation, median, 95%, 90%, and 75% percentiles, with their
relative deviations being 0, 0, −10%, −0.49%, −0.18%, and −0.62%, respectively. At the
same time, the Normal distribution mapping method exhibits mediocre performance in
terms of the median, with certain errors compared to the observed data, while it performs
well in other aspects. The LS method shows good results for the mean and standard
deviation, but is mediocre for the median and percentiles, presenting a larger discrepancy
in correction effectiveness when compared to the other three methods. For the evaluation
indicators of the time series, the LS method has an RMSE value of 6.27, which is the
lowest among the four methods, indicating the most optimal correction effect in terms of
RMSE. Both the EQM and Normal distribution mapping methods have the lowest MAE
value at 4.67 among the four methods, and their RMSE values are 6.3, differing by only
0.03 from the LS method. Overall, the EQM and Normal distribution mapping methods
perform well in terms of time-series indicators. Based on the evaluation results of the bias
correction method, considering that the EQM method has certain limitations for extreme
value correction, the Normal distribution mapping method is selected in this study to
correct the temperature data for subsequent analysis.

Next, this study calculated the correlation coefficients between the corrected monthly
precipitation, temperature data and the measured data. Tables 4 and 5, respectively, display
the monthly scale correlation coefficients between the original output data and the meteoro-
logical data corrected by seven methods, compared with the observed meteorological data,
using the averaged results from eight institutions. As indicated in Table 4, the monthly
scale correlation coefficient between the original precipitation data and the observed pre-
cipitation data is 0.33. It is evident that due to the variation in precipitation sequences
and the uncertainty of climate model predictions, the original output of precipitation data
from GCMs is generally quite coarse, differing significantly from measured values, and
cannot be used directly. After bias correction, all correlation coefficients have improved
to above 0.7, showing a marked enhancement, which further indicates an increase in the
reliability of data after bias correction. In addition, although there is not much difference in
correlation coefficients between various bias correction methods, compared to using the
Gamma distribution mapping method or LOCI method alone, the combined LOCI_Gamma
method has slightly improved correlation coefficients with the measured data. Meanwhile,
as shown in Table 5, the monthly correlation coefficient between the original temperature
data and the measured temperature data is 0.94. It can be seen that the simulation effect
of the temperature data output by GCMs is better. Compared with the raw data, the
correlation coefficient of the corrected data has been improved, both of which are 0.97.

Table 4. Correlation coefficient between monthly scale corrected precipitation series and observation
data at Bayanbulak station (1975–2014).

R-Month Raw DT EQM LS Gamma LOCI LOCI_QM LOCI_Gamma

R-Pr 0.33 0.72 0.74 0.74 0.73 0.73 0.74 0.74

Table 5. Correlation coefficient between monthly scale corrected temperature series and observation
data at Bayanbulak station (1975–2014).

