atmosphere

A

Review

Methods, Progress and Challenges in Global Monitoring of
Carbon Emissions from Biomass Combustion

Ge Qu 12, Yusheng Shi 2*{, Yongliang Yang 3, Wen Wu ! and Zhitao Zhou 3

check for
updates

Citation: Qu, G; Shi, Y.; Yang, Y.; Wu,
W.; Zhou, Z. Methods, Progress and
Challenges in Global Monitoring of
Carbon Emissions from Biomass
Combustion. Atmosphere 2024, 15,
1247. https://doi.org/10.3390/
atmos15101247

Academic Editor: Stephan

Havemann

Received: 6 September 2024
Revised: 12 October 2024
Accepted: 16 October 2024
Published: 18 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information
Service in Cold Regions, Harbin Normal University, Harbin 150025, China; quge@hrbnu.edu.cn (G.Q.);
wuwen2022@stu.hrbnu.edu.cn (W.W.)

State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy
of Sciences, Beijing 100101, China

College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China;
yangyongliang22@mails.ucas.ac.cn (Y.Y.); zhouzhitao22@mails.ucas.ac.cn (Z.Z.)

*  Correspondence: shiys@aircas.ac.cn; Tel.: +86-10-6485-2835

Abstract: Global biomass burning represents a significant source of carbon emissions, exerting a
substantial influence on the global carbon cycle and climate change. As global carbon emissions
become increasingly concerning, accurately quantifying the carbon emissions from biomass burning
has emerged as a pivotal and challenging area of scientific research. This paper presents a compre-
hensive review of the primary monitoring techniques for carbon emissions from biomass burning,
encompassing both bottom-up and top-down approaches. It examines the current status and limita-
tions of these techniques in practice. The bottom-up method primarily employs terrestrial ecosystem
models, emission inventory methods, and fire radiation power (FRP) techniques, which rely on the
integration of fire activity data and emission factors to estimate carbon emissions. The top-down
method employs atmospheric observation data and atmospheric chemical transport models to invert
carbon emission fluxes. Both methods continue to face significant challenges, such as limited satellite
resolution affecting data accuracy, uncertainties in emission factors in regions lacking ground valida-
tion, and difficulties in model optimization due to the complexity of atmospheric processes. In light
of these considerations, this paper explores the prospective evolution of carbon emission monitoring
technology for biomass burning, with a particular emphasis on the significance of high-precision
estimation methodologies, technological advancements in satellite remote sensing, and the optimiza-
tion of global emission inventories. This study aims to provide a forward-looking perspective on the
evolution of carbon emission monitoring from biomass burning, offering a valuable reference point
for related scientific research and policy formulation.

Keywords: biomass combustion; carbon emissions; satellite remote sensing; bottom-up method;
top-down method

1. Introduction

Biomass burning represents a significant source of global carbon emissions, exerting
considerable influence on the global and regional carbon cycles [1]. This combustion
process exerts a significant influence on carbon stocks and alters the biomass composition
and structure of terrestrial ecosystems, thereby affecting their material cycle and energy
flows [2]. Concurrently, the greenhouse gases (GHGs), pollutant gases, trace gases, and
aerosols released into the atmosphere during combustion exert a significant influence on
the global and regional atmospheric GHG balance, the radiation balance, the atmospheric
environment, and air quality.

As indicated in the 2023 Global Carbon Budget report, global CO; emissions reached
40.9 Gt in 2023, with an atmospheric CO, growth rate of 5.1 Gt yr !, resulting in a global
average atmospheric CO, concentration of 419.3 ppm (parts per million) [2]. In addition
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to fossil fuel combustion and land-use change, biomass burning represents a significant
source of CO, emissions (Figure 1). As indicated by the Global Fire Emissions Database
4.1s [1], global CO, emissions from biomass burning fires between 1997 and 2023 amounted
to 7.19 Gt CO, yr_l, with 2023 CO, emissions reaching 8.43 Gt [2,3]. As stated in the Blue
Book of Carbon Emissions Research from Forest Fires (2023), published by the Chinese
Academy of Sciences, global forest fires emitted 33.9 Gt of CO; between 2001 and 2022.
This resulted in an increase of 4.35 ppm in the atmospheric CO, concentration [4]. In the
case of the extreme 2023 wildfire season in Canada, the direct CO, emissions from forest
fires exceeded 1.5 Gt, which is higher than the total combined CO, emissions from forest
fires in Canada over the past 22 years (1.374 Gt) [1,5]. The accurate quantification of carbon
emissions from biomass burning is of critical importance for the comprehension of the
carbon cycle in terrestrial ecosystems and is fundamental for the elucidation of global
and regional carbon balances. Furthermore, carbon emissions from biomass combustion
represent a crucial input parameter for atmospheric chemistry transport models [6]. The
establishment of accurate and reliable biomass combustion carbon emission inventories has
the potential to enhance the precision and reliability of model simulations. It is therefore of
great significance to the carbon cycle of terrestrial ecosystems and GHG emission reduction
that scientific and effective accounting of biomass burning carbon emissions be carried out.
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Figure 1. Equilibrium carbon balance between human activities, atmosphere, and natural ecosystems
for the 10-year period 2013-2022 [2].

