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Abstract: North East Monsoon (NEM) is the major source of rainfall for the south-eastern parts of
peninsular India. Short time rainfall prediction data (i.e., nowcasting) are based on the observations
from Doppler weather radars which has a high spatial and temporal resolution. This study focuses on
the short-term ensemble prediction system using weather radar data to predict precipitation during
the NEM and is the first of its kind in the Indian region to make an assessment of the operational
performance of the prediction system. Six rainfall events have been studied for the assessment of
short-term prediction system where the precipitation systems are different and include a tropical
storm observed over different days during the 2022 NEM season. To assess the performance of
the system, Fractional Skill Scores (FSS) at a 1 km window have been computed for a lead time of
0–2 h for all the rainfall events with more than 750 samples using different optical flow methods
and ensemble sizes. The best average skill score and maximum skill score obtained at a 2 h lead
time is 0.65 and 0.78 for tropical storms, 0.5 and 0.78 for stratiform and 0.15 and 0.38 for convective
precipitation. It has found that the performance of the model is best for precipitation systems that are
widespread and have a longer life period.

Keywords: radar nowcasting; Doppler weather radar; PySTEPS; short term ensemble prediction;
radar precipitation

1. Introduction

Water impacts human life, either by its volumetric abundance or lack of it. Water-
related natural disasters are caused by extreme precipitation events, that have increased
in frequency due to climate change. During these disasters, the loss of lives as well as
property is significant and meteorological agencies have increased the focus on early
warnings to avert the same [1,2]. Early warnings for precipitation events are a challenge
due to their high spatial and temporal variability while intense precipitation at small
temporal and spatial scales can lead to flash floods [3]. Hence, a high resolution forecast of
precipitation is required to ensure an adequate and timely response through early warning
systems [4]. Precipitation forecasts are generally based on numerical weather prediction
(NWP) models where the World Meteorological Organization defines that the forecasts
issued for a shorter duration of 0–3 h are called nowcasts and those for 12–72 h are called
short range forecasts. Although there is continuous improvement in the reliability of these
forecasts, the NWP models are computationally intensive and have a coarser resolution
and the update frequency of the models is also not high enough to capture the rapidly
changing precipitation parameters. As there is a time difference between initialization
of the model to the final warning dissemination based on the model output to the end
user, the timing and location of the rainfall are missed. In the case of extrapolation-
based models that have less computational requirements and use recent observational

Atmosphere 2024, 15, 154. https://doi.org/10.3390/atmos15020154 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos15020154
https://doi.org/10.3390/atmos15020154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://doi.org/10.3390/atmos15020154
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15020154?type=check_update&version=1


Atmosphere 2024, 15, 154 2 of 13

data to perform nowcasts, the nowcasts can be generated at a higher frequency. It is
observed that extrapolation-based nowcasts outperform NWP-based nowcasts for short
time durations such as 0–3 h [5,6]. There are various extrapolation-based nowcasting
algorithms available which can be categorized as follows: (a) cloud tracking methods
that track individual rainfall cells [7,8], (b) analogue methods which predict the rainfall
based on the climatological data sets of precipitation events [9,10], (c) field-based nowcast
algorithms where the motion of the observed rainfall fields are advected [11,12] and (d)
methods where stochastic noise is introduced to the fields to simulate the evolution of
rainfall fields [13,14].

Precipitation can be observed by using various instruments such as rain gauges,
disdrometers, weather radars and satellites. Thus, rainfall data can be obtained from a
single instrument or from multiple instruments which are combined and quality controlled.
Among the various instruments available to observe precipitation, weather radars have
a high spatial coverage and temporal resolution making them the preferred source for
many extrapolation-based nowcasting algorithms. Though weather radar can be used for
observing hydro-meteors in the atmosphere within the range of 400–500 km, precipitation
values can be accurately derived from reflectivity only up to a range of 100–120 km due to
the curvature of the earth and the radar elevation angle [15,16].