R-Month Raw DT EQM LS Normal

R-Tas 0.94 0.97 0.97 0.97 0.97

4.2. Precipitation Trend and Extreme Value Analysis

Next, this study employed linear regression analysis to examine the changes in annual
precipitation totals in the Kaidu River Basin during the historical period (1975–2014) and
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the future period (2025–2050). It can be seen that the annual precipitation in the research
basin during the historical period shows a basically upward trend, with a change rate
of 21.32 mm/10 yr and an average annual precipitation of 272.94 mm. According to
the evaluation results of the bias correction method, the LOCI_Gamma correction result
(Figures 3 and 4) is selected for analysis (the same as below). In Figure 3, the changes
in annual precipitation for future periods, as corrected for bias in the output data from
eight institutions, are displayed. Four color bands represent the variations in precipitation
under four scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The peaks of the color
bands correspond to the annual precipitation for each year, while the line graph represents
the smoothed trends of annual precipitation changes. Figure 4 illustrates the changes in
annual precipitation averaged across eight institutions, with four color bands representing
the range of precipitation changes under four scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5. The low peaks within the color bands indicate the minimum annual precipitation
values among the eight institutions, while the high peaks represent the maximum values.
The line graph depicts the trend of the averaged annual precipitation changes. It can be
seen that the total annual precipitation under the SSP1-2.6, SSP3-7.0, and SSP5-8.5 scenarios
in the future period shows a downward trend, with change rates of −2.59 mm/10 yr,
−4.22 mm/10 yr, and −5.98 mm/10 yr, respectively. The total annual precipitation under
the SSP2-4.5 scenario shows an upward trend, with a change rate of 12.17 mm/10yr. The
average annual precipitation under the four scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 is 301.95 mm, 295.57 mm, 291.05 mm, and 311.52 mm, respectively. By analyzing
the precipitation change trend, it can be seen that, in the future period, precipitation
is projected to exhibit an increasing trend under the SSP2-4.5 scenario. Conversely, a
declining trend in multi-year average precipitation is anticipated across the remaining three
scenarios. Specifically, in terms of precipitation, compared with the historical period, the
average annual precipitation in the future period is higher than that in the historical period
under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, and the average annual
precipitation values under the four scenarios are 10.63%, 8.29%, 6.64%, and 14.13% higher
than those in the historical period, respectively. Further, the monthly precipitation change
trends in the historical and future periods are shown in Figures 5 and 6. Compared with the
historical period, the monthly precipitation from January to December basically increases,
but the monthly precipitation increase rate has a clear decreasing trend in total in the future
period. In addition, it can be seen that, in July, the precipitation increase rate has decreased
from 10.45 mm/10 yr in the historical period to −2.51 mm/10 yr (SSP1-2.6), 4.07 mm/10 yr
(SSP2-4.5), 1.08 mm/10 yr (SSP3-7.0), and −1.38 mm/10 yr (SSP5-8.5).

Further, this paper calculates the extreme precipitation indicator R95p for both histori-
cal and future periods based on the analysis of total amount of annual precipitation and
their trends, thereby reflecting the situation of extreme precipitation within the basin. The
calculation results (Figure 7) show that the R95p in the historical period is on an upward
trend, with a maximum value of 219.2 mm in 1999 and a minimum value of 9.8 mm in 1979.
In the future period (2025–2050), the R95p shows a downward trend under the SSP1-2.6,
SSP3-7.0, and SSP5-8.5 scenarios, while it shows an upward trend under the SSP2-4.5
scenario, consistent with the trend of annual precipitation. The maximum values of R95p
under the four scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 in the future period
are 139.09 mm (2035), 126.71 mm (2045), 130.57 mm (2038), and 140.94 mm (2030), respec-
tively, and the minimum values are 44.67 mm (2038), 59.58 mm (2025), 62.90 mm (2049),
and 64.66 mm (2050), respectively. Compared with the historical period, the R95p values in
the future period under the four scenarios are generally distributed between 80–130 mm.
By comparing the averages, it can be seen that the average R95p values under the SSP1-2.6,
SSP2-4.5, and SSP5-8.5 scenarios in the future period are higher than those in the histor-
ical period, and they show an increase trend under the SSP5-8.5 scenario, with extreme
precipitation values generally higher than 100 mm, an increase of 15.04% compared to the
historical period. In terms of temporal distribution, extreme precipitation in the historical
period mainly occurs from June to August, while in the future period, the months with
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extreme precipitation increase markedly, basically concentrated from May to September,
and the time range expands more obviously with the increase in radiative forcing.
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In addition, this paper calculates the extreme precipitation index CDD to reflect the
number of consecutive dry days within the basin. Figure 8 shows the CDD under different
scenarios in the future period. According to the calculation, the CDD in the historical
period is on a downward trend, with a maximum value of 107 days in 1989 and a minimum
value of 30 days in 2010. In the future period, the CDD shows an upward trend under the
SSP1-2.6 and SSP5-8.5 scenarios, while it shows a downward trend under the SSP2-4.5 and
SSP3-7.0 scenarios. By comparison, it can be seen that the changes in CDD under the four
scenarios are relatively small, with the number of dry days basically around 50 days, and
compared to the historical period CDD (68 days), the CDD in the future period under the
four scenarios has decreased, indicating a reduction in the number of consecutive dry days
in the future.
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4.3. Temperature Trend and Extreme Value Analysis