The phenomenon of biomass burning, which encompasses a range of activities, in-
cluding forest fires, grassland fires, crop residue burning, household fuelwood burning,
and domestic waste burning, is distinguished by several characteristics. These include
periodicity, randomness, the presence of multiple point sources, and a wide range, which
collectively pose significant challenges to effective monitoring. There are numerous param-
eters that must be considered when estimating carbon emissions from biomass combustion.
The discrepancy in the estimation accuracy of each data source is evident, and this signifi-
cantly impacts the precision of carbon emission estimation. Furthermore, the influence of
emission source intensity and meteorological conditions introduces additional complexity
and uncertainty to the factors affecting biomass combustion, which presents a significant
challenge to accurately estimating biomass combustion carbon emissions [7-10].

The accurate accounting and inventorying of carbon emissions represents a significant
challenge within the broader field of atmospheric environmental science and global car-
bon cycle research. Long-term, high-resolution, and multi-scale biomass burning carbon
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emissions constitute an essential foundation for identifying GHG sources, supporting
model simulations, interpreting observations, and formulating emission reduction and
control programs. This study provides a comprehensive and systematic review of the
current global biomass burning carbon emission monitoring methods, offering a detailed
analysis of the latest developments and challenges in their applications. It also present a
structured overview and future outlook for biomass burning carbon emission monitoring
research while simultaneously providing theoretical insights that can inform a further
understanding of the scientific issues related to the carbon cycle in terrestrial ecosystems,
remote sensing monitoring and inversion of biomass burning carbon emissions, as well as
GHG emission reductions.

2. Analysis of the Current Situation and Limitations of Bottom-Up Monitoring Methods

The bottom-up method is a terrestrial ecosystem-based approach that estimates carbon
emissions by multiplying data on biomass burning activities (fire points, vegetation indices,
biomass, etc.) by emission factors for different types of fires. This method remains the most
prevalent approach for estimating GHG emissions, as adopted by the Intergovernmental
Panel on Climate Change (IPCC) and numerous national governments.

2.1. Land Ecosystem Process Modeling

The precision of fire carbon emission estimates can be enhanced by optimizing and
refining input parameters, including fire area, combustible biomass, combustion efficiency,
and emission factors. The main equation used in this model is:

dCpi,
dt

=GPP—-R,—LF—-CE (1)
where the carbon emissions from fire (CE) are calculated as:
CE=Y" BAXFxCFxEF 2)

In this equation, BA represents the burned area, F represents the fuel biomass, CF is
the combustion factor, and EF is the emission factor.

These equations provide a comprehensive framework for estimating fire-related car-
bon emissions and serve as the basis for the enhanced model algorithms described below.
(1) The use of enhanced model algorithms has led to an improvement in the precision of re-
mote sensing inversion products pertaining to fire area. For instance, the MCD64A1 dataset
is a newer satellite product designed for more accurate fire area detection. Compared
to the earlier MCD45A1 dataset, the relative error of MCD64A1 has been reduced from
27.9% to 17.9% [11]. (2) Ecosystem process models may be employed to simulate the spatial
distribution of fuel-based biomass, thereby replacing the land-use-type-based uniform
biomass [12]. For instance, based on the global fire emissions database derived from the
CASA (Carnegie-Ames-Stanford Approach) biogeochemical model, as documented by van
der Werf et al. (2017) [1], the BEAMS-Fire (Biosphere model integrating Eco-physiological
And Mechanistic approaches using Satellite data-Fire) ecosystem model was employed to
simulate the biomass of diverse forest types in Southeast Asia, subsequently enabling the
estimation of carbon emissions [13]. (3) The application of vegetation indices and moisture
conditions allows for the quantification of burning factors for different burn types in differ-
ent pixels. This, in turn, enables the establishment of a correlation between the burn factor
of each vegetation type and the moisture content of combustible materials under different
moisture conditions [14]. This approach allows for the simulation of spatio-temporal pat-
terns and changing characteristics of global burn factors, as well as the accurate reflection
of combustion ratios of different combustible material types under different moisture con-
ditions. (4) The emission factors of different vegetation types in various regional contexts,
along with their spatio-temporal dynamic changes, are quantified through field surveys
and indoor experimental analyses [15].
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The aforementioned models and methods have enhanced specific input parameters
of the biomass burning emission inventory model, thereby reducing the uncertainty in
biomass burning emission estimates. However, these methods typically improve only one
or a few parameters independently, and few studies have systematically optimized all of
these improvements in a unified manner. For instance, the MCD64A1 dataset improves the
accuracy of burned area detection, while the CASA model enhances the precision of carbon
emission estimates by optimizing biomass and fuel load parameters. While each method
contributes to different aspects of fire carbon emission modeling, there remains significant
potential for further improving the overall accuracy of these simulations.