The India Meteorological Department (IMD) has a wide network of weather radars
with a proposal to more than double it to cover the entire country by 2025 for rainfall
observation and accurate nowcasting [17]. The IMD has been using various expert systems
that utilize weather radar data for nowcasting. IMD used a nowcasting application soft-
ware for the Doppler weather radar network in India in 2006 named Warning Decision
Support System -Integrated Information (WDSS-II) (under a USAID mission) developed
by the National Severe Storms Laboratory (USA) in collaboration with the University of
Oklahoma. The system was utilized for various nowcasting applications such as the esti-
mation of storm cell rotation, tracking, hail detection, mosaic creation and for assimilation
in NWP models [18]. On a similar line the IMD radar network in the year 2018 adapted
the Hong Kong observatory nowcasting system SWIRLS -2 (Short-range Warning of Intense
Rainstorms in Localized Systems) which has been operational in Hong Kong since 2010 [19].

The skill score of the nowcasting applications used in Indian regions have a high
dependency on the characteristics of the precipitation systems. The characteristics of the
precipitation system are strongly influenced by local meteorological conditions and the
geographical location [20]. The factors influencing the dynamic evolution of precipitation
systems is different in tropical regions as compared to mid-latitude regions [21]. Thus,
the uncertainty in nowcasting arises due to difficulty in determining the advection and
evolution of the precipitation fields. In addition to that, the physical models that capture
the dynamic evolution of the precipitation systems cannot be resolved within the nowcast
time-scales due to which different methods are used to represent them [22]. The short-
term ensemble prediction system is an open-source nowcasting framework available in
Python language (PySTEPS) which uses stochastic noise to resemble the evolution of the
precipitation fields [13]. There have been various studies undertaken in mid-latitude regions
of Europe, Australia and the USA to determine the skill score of the PySTEPS nowcasting
system. It is observed that the skill scores obtained vary in each region for different
precipitation types due to the effect of regional and local factors [23,24]. The present study
has been undertaken to determine the effectiveness of the nowcasting system in a tropical
region and is one of the first in the Indian subcontinent. The PySTEPS nowcast model
was operationally utilized during the NEM season of 2022 at the Regional Meteorological
Centre, Chennai, of IMD. Precipitation nowcast alerts specific to geographical areas were
disseminated to the public through social media based on the nowcast output. The findings
of the study may help in assessing the utility of the system for operational forecasting in
tropical regions.

The details of the study are mention in the paper and the remainder of this paper is
organized as follows: Section 2 describes the source, type of the data and methodology



Atmosphere 2024, 15, 154 3 of 13

used in the study; Section 3 discusses the qualitative and quantitative results obtained in
the assessment; Section 4 summarizes the findings from the study.

2. Data and Methodology

This section discusses the dataset that has been used for the study as well as the
PySTEPS model used for nowcasting.

2.1. Study Domain and Datasets

The area of study is located on the east coast of India adjacent to the Bay of Bengal sea
in the northern parts of the state of Tamil Nadu, India about 150 km from Chennai and is
shown in Figure 1.

Figure 1. Study region in the state of Tamil Nadu.

This area has a tropical climate with an annual rainfall of approximately 140.4 cm with
an average of 59 rainy days. It also receives 50 percent of the annual rainfall during the
North East Monsoon season from October to December. The rainfall during the monsoon
season is due to synoptic scale disturbances occurring over the Bay of Bengal in the east and
Arabian sea in the west. The rainfall in this area is sampled by an S-band Doppler weather
radar located in Chennai and operating at a frequency of 2.87 GHz with a range resolution
of 150 m and beam width of around 1.0° with scan range of 250 km. This radar is operated
24 hours a day with a short-range scan of 10 elevation angles [0.2, 1.5, 2.0, 3.0, 4.5, 6.0, 9.0,
12.0, 16.0, 21.0]. The radar generates all basic moments such as reflectivity, Doppler velocity
and spectrum width. The 1.5 km Constant Altitude Plan Position Indicator (CAPPI) of
reflectivity for a range of 150 km is generated every 10 min with a resolution of 500 m. A
height reflectivity of 1.5 km was used to estimate rainfall to minimize the effects of clutter
and beam blockage as the radar is located in the city. The rainfall rate is estimated from the
reflectivity using Z-R relation with a and b taken as 267 and 1.345, respectively. The values
were based on the comparison study of radar rainfall intensity with surface rain gauges
from the same radar at 1.0 km height reflectivity [25]. The estimated rainfall rate is given as
an input to the nowcast model.

