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Abstract: This study presents an approach using multiple linear regression to quantify the impact of
meteorological parameters and chemical species on aerosol pH variance in an urban setting in the
Pearl River Delta, China. Additionally, it assesses the contributions of interactions among these factors
to the variance in pH. The analysis successfully explains over 96% of the pH variance, attributing
85.8% to the original variables and 6.7% to bivariate interactions, with further contributions of 2.3%
and 1.0% from trivariate and quadrivariate interactions, respectively. Our results highlight that
meteorological factors, particularly temperature and humidity, are more influential than chemical
components in affecting aerosol pH variance. Temperature alone accounts for 37.3% of the variance,
while humidity contributes approximately 20%. On the chemical front, sulfate and ammonium are the
most significant contributors, adding 14.3% and 9.1% to the pH variance, respectively. In the realm of
bivariate interactions, the interplay between meteorological parameters and chemical components,
especially the TNO3-RH pair, is exceptionally impactful, constituting 58.1% of the total contribution
from interactions. In summary, this study illuminates the factors affecting aerosol pH variance and
their interplay, suggesting the integration of statistical methods with thermodynamic models for
enhanced understanding of aerosol acidity dynamics in the future.

Keywords: aerosol acidity; interactions; Pearl River Delta (PRD); pH variance

1. Introduction

Understanding the acidity of atmospheric aerosols is essential as it influences a mul-
titude of processes within atmospheric chemistry, carrying significant implications for
environmental health and public welfare [1]. For example, the acidity of aerosol particles is
crucial for the partitioning of semi-volatile species and the reactive uptake of trace gases.
Concurrently, it is pivotal in the formation of secondary organic aerosols (SOA), which
are a key component of airborne particulate matter and a significant contributor to air
pollution [2]. Aerosol acidity consequently holds critical implications for visibility and
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climate change and plays a significant role in public health concerns, particularly affecting
respiratory and cardiovascular systems [3]. In addition, the acidity of aerosols can alter the
microphysical characteristics of clouds by modifying the behavior of cloud condensation
nuclei, which in turn can affect the reflective properties of clouds and the development of
precipitation, with overarching effects on Earth’s climate system [2,4]. Thus, gaining an
in-depth understanding of the determinants governing aerosol acidity is crucial, primarily
for developing effective strategies to reduce air pollution, while also contributing to the
refinement of climate forecasting models.

Although aerosol measurement technologies have advanced in recent years, with devel-
opments such as Raman spectroscopy and colorimetric analysis, these methods are still in the
laboratory testing phase and have not been widely applied to field studies [5-8]. Currently, the
most widely used approach to characterizing aerosol acidity relies on thermodynamic models
such as E-AIM and ISORROPIA-II [1,9,10]. These models estimate the conditions of thermody-
namic equilibrium based on measured chemical components such as sulfate, nitrate, ammonia
in both gaseous and particulate phases, as well as meteorological factors like relative humidity
and temperature [2]. They calculate the amount of protons (H") and aerosol liquid water
content, thereby determining aerosol acidity. Therefore, the acidity of aerosols is influenced by a
combination of chemical components and meteorological conditions.