Similarly, this study utilized linear regression analysis to examine the annual average
temperature changes during the historical period (1975–2014) and the future period (2025–2050).
It is evident that the annual average temperature during the historical period shows a
obvious upward trend, with a rate of change of 0.45 ◦C/10 yr and a multi-year average
temperature of −4.24 ◦C. Based on the results of the bias correction method evaluation, the
Normal distribution mapping method correction results (Figures 9 and 10) are selected for
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analysis. In Figure 9, the changes in the annual average temperature for future periods,
as corrected by the output data from eight institutions, are depicted. Four color bands
represent the variations in temperature under four scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5. The peaks of the color bands correspond to the annual average temperature
values for each year, while the line graph represents the smoothed trends of annual average
temperature changes. Figure 10 illustrates the changes in the annual average temperature
after averaging the data from eight institutions. Four color bands represent the temperature
variation ranges under four scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The low
peaks within the bands indicate the minimum annual average temperatures recorded by the
institutions, while the high peaks represent the maximum values. The line graph depicts
the trend of change in the averaged annual average temperatures. It can be seen that under
the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, the annual average temperatures
in the future period all show an upward trend, with rates of change of 0.21 ◦C/10 yr,
0.31 ◦C/10 yr, 0.39 ◦C/10 yr, and 0.60 ◦C/10 yr, respectively. The multi-year average
temperatures under the four scenarios of SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 are
−2.80 ◦C, −2.76 ◦C, −2.62 ◦C, and −2.53 ◦C, respectively. Comparative analysis shows that,
compared with the historical period, the annual average temperature in the future period
under the four scenarios is higher than that in the historical period, and the higher the
radiative forcing, the more obvious the warming. It can be calculated that the multi-year
average temperature values under the four scenarios are 33.96%, 34.91%, 38.21%, and
40.33% higher than those in the historical period, respectively. Furthermore, by analyzing
the trends of monthly average temperature changes in the historical and future periods,
it can be seen from Figure 11 that during the historical period and future periods under
four different SSP scenarios, the monthly average temperatures from January to December
show different changes. In addition, the OBS column represents the multi-year average
of monthly average temperatures for the historical period (1975–2014), while columns
SSP1-2.6 to SSP5-8.5 represent the multi-year averages of monthly average temperatures
for eight institutions in future periods (2025–2050). Overall, Figures 11 and 12 illustrate that
the monthly average temperatures in all months from January to December in the future
period under the four scenarios have increased. The monthly average temperature increase
rates under different scenarios show irregular trends, but in the SSP5-8.5 scenario, except
for February, March, and June, the temperature increase rates in the remaining months have
increased markedly. In August and November, the rates have increased from 0.20 ◦C/10 yr
and 0.49 ◦C/10 yr to 0.57 ◦C/10 yr and 1.12 ◦C/10 yr, respectively, with increases of 185%
and 129%, respectively.

Building on the analysis of the trends in annual average temperature changes, this
study further calculated the maximum daily average temperatures for both the historical
and future periods. Specifically, the maximum daily average temperatures for each month
were calculated and then averaged over multiple years, with the detailed results presented
in Figure 13. The figure indicates that, compared to the historical period, the maximum
daily average temperatures for each month have increased under all four future scenarios,
with the SSP5-8.5 scenario showing a particularly notable rise in temperatures. Additionally,
the most significant increase in the maximum daily average temperature is observed in
March, with the increments under the four scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5 being 160.71%, 120.54%, 114.29%, 194.64%, respectively. This indicates that not
only is there a rising trend in the annual average temperature for future periods, but also a
notably pronounced increase in the maximum daily average temperatures.
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5. Discussion
5.1. The Applicability of Bias Correction Methods for CMIP6 in the Arid Area of Northwest China