Rainfall events that occurred during the North East Monsoon 2022 within 150 km
range of the city of Chennai are used for the study. Rainfall of different intensity and
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types were observed throughout the day with precipitation occurring in different parts
of the study domain. The classification of convective and stratiform precipitation was
based on the features seen in the radar images such as bright band, horizontal reflectivity
gradients and height of clouds in addition to the feedback obtained from operational
meteorologists. Convective precipitation was observed on 21 October 2022, 27 October
2022 and 14 November 2022. Stratiform precipitation was observed on 21 November 2022
and mixed precipitation was observed on 5 October 2022. Measurement of precipitation
during the landfall of the tropical storm “Mandous” close to the city on 9 December 2022
was also taken into consideration for the study. More than 750 samples were taken for
the assessment with all days combined. A sample can be described as a single instance
where nowcast was generated for the next 0–2 h based on the past rainfall. The number of
samples and type of precipitation are listed in Table 1. The server configuration for running
the nowcast was a quad core CPU with 20 GB RAM.

Table 1. List of precipitation events in the study.

Date Number of Samples Precipitation Type

5 October 2022 88 Stratiform-convective
21 October 2022 141 Convective
27 October 2022 142 Convective

14 November 2022 142 Convective
21 November 2022 142 Stratiform
9 December 2022 98 Tropical storm

2.2. Overview of Nowcast Model

The PySTEPS nowcast model can be widely represented in two parts. First, the precip-
itation field evolution is a function of its spatial scale, hence, the field is decomposed into
multiplicative cascade processing where each level of this cascade is a representation of
each spatial scale. As the fields evolve temporally due to dynamic characteristics of the
storm causing precipitation, it cannot be completely captured by Lagrangian persistence.
Stochastic perturbations are introduced to the precipitation fields at different spatial scales.
Second, to reduce the bias in the probability forecasts due to the stochastic perturbations,
ensembles are used to represent the uncertainties in the extrapolation process [14].

For the multiplicative cascade processing, fast Fourier transform is applied to the
precipitation field for calculating the scale decomposition and band pass filters of different
frequencies based on Gaussian window. After the filtering process, the frequency bands are
transformed back to spatial domain which results in cascades with each level representing a
spatial scale. These cascades are used for deriving the evolution of the precipitation pattern
within the forecast model. A basic flowchart representing the workflow of PySTEPS as
implemented in IMD is shown in Figure 2.

The predictability of the precipitation is limited by the fact that its state cannot be
observed with absolute precision nor expressed without approximation of the governing
laws [26]. In radar-based precipitation nowcasting, uncertainty in prediction occurs due to
errors in estimation of current state of rainfall and the motion of the precipitation fields
(initial conditions), and the limitations in the Lagrangian persistence method to predict
the evolution of the precipitation fields and their motions. The majority of model errors in
the Lagrangian approach stem from the evolution of precipitation in terms of initiation,
growth, decay and dissipation processes that are against steady state assumptions.
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Figure 2. Workflow of the PySTEPS nowcast module as implemented in IMD.