Some studies have explored the impact of meteorological parameters and chemical
species on aerosol acidity in China and various other regions. For example, Zhang et al. [10]
employed a multivariable Taylor series expansion method, revealing that chemical composi-
tion significantly influences the difference in aerosol pH between China and the USA. Ding
et al. [11] conducted a sensitivity analysis to identify the dominant factors affecting aerosol
acidity across different seasons in the North China Plain. They discovered that sulfate
and ammonium predominantly drive the variations in PM; 5 acidity throughout the year,
except in spring, when Ca?" becomes more influential. In research conducted in Shanghai,
Zhou et al. [12] observed that aerosol pH variations were largely dependent on temperature
seasonally, while diurnal changes were influenced by both temperature and relative hu-
midity. Our prior study also indicated that temperature is the primary factor affecting the
seasonal variability in aerosol acidity in the Pearl River Delta (PRD), with both temperature
and humidity playing significant roles in the diurnal changes [13,14]. In addition, Sharma
et al. [15] noted that sulfate concentration exerts the most significant impact on aerosol
pH generally, while, in winter, meteorological elements become more influential, with a
noticeable effect of K. Although the factors affecting aerosol acidity have been studied to a
certain extent, these methods generally only quantify the linear contributions of each factor
to aerosol acidity directly, neglecting the nonlinear interactions among them. Although
these nonlinear effects may not always be predominant, understanding their dynamics,
including the interplay among chemical components and the interactions between chemical
and meteorological parameters, is essential for a comprehensive understanding of the
controlling factors of aerosol acidity. In this study, we have adopted a multiple linear regres-
sion (MLR)-based approach, valued for its straightforwardness, to explore the contributing
factors to aerosol acidity, incorporating these complex interactions. Our approach offers a
fresh perspective, albeit not a state-of-the-art method, in understanding the complexities
of aerosol acidity. This approach highlights the potential of simpler yet effective methods
in environmental research, particularly useful in assessing and interpreting the nonlinear
interactions among various factors influencing aerosol acidity. Our findings provide a
new perspective on the complexity of aerosol acidity, contributing valuable insights to the
ongoing research in atmospheric chemistry and environmental pollution control.

The PRD region is an important economic zone in China, with a developed economy, large
population, and thriving industry. In recent years, the air quality has improved, but secondary
pollution remains a serious issue [16]. Secondary pollution in particular is closely related to
atmospheric aerosol acidity [17]. Dongguan, situated in the PRD region, was selected as a case
study site for this research. As a major manufacturing hub, Dongguan houses numerous factories
and workshops that produce toys, shoes, furniture, and more [18]. The sheer density of these
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industrial facilities results in high emissions intensity and complex pollution sources across the
city. Dongguan’s central location means air masses from various parts of the PRD converge
here, subjecting the city to a diverse mix of regional pollution. By targeting PM mitigation in
Dongguan, we aim to generate positive spillover effects for air quality in the broader PRD area.
As an emblematic PRD city with massive industrial emissions, Dongguan represents an ideal site
to study avenues for improving regional air quality [19].

This study utilized an urban site in Dongguan, a prototypical PRD city, as a case study. Through
MLR modeling incorporating interaction terms, we quantified the individual and interactive effects
of various factors on aerosol acidity variability. The regression approach offers novel perspectives
for investigating determinants of aerosol acidity. We anticipate that the findings will supply useful
references for guiding air pollution control efforts across the Chinese PRD region.

2. Methodology
2.1. Experimental

The field data collected in Dongguan, China, served as a pivotal case study to scrutinize
the determinants of aerosol acidity. Executed at the Dongguan Atmospheric Supersite,
strategically located atop the Qifenghui Building in Shigiao Town, Dongcheng District
(113°47'24" E, 23°01’16” N), the site is embedded within a multifaceted urban matrix
(Figure 1). This encompasses residential neighborhoods, an extensive road network, public
greenspaces, and diverse commercial and service entities. Given its proximity to significant
urban transit routes, the supersite is notably influenced by vehicular emissions and the regional
populace’s activities. Its location offers a unique vantage point to analyze emissions due to
nearby residential and commercial activity, while adjacent roadways provide a lens into traffic-
related pollution. Moreover, with the northerly winds of spring and winter, the station is
strategically positioned to detect the influx of airborne pollutants from adjacent localities. This
makes it a particularly representative monitoring station for assessing the spectrum of urban air
pollution influences in Dongguan, capturing both local and regional emissions dynamics.
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Figure 1. Observation station: (a) geographic location of TAES; (b) vector map of observation sites.

An online MARGA (Monitoring for Aerosols and Gases) analyzer was strategically
deployed for detailed measurements from June to September 2018, encompassing a com-
prehensive summertime sampling period. The MARGA system, developed and validated
by the Energy Research Centre of the Netherlands, consists of coupled sampling and an-
alytical modules [20]. A Wet Rotating Denuder (WRD) absorbs gases while a Steam Jet
Aerosol Collector (SJAC) samples particles, with demonstrated 99% efficiency comparable
to conventional filter methods [21]. The MARGA quantified mass concentrations of major
inorganic ions in aerosols (e.g., NH,, SO2~) and trace gases (e.g,, HNOs, NH;) at 1 h resolution.