The Kaidu River Basin is located in the arid region of northwest China. Within the
research area, there are few on-site meteorological and hydrological stations, making data
acquisition difficult, which is one of the challenges in studying this region. There is only
one meteorological station in the Kaidu River Basin—Bayanbulak Station, which is situated
upstream of the basin and serves as a controlling meteorological site for the entire basin
with long-term recorded precipitation and temperature data. Therefore, this study uses
historical precipitation and temperature measurements from Bayanbulak Station to correct
CMIP6 original data using different bias correction methods, aiming to investigate and
compare the applicability of these methods within the research basin. The analysis in this
manuscript finds that overall, this meteorological station has a certain representativeness
and applicability for the overall meteorological conditions of the basin; hence, in the absence
of additional data supplementation, it can be used to represent conditions across the basin.

This study found that by analyzing the correlation coefficients between CMIP6 raw
data and measured data, the GCM temperature simulation results are relatively close to
actual conditions, while precipitation simulation results differ significantly from reality,
which is consistent with other related studies [55,56]. For precipitation, all eight institutions
overestimated precipitation to some extent and also overestimated wet-day frequency.
Based on bias correction results and evaluation indicators, further analysis shows that
using bias correction methods has a more apparent effect on correcting precipitation; for
temperature data, there is also some improvement after correction but it is not very sig-
nificant since the original data themselves are not far off from actual observations. At the
same time, due to the different principles behind various bias correction methods, their
effects on different evaluation indicators also vary. For example, for precipitation, the LS
method based on mean values provides optimal mean value correction for model output
precipitation sequences but only corrects raw data based on mean comparisons. Therefore,
compared with other methods, the LS method’s performance in correcting other frequency
indicators such as standard deviation, median value, wet-day frequency and intensity
is poorer. The DT method based on quantile mapping principles along with the EQM
and LOCI_QM combined methods provide optimal corrections for percentiles of model
output precipitation sequences as well as median values and standard deviations. Further
comparison between the EQM method and LOCI_QM method reveals that both yield
essentially identical results in terms of corrections made and evaluation indicator outcomes;
combining them does not modify the distribution of original rainfall; when applied together
their corrective effect shows no difference from EQM alone without any definite improve-
ment noted. The Gamma distribution mapping method combined with LOCI_Gamma
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optimally corrects wet-day intensity and frequency. Compared to the Gamma method
alone, LOCI_Gamma further improves corrections made to wet-day frequency and inten-
sity while simultaneously modifying the distribution of original rainfall somewhat during
its adjustments for wet-day frequency/intensity metrics; however, when applying Gamma
distribution it assumes future periods share identical distribution functions with historical
periods which does not fully align with reality, hence this approach still has certain flaws
in this respect. In the context of extreme value correction, the EQM method tends to under-
estimate the range of extreme values due to its inherent characteristics, which may result
in significantly underestimated maximums or overestimated minimums in the corrected
data. Therefore, when dealing with extreme values in meteorological data, the applicability
of the EQM method for extreme value processing should be carefully considered. Con-
sequently, for different bias correction objectives, an appropriate error correction method
should be selected based on a comprehensive consideration of watershed characteristics
and target requirements.

5.2. Future Changes of Extreme Climatic Events in River Basins

By analyzing the historical and future changes of meteorological data such as precipi-
tation and temperature in the basin, it can be seen that the annual average precipitation and
temperature in the future period are higher than those in the historical period. Based on
further analysis, it can be seen that under the moderate development scenario (SSP2-4.5),
the annual precipitation in the study area shows an upward trend. Under the sustainable
development scenario (SSP1-2.6), regional competition development scenario (SSP3-7.0),
and traditional fossil fuel-dominated development scenario (SSP5-8.5), despite the total
precipitation still being higher than the historical period, over the next 26 years, there is an
overall downward trend in annual precipitation. So, more attention should be paid to the
availability of future water resource in the basin.