In PySTEPS, an auto regressive (AR) process that combines the deterministic compo-
nent from Lagrangian persistence with a random perturbation term is used to model the
temporal evolution of the precipitation field. Separate second-order AR(2) processes are
applied to each cascade level to account for the dynamic scaling of precipitation. The com-
bination of the auto-regressive model in time and the cascade model in space allows one to
control the temporal evolution and correlation structure of precipitation. For each cascade
level j, the recursion formula is given by

Rj(x, y, t) =
2

∑
k=1

Φj,kRj(x, y, t − k∆t) + Φj,0εj(x, y, t). (1)

The first term corresponds to the deterministic predictable component at cascade level
j (i.e., Lagrangian persistence). The second term is a stochastic term that represents the
unpredictable component at the same cascade level j, that is, mainly initiation, growth and
decay of precipitation. The symbol ∆t denotes the time difference between consecutive
precipitation fields Rj that are normalized to zero mean and unit variance. The parameters
Φj,k in the above model are estimated from time-lagged auto-correlation coefficients ρj,k
for k = 1, 2 using the Yule–Walker equations [27]. The perturbation field εj in AR(2) is
generated as a correlated Gaussian random field using FFT filtering. Each ensemble member
has a different perturbation field to model the uncertainties in the forecasts [14,23,24].
The observed precipitation with motion and the forecast precipitation fields using the
PySTEPS model of a sample event for t = 0, t = +30 min, t = +60 min and t = +120 min are
shown in Figure 3.
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Figure 3. (a) Observed motion at 09:20 UTC on 9 December 2022; (b) observed rain-rate + 30 min;
(c) nowcast rain-rate + 30 min; (d) observed rain-rate + 60 min; (e) nowcast rain-rate + 60 min;
(f) observed rain-rate + 120 min; (g) nowcast rain-rate + 120 min.

3. Results and Discussion

The assessment of the nowcasting method for different precipitation types has been
performed using configurable parameters such as optical flow and the number of ensembles.
Fractional skill scores (FSS) for a precipitation threshold of 0.1 mm/h have been calculated
based on comparison between the nowcast output and the radar-observed precipitation
for the given lead time of 0-2 h with the neighbourhood range set to 1 km [28]. A perfect
forecast has an FSS of 1 and no skill has a score of 0 [29].

3.1. Optical Flow Method

In order to extrapolate the precipitation field for the forecast period, the current motion
of the precipitation field needs to be estimated. Three methods are currently available
in PySTEPS for the estimation of motion fields: a local Lucas-Kanade method (LK) [30],
a global variational echo-tracking approach (VET) [31] and a spectral approach called
dynamic and adaptive radar tracking of storms (DARTS) [32]. In the Lucas-Kanade method,
the local features are tracked in a sequence of two or more radar images. The scheme
includes a final interpolation step in order to produce a smooth field of motion vectors. On
the other hand, the variational echo tracking algorithm is an approach essentially consisting
of a global optimization routine that minimizes the cost function between the displaced
and referenced image. DARTS uses a spectral approach to optical flow that is based on
the discrete Fourier transform (DFT) of a temporal sequence of radar fields. The level
of truncation of the DFT coefficients controls the degree of smoothness of the estimated
motion field. DARTS requires a longer sequence of radar fields for estimating the motion.
The motion vectors generated from all three methods for a specific event time are shown in
Figure 4.

Figure 4. Motion vectors of different optical flow methods: (a) DARTS; (b) Lucas-Kanade; (c) VET.

The selection of best optical flow method for operational scenarios is based on multiple
factors. First, the requirement of data sets by different methods for generating motion vec-
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tors; second, the computing time taken for generation of motion fields; and third, the skill
score of the optical flow method. DARTS require at least six instances of the observation
field in sequence for estimating the motion field compared to two instances in the case of
VET and LK. In an event of missed instance due to network or processing issues, the now-
cast products are generated only after six observations are available in the sequence which
is about 60 min for DARTS but in the case of VET and LK, the products can be generated
within 20 min even if an observation is missed. In case of the computing time, LK had
a processing time of just 2 s in the server for calculating the motion vectors compared to
38 s for VET and 5 s for DARTS. When comparing the skill scores, there is no significant
improvement in the performance of DARTS compared to other methods though it requires
six observations for computing. Among VET and LK, the FSS values do not have much
difference when both their skill scores are above 0.4 which is significant for issuing nowcast-
ing alerts. The FSS values for nowcasting using the three optical methods for a lead time
of 0–120 min for sample events are shown in Figure 5 representing average performance
scores in stratiform precipitation, convective precipitation and combined precipitation.