2.2. Emission Inventory Method

The emission inventory method is a methodology proposed by the IPCC for the
estimation of GHG emissions. As outlined in the emission inventory list, the functional
relationship between activity data and emission factors is established for each fire type,
thereby enabling the estimation of emissions [2]. The primary equation utilized in this
model is as follows:

CO2biomass = Z?:l BA; x F; x CF; X EF; ©)

where BA; represents the burned area for the i-th type of biomass burning, F; is the fuel
biomass for the iii-th type, CF; is the combustion factor, and EF; is the emission factor.

Tsinghua University has developed the Multi-resolution Emission Inventory for China
(MEIC), a multi-scale emission inventory model for China. A unified source classification
and grading system and an emission factor database have been constructed, and real-time
dynamic calculation and online downloading of emission inventories have been realized.
However, the scale of concern in the inventory is unbalanced, with a paucity of research at
the mesoscale. The NCAR developed the FINN (Fire Inventory from NCARv2.5) model
fire emission inventory [15], which estimates high-resolution global open biomass burning
emissions and provides high-resolution input parameters for global and regional atmo-
spheric chemistry models and air quality simulations [16]. The European Commission
has developed the Emissions Database for Global Atmospheric Research (EDGAR) carbon
emissions inventory, which is based on the IPCC algorithm and provides a global database
for anthropogenic greenhouse gas emissions. However, it lacks natural source emissions
from biomass burning. Subsequently, Gong and Shi employed the emission inventory
method to estimate methane emissions from biomass burning in China and constructed
a high spatio-temporal resolution emission inventory dataset, thereby furnishing scien-
tific and effective data support for effective monitoring and the control of methane [17].
Furthermore, the research team utilized the emission inventory method to calculate CO,
emissions from open biomass burning in Northeast China over an extended period and
developed a high-resolution monthly biomass burning emission inventory for the region
spanning from 2001 to 2017.

The construction of emission inventories is contingent upon the data obtained from
biomass burning activities and the emission factors for the various types of fires in question.
The data are typically acquired through statistical, testing, or experimental monitoring,
which are inherently subjective, uncertain, and subject to a certain lag. The inaccuracies
associated with data, such as fire points, biomass, and emission factors, which are inherent
to this method, are propagated throughout the emission inventory calculation process.
This introduces an inherent uncertainty to the emission inventory and compromises the
precision of emission estimates.

2.3. Fire Radiation Power Method

The fire radiation power (FRP) method employs real-time observations of fire points
from platforms such as satellite remote sensing to ascertain the radiative energy of a
fire. The carbon emissions resulting from the combustion of biomass are calculated by
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multiplying the rate of biomass consumption by a conversion factor. The fundamental
equation employed in the model can be stated as follows:

24 _ (t=h)?
FRE = A FRPpeak b+e 27 dt x CR x EF 4)

where FRP . is the peak fire radiative power and b represents the background power. ¢
is time, h is when the peak occurs, and ¢ sigmao reflects the fire’s duration. CR converts
fire radiative power into burned biomass, while EF converts burned biomass into carbon
dioxide emissions.