Regarding extreme precipitation events, historically, they mainly occurred between
June and August. However, in the future, the months during which extreme precipitation
events occur are expected to increase significantly, primarily concentrating between May
and September. Additionally, as radiative forcing intensifies, the temporal range of extreme
precipitation events is also likely to expand. Therefore, it is necessary to plan and arrange
water resources in advance for future extreme precipitation events. At the same time, the
number of dry days in the future period (50 days) is reduced compared to the historical
period (68 days). We speculate that this may be due to an increase in total precipitation in
the future compared to the historical period, as well as a longer distribution of precipitation
events, which consequently reduces the number of consecutive dry days in the future.

Further analysis of future precipitation extremes reveals that under the SSP1-2.6 and
SSP5-8.5 scenarios, as temperatures continue to rise, a declining trend in basin precipitation
is expected, with an increasing occurrence of high temperatures and scarce rainfall within
the basin. This may lead to a higher probability of meteorological drought events. Such
conditions are likely to result in a shortage of water resources in the future and affect the
basin’s self-regulation capacity. On the other hand, considering the Kaidu River’s role in
providing ecological water supply to Bosten Lake, it is essential to plan and manage the
river basin’s water resources rationally to mitigate the decline in water levels of Bosten
Lake and maintain its normal ecological functions. In summary, it is evident that future
development scenarios will significantly impact the water resource changes within the
Kaidu River Basin, and maintaining a stable and sustainable development within the basin
is crucial for preserving its self-regulation capabilities and ensuring the supply of water to
downstream Bosten Lake.

6. Conclusions

This study selected precipitation and temperature data for the future period (2025–2050)
under four different SSP scenarios from eight institutions in CMIP6. These data were
compared with the observed precipitation and temperature data for the historical period
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(1975–2014) in the Kaidu River Basin. Various bias correction methods were applied to
correct the raw precipitation and temperature data output by the GCMs. The applicability
of different bias correction methods was analyzed, and the evolution patterns of important
meteorological elements and extreme values in the basin during the future period were
further interpreted. The conclusions are as follows:

(1) Based on the correction results and evaluation indicators of precipitation and tem-
perature, it is known that due to the different principles of various bias correction methods,
their effects during the correction process also vary. The bias correction method adopted in
this paper has a certain corrective effect on both precipitation and temperature. Compared
to temperature, the corrective effect of each method on precipitation is more obvious. For
temperature, although there is not much difference in the effects of different bias correction
methods, there is a slight improvement in the accuracy of overall temperature data after
correction. The LS method shows better results in terms of mean values but performs
poorly on other evaluation indicators; its corrective effect is somewhat lacking. When
using the EQM method for corrections, special attention should be paid to its effectiveness
in correcting extreme values. Meanwhile, for precipitation, by comparing and analyzing
combined methods with original methods based on evaluation indicator results, it can
be seen that compared to single methods, the LOCI_QM method does not show much
difference in corrective effect from single methods. However, the LOCI_Gamma method
can further modify precipitation based on single methods and therefore exhibits better
overall corrective performance.

(2) In the future period, the annual precipitation and average temperature in the Kaidu
River Basin are higher than in the historical period. The average annual temperature shows
an upward trend in the future period, but the overall trend of annual precipitation decreases
in the future period, except for the SSP2-4.5 scenario. Compared with the historical period,
the frequency of extreme precipitation events under the SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios in the future period is higher than in the historical period, and the number of
rainless days has decreased. In the future, under the SSP1-2.6 and SSP5-8.5 scenarios, the
probability of high-temperature drought events in the basin may further increase, while,
under the SSP2-4.5 scenario, the situation of high temperature and heavy rainfall in the
basin may become more prominent. This reminds us that we need to pay more attention to
the effective regulation and management of water resources in river basins and regions.
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