Figure 5. FSS (1 km) for (a) stratiform precipitation; (b) convective precipitation; and (c) combined
for different optical flow methods.

3.2. Number of Ensembles

The input data is of 600 × 600 pixels with the pixel resolution of 500 m. The input
data ensemble size is one of the major factors in the nowcast module that determines the
quality of the nowcast output because computing time increases when there is an increase
in the ensemble size. Therefore, a choice has to be made to identify the optimum number
of ensembles required to provide the best skill scores in a given computing environment.
The impact of the ensemble size in providing high-quality nowcast data for different pre-
cipitation systems need to be assessed to determine the optimal ensemble size requirement.
The FSS values for the nowcast of 0–2 h have been calculated for stratiform as well as
convective precipitation types using an ensemble size of 24, 48 and 72 numbers. In addition
to that, the computation time has also been calculated for generating the nowcast output for
different ensemble sizes. The results are represented graphically in Figure 6. It is observed
from the figure that for stratiform precipitation there is no difference in the skill score for the
ensemble sizes of 24, 48 and 72. They exhibit similar skill scores throughout the lead time
of 120 min. In the case of convective precipitation, the skill scores for ensemble size of 48
and 72 are better than 24 for the lead time of one hour though there is not much difference
between ensemble sizes of 48 and 72. The skill scores deteriorate beyond one hour and
all ensemble sizes converge to a similar skill score. However, further research needs to be
undertaken to ascertain the benefits of increased ensemble size in the prediction of heavy
precipitation and reducing the errors in quantitative precipitation estimates. The average
computing time shows a linear relationship with the number of ensemble sizes with 95 s
for ensemble size of 24, 191 s for 48 and 289 s for 72.
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Figure 6. FSS (1 km) for (a) stratiform precipitation; (b) convective precipitation with different
ensemble sizes; and (c) computing time for ensemble sizes.

3.3. Precipitation Types

The performance analysis of the nowcast model during various kinds of precipitation
events have been studied here. Box plots have been generated from the skill scores calcu-
lated for the events on different days as mentioned in Table 1 to assess the performance
during different types of precipitation.

3.3.1. 5 October 2022 (Convective and Stratiform)

Two synoptic systems had influenced rainfall in the region of study on 5 October
2022. One was a cyclonic circulation in the south east Bay of Bengal (BOB) adjoining south
coastal Tamil Nadu extending up to 3.1 km above mean sea level which is to the north of
the domain. Another cyclonic circulation was present over the central parts of south BOB
between 4.5 and 5.8 km altitude. These two synoptic systems influenced the precipitation
with stratiform rainfall moving westwards from the BOB towards the coast in the morning
hours. Convective activity was observed in the south-west side of the radar in the afternoon
over the land which subsequently moved towards the sea as seen in Figure 7a. Eighty-eight
samples were taken in the 24 h period and the FSS values of the nowcast are represented
in the box plot in Figure 8a. The average skill score is 0.72 for 10 min lead time which
reduces to 0.30 in 2 h lead time and the mean skill scores gradually degrade as the lead time
increases. The maximum skill score is approximately 0.93 for a lead time of ten minutes
and 0.62 in a lead time of 2 h, for a stratiform precipitation that had little variations in
spatial scale. Most of the observed events had rainfall of a larger spatial extent (10 km or
more) and moved slowly across the region. The performance degradation in some events
was due to some isolated convective activity which occurred for shorter durations. It is
observed that the mean skill scores of all the events have variation less than 0.15 when the
lead time is 10 min while the variation increases drastically to approximately 0.5 at lead
time of 120 min. It can be observed that there will be significant variation in the skill score
at higher lead times when the type of precipitation events is a mix of convective as well as
stratiform events.
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Figure 7. Precipitation types: (a) 5 October 2022; (b) 21 October 2022; (c) 27 October 2022; (d) 14
November 2022; (e) 21 November 2022; (f) 9 December 2022.