2.2. pH Calculation

In our study, we employed the ISORROPIA-II model in its forward mode, which considers
both gas and aerosol inputs, to estimate aerosol pH. This model is optimized for chemical
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transport models and includes a broader range of species—K*, Ca?>*, and Mg?"—compared to
the E-AIM model. The chemical constituents considered in our calculations were particulate
phase C1~, SOi_, NOj;, NH;, Na*, K, Ca?", and Mg?", and gaseous phase NH3, HNO3,
and HCI. The pH calculation was based on Equation (1) below.

1000H "
~logwArwe B

o~

pH = flogloH;%

H;f] represents the concentration of hydrogen ions in solution, measured in moles per

kilogram (mol-kg ™). H'. denotes the hydrogen ion loading within an air sample, expressed in
micromoles per cubic meter (pmol-m_?’). Additionally, ALWC refers to the aerosol liquid water
content. Both H: and ALWC values were computed using ISORROPIA-IL. It should be noted
that we assumed the activity coefficient of hydrogen to be 1 based on previous findings that it
does not significantly affect the calculation of aerosol acidity [14]. While organic compounds
(acids and bases) were not factored into our aerosol pH calculations, their impact on aerosol

acidity is considered negligible, as discussed by Pye et al. [22].

2.3. MLR Analysis

The contribution of each factor, including up to four-way interactions, to aerosol pH was
obtained based on an MLR approach. In brief, we quantified the contributions of individual
variables and their interactions (including two-way, three-way, and four-way interactions) to the
explained variance (R?) in our regression model. This was achieved by systematically excluding
each variable and interaction term, calculating the change in R?, and thereby assessing their
relative importance. The process allowed for an understanding of both the individual and
combined effects of variables in explaining the variance in our dependent variable, aerosol pH.
The details of the method can be found in Section S1 in the Supplementary Materials.

3. Results and Discussion
3.1. Evaluating Methods for Calculating Average Aerosol pH

In this study, ISORROPIA-II was utilized to calculate the acidity of aerosols. Before
determining aerosol acidity, an evaluation of the charge balance between positive and negative
ions in the observed aerosol composition was undertaken to assess the quality of water-soluble
inorganic ion measurements. The analysis revealed a high degree of consistency in the ionic
charge balance, with an R? value of 0.99 and an intercept close to 1 (Figure Sla). This suggests
that the measurement of water-soluble ions in PM, 5 is reliable as it includes all major cations
and anions. However, a perfect match is not theoretically expected due to minor discrepancies
potentially arising from minor ions, such as organic acids and bases not accounted for in the
analysis [23]. Additionally, to investigate diurnal variations in the monitoring data, the charge
balance of ions was assessed separately for daytime and nighttime. The results, depicted in
Figure S1b,c, indicate good agreement in the charge balance during both periods, suggesting no
significant differences in data quality between daytime and nighttime.

To evaluate the performance of ISORROPIA-II, we adopted a comparison method that has
been widely used, as demonstrated by Weber et al. [24], for juxtaposing observed and modeled
gaseous NHj concentrations. As illustrated in Figure 2, there is a noteworthy congruence
between the measured and predicted NH;3 concentrations, characterized by an intercept near
unity (1.08) and a robust R? value of 0.96 (Figure 2). These findings underscore the reliability of
ISORROPIA-II in aerosol pH estimation, especially considering the pH-sensitive gas—aerosol
partitioning of NH3. The minor overestimation of gaseous NH3 concentrations, indicated by a
slope slightly greater than 1 and a positive intercept, might reflect the omission of atmospheric
amines in the thermodynamic model. In addition, we conducted separate analyses for daytime
and nighttime scenarios, as illustrated in Figure S2, and observed consistent results, indicating
that ISORROPIA-II's performance remains steady across these temporal variations.
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Figure 2. Comparison of measured NHj concentrations and estimates derived from ISORROPIA-II.
The blue circles are the data points, the solid blue line represents the regression fit, and the dashed
gray line is the 1:1 correspondence line.