This method addresses the limitations of the conventional biomass burning emission
estimation approach, which is based on the combustion area and unable to monitor carbon
emissions from minor fire sources. This method meets the criteria for dynamic emission
inventories and high-resolution datasets, as exemplified by the Global Fire Assimilation
System (GFAS) [18]. In a study conducted by Fu et al., the FRP method was employed for
the estimation of biomass burning emissions in the North China Plain [19]. The resulting
estimates were then compared with those obtained through the use of a terrestrial ecosystem
model, specifically the Global Fire Emission Database (GFED) approach. It was determined
that the GFED significantly underestimated the carbon emissions from biomass burning
in the North China Plain due to the absence of identification and monitoring of minor
radiating fire points [19]. Ruecker et al. employed this methodology to estimate fuel
consumption per unit area on the fire front and combined it with the diffusion rate to obtain
the fire intensity and spread rate of Baalam in the Sahel [20]. This approach enabled the
successful estimation of carbon emissions from biomass burning in this region. Zhou et al.
developed a methodology based on the FRP method for estimating carbon emissions from
the open burning of straw in various regions of China [21]. This approach demonstrated a
high degree of consistency with field survey results, with a correlation coefficient of 0.70.
This method offers a more precise and timely estimation of emissions from straw open
burning. In a recent study, Lv et al. employed the fire radiation power to estimate open
biomass burning in the Heilongjiang River Basin [22]. They also established a high-spatial-
and-temporal-resolution daily 1 km long time series emission inventory from 2003 to 2020.
Wan et al. employed MODIS fire counts and the FRP method, integrated with empirical
data from the Tropospheric Sounding Instrument (TROPOMI), to elucidate the carbon
emissions from forest fires in Australia during the early months of 2020 [23]. Integrating
TROPOMI-derived NO; and CO data with MODIS data led to a notable improvement in
estimation accuracy, with the explained variance for NO; increasing from 40% to 56% and
for CO from 35% to 51%. This was particularly evident in the estimation of emissions from
savanna and temperate forest fires.

The FRP method is a monitoring technique that assesses carbon emissions from
the standpoint of energy consumption and biomass combustion conversion efficiency.
However, during the process of satellite identification and the quantification of fire points,
there are significant fluctuations in the daily cycle parameters of fire radiation power
intensity, which presents a challenge in continuously observing local fire point areas. This
can result in errors of omission. Furthermore, the fire radiation power conversion factor is
derived from traditional empirical statistics, which introduces a lag that affects the real-time
and precise estimation of carbon emissions from diverse fire types.

As the bottom-up approach relies primarily on the IPCC inventory method, it is
challenging to accurately capture the dynamic changes in emission sources due to the lag
in updating statistical data and emission factors. Furthermore, there is a lack of third-party
independent verification of “sky-ground-space” data, which could enhance the reliability of
the results. This results in considerable discrepancies between the various carbon emission
inventories. Furthermore, the definition standards and statistical quality of activity data
vary from country to country, which makes it unfeasible to effectively establish a reliable
global biomass burning emission inventory.
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3. Analysis of the Current Situation and Limitations of Top-Down Monitoring Methods

The top-down method is a research approach that takes the atmosphere as its object of
study. It is based on observations of GHG concentrations and meteorological field data,
including ground observations, aerial surveys, and satellite data. It employs a combination
of atmospheric chemical transport models and diffusion models to indirectly simulate
carbon emission fluxes at varying scales. The top-down method relies, in part, on the
emissions data obtained through the bottom-up method. However, it also incorporates
information on atmospheric CO; concentrations derived from ground, airborne, or satellite
observations. The method can be used to invert carbon emissions from biomass burning
at the point, regional, and global scales. This allows for a more accurate estimation of
carbon emissions than traditional survey and statistical methods while also reducing the
uncertainty introduced by artificial factors such as parameter settings.

3.1. Gaussian Plume Model

The Gaussian plume model is a widely utilized tool for simulating the transport and
diffusion processes of point source emissions. By combining real-time updated remote
sensing data from carbon satellites with the Gaussian plume model, it is possible to identify
the plumes of CO, emissions from point sources (forests, grasslands, etc.) of ground
biomass burning. This allows for the conversion of these emissions into CO, emissions,
which can then be used to assess the emission characteristics of different biomass burning
sources and to update and optimize existing emission inventories. A case study illustrating
this application is shown in Figure 2.

Observed XCO2 enhancement Model XCO, enhancement
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Figure 2. Illustration of emission estimation using the Gaussian plume model for Zouxian on 19
January 2021. (a) Background value map showing plume (red), background (blue), and reference
points (black). (b) Observed XCO, enhancement with the plume area identified. (c) Simulated X
CO; enhancement from the Gaussian plume model. (d) Simulated X CO, enhancement overlaid on
OCO-3 satellite data [10].