Figure 8. FSS (1 km) box plot on: (a) 5 October 2022; (b) 21 October 2022; (c) 27 October 2022; (d) 14
November 2022; (e) 21 November 2022; (f) 9 December 2022.

3.3.2. 21 October 2022 (Convective)

A low pressure area had formed in the Andaman sea with a trough extending to Tamil
Nadu through south BOB up to a height of 5.8 km. Under its influence, multiple rainfall
events were observed due to convective thunderstorms with each storm lasting for 20 to
30 min and in a few cases for 60 min as seen in Figure 7b while the storms were isolated
and scattered throughout the region of radar observation. The FSS performance is very
poor for convective activity with mean score of 0.48 (141 samples) for a lead time of 10 min
while the score becomes really low for 120 min lead time as plotted in Figure 8b. This is
because the PySTEPS module can extrapolate the rainfall fields location and intensity but
cannot not generate new rainfall fields based on the thermodynamic state in the atmosphere.
In some cases, where the storms were slightly larger in terms of space and stayed active
for a significantly longer period, skill score of 0.75 have been determined for a lead time of
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60 min. However, the overall performance of the model for isolated convective activity is
poor due to the isolated and short-lived nature of the storm cells.

3.3.3. 27 October 2022 (Convective)

An upper air cyclonic circulation was observed between 1.5 km and 4.5 km over south
west BOB off the Tamil Nadu coast with north-easterly winds at surface level. Under the
influence of cyclonic circulation, convective activity was triggered at isolated places by the
convergence in the area with most of the isolated cells observed over sea area and some in
the land area as seen in Figure 7c. The characteristics of the storms and performance of the
nowcast model have been found similar to those observed on 27 October 2022 (Figure 8c).

3.3.4. 14 November 2022 (Convective)

A cyclonic circulation over the south east Arabian sea and associated trough extending
from the cyclonic circulation to south Tamil Nadu at 0.9 km above sea level leading to
convective activity over the region of observation. The convective activity was a mix of
isolated cells as well as multiple cells which had a longer life time as the storms cells
merged together. The mean skill score are around 0.55 for 142 samples and increasing up to
0.75 in some events for 10 min duration (Figure 8d). The mean skill score gradually reduced
to 0.2 for 120 min but there were few events when the skill scores are more than 0.4. It is
observed that the skill scores are better when nowcasting the convective cells which merge
and form larger cells and sustain for a long period of time of more than 60 min as seen in
Figure 7d.

3.3.5. 21st November 2022 (Stratiform)

In the synoptic chart, a depression was observed over south west BOB and adjoining
coastal Tamil Nadu located at around 190 km east of Chennai which was causing strati-
form rainfall across the region. As the system was moving westward towards the coast,
the stratiform precipitation also moved along with the system towards the land area as
observed in Figure 7e. The mean FSS value throughout the day for 142 samples varied
from around 0.8 for a 10 min lead time to approximately 0.5 for 120 min lead time while
the maximum skill score is 0.9 at 10 min to 0.78 at 120 min. The skill score performance
has been very good for any lead time with a gradual decrease in mean skill score with lead
time. Few individual events maintaining high skill scores throughout the 2 h can also be
observed as seen in Figure 8e. Though there is some variation in skill scores across events,
it is not very high—between 0 and 120 min lead time—as most of the precipitation events
were of stratiform type.