Moreover, we assessed the influence of non-volatile cations (NVCs) on aerosol pH, an
area where ISORROPIA-II particularly excels. This assessment is crucial for benchmarking
against other models. Generally, the pH values determined with and without the inclusion
of NVCs exhibited strong correlation (R? > 0.9), but the exclusion of NVCs tends to lead
to an overestimation of acidity (average pH underestimated by 0.18 units), as shown in
Figure 3. Notably, significant deviations from the regression line in some samples indicate a
more substantial underestimation of pH in these instances. Hence, while the overall trends
align closely, the underestimation observed in certain samples underscores the importance
of including NVCs in pH estimations.
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Figure 3. Comparison of aerosol pH calculated with and without non-volatile cations (NVCs). The
brown circles are the data points, the solid brown line represents the regression fit, and the dashed
gray line is the 1:1 correspondence line.

3.2. Overview of Aerosol pH and Related Parameters

Figure 4 provides a comprehensive view of aerosol pH, aerosol liquid water content
(ALWC), crucial acid-base species, and meteorological factors including temperature and
relative humidity in both daytime (7:00 to 19:00) and nighttime (19:00 to 7:00 the next day)
during the study period. The resultant PM, 5 pH values are 2.75 during the day and 2.80 at
night, showing a remarkable consistency between day and night. Notably, the pH levels in
Dongguan are slightly higher compared to our previous findings in Guangzhou, another city in
the PRD region, recorded in 2013, where the pH was around 2.5 [13,14]. This increase in pH in
Dongguan in the current study can likely be attributed to the effectiveness of the air pollution
control measures implemented between 2013 and 2018. These efforts have led to a substantial
decrease in the average concentration of acidic sulfate, dropping to 6.8 g-m~2 in Dongguan
compared to 9.9 ug-m~3 in Guangzhou in 2013. The values are also lower than those reported
in Shanghai, Eastern China, where the average pH ranged from 3.06 to 3.30 between 2011 and
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2019 [12]. The aerosol pH observed in this study is notably lower than the levels reported in
Beijing, China, where Ding et al. [11] found a pH range of 4.5-5, and in Tianjin, with a pH of
4.9, as reported by Shi et al. [25], which may be attributed to the higher NH3 concentrations
in the northern regions, where agriculture is more prevalent and NH; emissions are relatively
higher. Compared to the PM; 5 pH in the eastern Indo-Gangetic Plain of India, which varies
between 2.67 and 3.15 across seasons, the pH levels in our study are slightly higher. In terms
of diurnal variations, the difference in pH between daytime and nighttime is not particularly
significant, with a variation of less than 0.1 pH units. Although meteorological parameters
such as temperature and relative humidity exhibit notable diurnal differences, the chemical
components also display day—night variations, which might, to some extent, offset each other.
This could be the reason behind the minimal diurnal disparity observed in pH levels.
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Figure 4. Comparative overview of daytime and nighttime aerosol pH, ALWC, meteorological pa-
rameters, and water-soluble inorganic species. ALWC represents aerosol liquid water content; TNH,
represents the summation of NHj in the gaseous phase and NH; in the particulate phase; TNO3
represents the total nitrate, including gaseous HNO3 and particulate NO; ; TCl represents the total
chloride, including gaseous HCl and particulate C1~. Other ions used in the figure refer to commonly
understood terms and are not explicitly defined here for brevity. Subfigures (a—k) correspond to pH,
ALWC, SOZ_, TNHx, TNO3, TCI, Na™, K*, Ca®*, relative humidity, and temperature, respectively.

The primary distinction between day and night lies in the meteorological conditions.
The average daytime temperature is 2.6 K higher than nighttime, and the daytime rela-
tive humidity is 10.56% lower than at night. The principal acidic and basic substances,
specifically sulfate and ammonia (TNH,, encompassing both gaseous NH3 and particulate
NH;), show a trend of noticeably higher daytime levels compared to night. Increased
daytime sulfate levels may result from intensified photochemical reactions, enhancing SO,
conversion to sulfate, as supported by several studies [26-28]. Ammonia also tends to have
higher daytime concentrations, possibly due to greater emissions from agricultural and
non-agricultural sources, as a recent study on ammonia’s diurnal variation suggests [29].
Moreover, our findings indicate that the nighttime particulate sulfate-to-ammonia ratio
(average of 3.61) is significantly higher (p < 0.05) than during the day (average of 3.06).
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Interestingly, this ratio consistently remains above 2, both day and night. Traditionally used
to gauge aerosol acidity/alkalinity [30], this ratio, as our study reaffirms, is not a reliable
measure since aerosols maintain acidity even with a ratio above 2.

We have also observed a significant increase in nitrate concentration during daylight
hours. This observation may imply that the daytime process involving the oxidation of NO,
by OH radicals is more dominant than the nighttime process involving the heterogeneous
hydrolysis of dinitrogen and dinitrogen pentoxide [31]. However, it is important to note
that the observed phenomenon of higher nitrate concentration during the day compared to
night may not apply universally across all seasons. The relative contributions of daytime
and nighttime pathways for nitrate formation can vary. Sun et al. [32] discovered that
this phenomenon is more pronounced in summer compared to winter. Meanwhile, both
sodium ions (Na*) and chloride ions (C1™) exhibited higher levels at night, indicating a
greater contribution from sea salt during nighttime periods. This suggests that sea salt is
typically the primary source for both ions. Acknowledging the disparities in meteorological
factors and major aerosol chemical components from day to night, we further evaluated
these diurnal differences in our subsequent MLR analysis.

3.3. Contribution of Parameters to pH Variance

To quantify the influence of various factors on the variability of aerosol acidity, we
conducted an MLR analysis using the input parameters and the resultant pH values. To
ensure the absence of multicollinearity in the MLR analysis, a variance inflation factor (VIF)
analysis was initially performed. The results indicated that all VIF values ranged from 0.03
to 4.03, all below the threshold of 5, thereby justifying the inclusion of all variables in the
MLR analysis [33]. The resultant MLR equation is shown as Equation (2) below.

pH =0.29 x Na™ — 0.08 x SOF~ + 0.06 x TNHy + 0.02 x TNO3 + 0.05 x TCl + 5
0.24 x Ca®" +0.06 x Kt +0.49 x Mg?" +1.48 x RH — 0.05 x T + 17.23. @

As shown in Figure 5, the resultant R? value is 0.858, indicating that the linear summation
of these factors’ contributions can explain 85.8% of the variance in pH during the study period.
This R? value is comparable to those obtained in our previous studies also in the PRD region [14].
Upon segregating the data for daytime and nighttime analysis, we observed comparable R?
values of 0.848 for nighttime and 0.870 for daytime. Furthermore, the expression patterns of
the resultant MLR equations, as illustrated in Figure S3, indicate negligible differences between
daytime and nighttime conditions. Therefore, in subsequent discussions, we will treat day and
night data collectively rather than discussing them separately.

7 : . ‘ . : —

MLR Estimated pH
~ w - [9/] (=)

o

0 1 2 3 4 5 6 7
ISORROPIA-II modeled pH
Figure 5. Comparison of aerosol pH as calculated by ISORROPIA-II and estimated through MLR.

The green circles are the data points, the solid green line represents the regression fit, and the dashed
gray line is the 1:1 correspondence line.
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We quantified the relative contributions of various factors to the overall variation in
aerosol pH. As illustrated in Figure 6, meteorological parameters predominantly influenced
the variation in aerosol pH, surpassing the impact of chemical species. This finding aligns
with previous reports indicating that meteorological factors contribute more significantly to
pH variations than chemical components in aerosols in the PRD region [14] and in Eastern
China using sensitivity analysis [12]. Specifically, temperature was the most influential
factor, accounting for 37.3% of the pH variation, followed by humidity, which contributed
approximately 20%. This observation aligns with the findings from previous research,
indicating a 0.1 unit augmentation (reduction) in aerosol pH corresponding to a 2.0 K
decrement (increment) in temperature [34]. Temperature affects aerosol acidity in multiple
ways: it influences the gas particle partitioning of secondary components, impacts the
absorption of water vapor, and significantly affects the dissociation of sulfate ions in
aerosols [35]. Moreover, temperature is a crucial parameter affecting non-ideality. Relative
humidity directly influences the liquid water content of aerosols, thereby determining the
concentration of H™ in water and affecting the dissociation of sulfate ions [36]. It should be
noted that, despite having one of the smallest coefficients in the MLR equation at —0.05,
temperature notably makes the largest contribution to the variance in pH. This discrepancy
is because the input parameters use different scales and units (as shown in Table S1 in the
Supplementary Materials). Therefore, the magnitude of a variable’s coefficient does not
directly indicate its importance.
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Figure 6. Contribution of variables and interactions to aerosol pH variance. The left bar chart
illustrates the contributions of original variables (OV), bivariate interactions (BI), trivariate inter-
actions (TT), quadrivariate interactions (QI), and unexplained (UE) to aerosol pH variance. In the
bottom-right pie chart, the specific breakdown of original variables into individual components is
depicted. The parenthetical numbers reflect the significant contributions of key parameters to the total
variance (R?), highlighting only the most influential factors. Meanwhile, the top-right pie chart illus-
trates the division of bivariate interactions into meteorological-chemical interactions (Met-Chem) and
chemical-chemical interactions (Chem-Chem), with the contribution of meteorological-meteorological
interactions being negligible and thus not displayed in the graph.