3.3.6. 9th December 2022 (Tropical storm)

Cyclonic storm “Mandous” was centred in the Bay of Bengal around 130 km south-
south east of Chennai and crossed the coast bringing widespread rainfall across the entire
region covered in the study (Figure 7f). The nowcast model performance has been best on
this day as the rainfall covered a large area and was slow-moving with steady precipitation
throughout the day. The mean FSS value has been found to be 0.82 at 10 min and 0.65 at
120 min while maximum values varied from 0.88 at 10 min to 0.78 at 120 min. The average
RMSE is approximately 0.5 mm/h for the nowcast period on the two days. The variation in
the skill scores were also minimal throughout the lead time as seen in Figure 8f.

In addition to the fractional skill scores, the probability of detection (POD), false alarms
and the critical success index (CSI) have been calculated for different precipitation types for
0–2 h. The precipitation threshold values were set as 0.1 mm/h for calculating the metrics.
A grid point is considered as hit when the predicted and the observed values are greater
than the threshold. If the predicted rain rate is greater while the observed rain rate is lower
than the threshold then the grid point is considered as a false alarm. If the predicted rain
rate is lower than the threshold but the observed rain rate is higher than the threshold then
the grid point is considered as a miss. The POD is the ratio of hits to the sum of hits and
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misses. The CSI is the ratio of hits to the sum of hits, misses and false alarms. The CSI
gives the performance skill of the nowcast module. The mean critical success index and
mean probability of detection for tropical storms, convective precipitation and stratiform
precipitation are shown in Figure 9.

Figure 9. (a) Mean critical success index for different precipitation types; (b) mean probability of
detection for different precipitation types.

It is seen from the figure that both POD and CSI are higher for tropical storm pre-
cipitation and the values reduce gradually with an increasing lead time. This is likely
due to widespread uniform precipitation persisting for a longer time duration during the
tropical storm. The POD of convective and stratiform types are 0.78 and 0.6 at 10 min
with the values merging to 0.3 at 60 min. The convective precipitation samples contain
both isolated precipitation fields that sustain for shorter periods of 0–60 min and larger
precipitation fields that sustain for more than 60 min. Hence, it is seen that for the initial
60 min, the convective POD is less than the stratiform POD but after 60 min the convective
POD performs similarly to the stratiform POD. This shows that precipitation fields with
a longer activity duration, even if they are of convective type, are better detected in the
nowcast module. The CSI scores give a similar picture except that the stratiform type
performs better than the convective type across the lead time. It can be inferred that false
alarms in the convective type of precipitation increase as the lead time increases compared
to stratiform which reduces the CSI score even though the POD is similar for lead times
greater than 60 min.

4. Conclusions

This paper presents a comparison of the nowcast performance of different precipita-
tion types during NEM. The Performance have been analyzed by modifying the different
parameters present in the PySTEPS module, such as optical flow method and ensemble
size. A comparison with computing time has also been performed to decide on an optimal
configuration required to deploy the nowcast module for operational purposes. The perfor-
mance of the model has been assessed using more than 750 samples of stratiform as well
as convective precipitation types spread across various dates including a tropical storm.
It has been observed that PySTEPS could be used in an operational scenario to generate
nowcasts with a reasonably good skill score for a lead time of up to 120 min when there
is widespread precipitation which persists for long periods. This kind of precipitation is
prevalent in the Indian region during the South West Monsoon season, North East Monsoon
season and also when the precipitation is caused by tropical storms during the summers.
The challenges in predicting convective cells are largely due to their short life span and
rapid change in storm dynamics. As the method used in this study is extrapolation-based
nowcast, it is difficult for the model to generate new storm cells based on past precipita-
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tion data. A method which considers other atmospheric parameters such as temperature,
pressure and wind along with precipitation data to model the dynamics of storms as well
as atmospheric behaviour is required to predict convective cells. NWP blending in the
extrapolation nowcasts and the usage of volumetric radar data may further improve the
prediction of convective storms [33].
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