Among the chemical components, sulfate and ammonium exert the most significant
influence, contributing 14.3% and 9.1% to the pH variation, respectively. This is expected as
sulfate and ammonium are the primary acidic and basic components in aerosols. Previous
research has consistently revealed the significant impact of sulfate and ammonium on
aerosol pH across various regions, such as the findings by Ding et al. [11] in the North
China Plain and those by Fu et al. [37] in Shanghai. The concentration levels of these
components are also pivotal; sulfate is the most concentrated acidic component, while
ammonium is the most concentrated basic one. Their relative abundance plays a decisive
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role in determining aerosol acidity. Traditionally, the sulfate-to-ammonium ratio is often
used as an approximate indicator of acidity [38]. Although this ratio has been found to
have considerable uncertainty as an acidity proxy, sulfate and ammonium remain key
components in determining aerosol acidity.

Following sulfate and ammonium, the next significant chemical contributors are chloride
(C17) and sodium (Na™), primarily indicating sea salt aerosols, with contributions to pH
variation of 2.0% and 1.4%, respectively. Surprisingly, nitrate contributes only 1.2% to the
pH variation, suggesting it is not a dominant factor in aerosol pH. The least influential are
non-volatile cations (NVCs). It is noteworthy that, while NVCs have a minor impact on pH,
they significantly influence the sulfate-to-ammonium ratio, as indicated by Guo et al. [26].

It is noted that a significant unexplained (UE) portion of aerosol pH variance, even
higher than that of ternary interactions (TI) and quaternary interactions (QI), is present
in our results, as shown in Figure 6. This can be explained by the characteristics of our
MLR-based approach. Firstly, the method operates on the assumption that interactions
between factors are represented by their simple multiplicative products, which, while
facilitating initial exploration, may not encompass the full complexity of atmospheric
chemistry. Additionally, the method involves directly summing the contributions of indi-
vidual factors and their interactions, which might not fully capture the intricate nature of
these relationships. Secondly, our model accounts for interactions up to the fourth order,
potentially overlooking more complex higher-order interactions in the atmospheric system.
These aspects contribute to the UE portion, indicating that our approach, while providing
valuable insights into aerosol acidity, also points towards a range of interactions that remain
to be explored for a comprehensive understanding.

3.4. Contribution of Parameter Interactions to pH Variance

When incorporating bivariate interactions in MLR analysis, that is, examining the
interplay between every pair of parameters, our ability to explain pH variations significantly
increases to 92.5%, with bivariate interactions alone contributing 6.7% (Figure 6). Within this
scope, interactions between meteorological parameters and chemical components (termed
meteorological-chemical interactions) are particularly impactful, constituting 58.1% of the
total contribution. These are followed by chemical-chemical interactions, which account
for 41.9%. In contrast, the contribution from interactions solely between meteorological
parameters (specifically, temperature and relative humidity) is relatively minor. Direct
contributions from meteorological parameters, such as temperature and relative humidity,
surpass those of chemical components, further underscoring the substantial influence
these meteorological factors exert on aerosol acidity when they interact with chemical
constituents. Temperature and relative humidity notably affect aerosol pH by influencing
the formation and distribution of acidic components, such as sulfates, thereby marking
their roles in interactions as critically important.

Among meteorological-chemical interactions (Figure 7), the TNO3-RH pair emerges
as the most prominent, contributing 25% to the model, the highest among all bivariate
interactions, followed by TCI-RH (8.6%) and TNH,—RH (6.9%). Despite TNO3's modest
individual contribution to R?, its interaction with RH is particularly noteworthy. Nitric
acid, a highly volatile component, sees its gas particle distribution profoundly impacted
by RH, making its interaction with RH a key player in influencing pH levels. Similarly, CI
and TNHx are typical semi-volatile compounds, and their partitioning is also affected by
RH. On the other hand, TNOj3, TCl, and TNHXx are significant hygroscopic compounds that,
in conjunction with RH, jointly influence aerosol liquid water content, thereby impacting
acidity. In the realm of chemical-chemical interactions, SOZ_—TNHX and TNH,-TNOs
stand out, accounting for 15.5% and 10.4%, respectively. These interactions represent the
interplay between primary acidic and alkaline components, underscoring their criticality
in modulating acidity. The reaction of ammonia with sulfate, forming either ammonium
sulfate or ammonium bisulfate, along with its reaction with nitrate to produce ammonium
nitrate, serves to alter aerosol acidity as these resulting compounds impact the overall
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acid-base balance [39]. Hence, the incorporation of bivariate interactions provides a more
nuanced understanding of aerosol pH variation, particularly highlighting the significance
of interactions between meteorological parameters and chemical compounds.
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Figure 7. Bivariate interaction contributions and coefficients in the fitted MLR equation. The heatmap
displays the contribution of each pair of bivariate interactions to the total bivariate interactions,
expressed as a percentage. The numerical values within the cells denote the coefficients of each
interaction in the fitted MLR equation. “NA” entries on the diagonal signify that interactions of
variables with themselves are not applicable. The coefficients for the individual variables are held
constant as presented in Equation (2), and the model includes a constant term of 16.96.

Upon further analysis, it was discovered that, by incorporating trivariate and quadri-
variate interactions, the explanation for pH variation in aerosols could be elevated to 96.2%,
with the contributions from trivariate and quadrivariate interactions being 2.3% and 1.0%,
respectively (Figure 6). Although overall the contributions of trivariate and quadrivariate
interactions to aerosol pH variation are less significant compared to the direct contributions
of parameters and bivariate interactions, they nonetheless enhance our understanding
of aerosol pH variation to some extent, aiding in comprehending the factors affecting
aerosol acidity. For instance, in trivariate interactions, the contribution of SOﬁ*—TNO;.;—T
reached ~7%, which may be tentatively explained by a possible competitive interaction
between sulfuric and nitric acids as acidic substances, influenced by the volatility of HNO3
and the non-volatility of H,SO,, thereby making their competition sensitive to temper-
ature variations [40]. This highlights the importance of interactions between key acidic
and alkaline components and meteorological parameters. In quadrivariate interactions,
TNH,-TCl-Ca?"-RH contributed 8.1%, which could possibly be explained by ammonia
and calcium ions neutralizing acids, chloride participating in acid-base reactions, and
humidity affecting the solubility and reactivity of these components, underscoring the
significance of the interplay between relative humidity and various chemical components.
However, it is important to note that our statistical approach does not guarantee that
the contributions of all interactions can be perfectly explained through physicochemical
mechanisms. For example, TCl-Ca*"-K* has a relatively high proportion in trivariate
interactions, but it is challenging to find an appropriate explanation from a physicochemical
perspective. Therefore, while we can ascertain the contributions of these interactions to pH
variation, the specific contribution of each group should not be over-interpreted and must
be approached with caution.
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3.5. Implication and Limitations

Thermodynamic models provide a tool for characterizing aerosol acidity, yet quan-
tifying the individual contributions of various factors to aerosol acidity directly remains
challenging. A primary difficulty lies in accounting for the contributions of interactions.
The methodology based on MLR proposed in this study not only quantifies the direct con-
tributions of individual factors but also measures the contributions of bivariate, trivariate,
and quadrivariate interactions. This approach has achieved an explanation of over 96%
for pH variation. Furthermore, if necessary, we can incorporate higher-order effects to
explain even more of this variation. This study enlightens us regarding that, in addition to
considering the linear summation of individual factor contributions, it is crucial to account
for the mutual influences of these factors, especially in the context of bivariate interac-
tions where meteorological-chemical interactions often play a more significant role than
chemical-chemical interactions. This provides a feasible tool for understanding the factors
affecting aerosol acidity and quantifying their roles in addressing atmospheric pollution.
Our findings highlight the imperative need to delve deeper into the physical-chemical
mechanisms underpinning these interactions, especially their impact on aerosol acidity.
Unraveling these mechanisms is essential for developing more comprehensive and effective
strategies for atmospheric pollution management, ensuring that future approaches are
informed by a thorough understanding of these complex interplays.

However, it is important to acknowledge certain inherent limitations in the methodol-
ogy. The method employed is a statistical model, not a state-of-the-art approach. It is not
an ideal solution but merely offers statistical insights. While we understand the impact of
interactions, how these interactions specifically influence outcomes cannot be conclusively
determined with this model alone. Also, in this initial exploration of quantifying factor
interactions affecting aerosol acidity, our study delves into a relatively new field, making
direct comparisons with the existing literature challenging. In the future, we may integrate
thermodynamic models to provide more concrete answers. The results presented in this
paper should only be considered as a preliminary response. Moreover, this study focuses
solely on a single urban site over one season, and conclusions may vary across different
regions and time periods. More importantly, the methodology employed here holds po-
tential for broader application, while the representativeness of the findings should not be
overstated.

4. Conclusions

This study presents an approach using MLR to quantify the impact of meteorological
parameters and chemical species on aerosol pH variance in an urban setting in the PRD
region. Additionally, it assesses the contributions of interactions among these factors to the
variance in pH. The analysis successfully explains over 96% of the pH variance, attributing
85.8% to the original variables and 6.7% to bivariate interactions, with further contributions
of 2.3% and 1.0% from trivariate and quadrivariate interactions, respectively.

Our results highlight that meteorological factors, particularly temperature and hu-
midity, are more influential than chemical components in affecting aerosol pH variance.
Temperature alone accounts for 37.3% of the variance, while humidity contributes ap-
proximately 20%. On the chemical front, sulfate and ammonium are the most significant
contributors, adding 14.3% and 9.1% to the pH variance, respectively. In the realm of
bivariate interactions, the interplay between meteorological parameters and chemical com-
ponents, especially the TNO3;—RH pair, is exceptionally impactful, constituting 58.1% of the
total contribution from interactions.

In summary, this study provides an initial exploration into the various factors that may
influence aerosol pH variability, suggesting a complex interaction among these elements.
While the statistical approach employed is highly effective in quantifying these influences,
it does not explore the underlying physicochemical principles. Future research should aim
to bridge this gap, potentially by integrating these statistical insights with thermodynamic
models to enhance our understanding of aerosol acidity dynamics.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atmos15020172/s1, Figure S1: Comparison of charge-equivalent
cations and anions of water-soluble inorganic species: (a) all samples, (b) daytime, and (c) nighttime;
Figure 52: Comparison of measured NHj concentrations and estimates derived from ISORROPIA-II
during daytime and nighttime; Figure S3: Comparison of aerosol pH as calculated by ISORROPIA-II
and estimated through MLR for daytime and nighttime samples separately. The resultant MLR
Equations are (1) pHClay = 17.07 4+ 0.30 x Na™ — 0.08 x SO?[ 4 0.05 x TNH, + 0.02 x TNO3 +

0.05 x TCL 4 0.18 x Ca** +0.05 x K + 0.53 x Mg>" + 1.44 x RH — 0.05 x T and (2) pH g =

17.24+0.27 x Nat — 0.08 x SOif +0.07 x TNH, 4 0.01 x TNOj3 + 0.05 x TC1 4 0.32 x Ca?" +0.08 x
KT +0.46 x Mg?" + 1.53 x RH — 0.05 x T. Table S1: Comprehensive overview of parameter ranges
and units employed in MLR analysis.
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