Presently, atmospheric CO, concentration data obtained from GHG satellite obser-
vations, including the Greenhouse Gasses Observing Satellite (GOSAT), Orbiting Carbon
Observatory-2 (OCO-2), and the Carbon Dioxide Observation Satellite (TanSat), are ex-
tensively utilized for remote sensing estimation and inversion of carbon emissions from
substantial point sources such as biomass burning and coal-fired power plants [24]. Bovens-
mann et al. were the first to propose that remote sensing satellites can detect strong local
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and regional point source CO, emissions and quantify them [7]. Subsequently, Nassar et al.
employed the Gaussian plume model in conjunction with OCO-2 data to quantify CO,
emissions at the scale of a single facility (power plant), and the findings demonstrated a
notable correlation between remotely sensed carbon emissions and daily reported emis-
sions [25]. Krings et al. employed in situ airborne remote sensing CO, measurements and
inverse Gaussian plume models to ascertain the emission source location and the CO,
emissions from the plume overlap [26]. Zheng et al. employed OCO-2 satellite data in
conjunction with a Gaussian plume model to ascertain CO, emissions from multiple point
sources in China [27]. The resulting total emissions exhibited a high degree of concordance
with those reported in other anthropogenic emission inventories, particularly with the
MEIC, showing 27.1% higher estimates during the cold season and 5.2% lower estimates
during the warm season. The results also aligned reasonably with global inventories such
as the EDGAR inventory and the Open-Source Data Inventory for Anthropogenic CO,
(ODIAC). Nassar et al. enhanced the quality of the OCO-2 satellite data and the input
parameters required by the Gaussian plume model by incorporating higher-resolution
ERA-5 wind data, implementing sub-footprint fitting for improved plume modeling, and
adopting a new automated background selection method specifically for wind speed and
background values [25]. They also inverted CO; emissions from large point sources in
various regions, including the United States, Poland, Russia, and South Korea. Guo et al.
integrated CarbonSat observation data and optimized the background value determination
submodule of the Gaussian plume model to achieve the remote sensing inversion of carbon
emissions from very large, extremely large, and large point sources in China [10]. This
approach provides insights and data support for the remote sensing inversion of carbon
emissions from biomass burning and multi-source carbon emissions.

The integration of Gaussian plume models and carbon satellite data can enhance the
temporal and precision capabilities of bottom-up models. Nevertheless, the low resolution
of carbon satellite data and the impact of environmental noise (e.g., clouds and precipitation)
continue to present challenges in terms of identifying biomass burning emission sources
and accurately determining atmospheric background concentrations. For instance, sensors
such as OCO-2 and GOSAT have low resolutions that prevent them from capturing smaller
farmland fires and transient fire points with low emission intensities, resulting in an
underestimation of emissions.

3.2. Lagrange Particle Diffusion Model

The Lagrangian atmospheric transport model employs a particle tracking approach to
estimate the concentration distribution of pollutants at varying locations and times. This
methodology entails monitoring the movement of individual or collective pollutant parti-
cles in both space and time. The model can provide information regarding the dispersion
of pollutants from their source to the area of influence, as well as the temporal evolution
of these pollutants. It is a commonly utilized methodology in gas dispersion simulation
studies within a specified area [28].

In a recent study, Wu et al. employed an enhanced Lagrangian particle dispersion
model (X-STILT) to extract amplified XCO, signals from XCO, data obtained from the OCO-
2 satellite [29]. The X-STILT workflow is illustrated in Figure 3. Heymann et al. employed
the X-STILT model to invert the XCO, data from the OCO-2 satellite, thereby retrieving
CO; emissions from fires in Indonesia [8]. These emissions were approximately 30% lower
than those obtained using GFAS1.2 and GFED4. In a comparative study conducted by
Kiel et al., the XCO, enhancements observed by OCO-3 were contrasted with the CO,
simulated by X-STILT [9]. The findings indicated that the model demonstrated superior
capability in capturing the XCO, gradients within urban areas. By employing X-STILT’s
distinctive time-reversal methodology to attribute the observed XCO, enhancements to
disparate emission sources at the surface, the researchers discovered that the discrepancy
between the satellite-observed XCO, enhancement values and those derived from the
X-STILT model is typically less than 1 ppm. Roten et al. employed OCO-3 satellite data to
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monitor one source identified by OCO-3 and then extrapolate other sources to minimize
the computational burden associated with X-STILT calculations [30]. They applied the
algorithm to OCO-3 data for two cities, namely Los Angeles and Salt Lake City. The
time required to identify CO, sources was reduced by 62% and 78%, respectively. In a
recent study, Wu et al. employed the Lagrangian atmospheric transport model to assess
the efficacy of the MicroCarb satellite in estimating carbon emissions [31]. Additionally,
they evaluated the impact of varying meteorological conditions, including cloud cover
and changes in biological flux, on carbon emissions in two major urban centers: Paris
and London.

Enter data X-STILT model Inversion Results and Analysis
= Meteorological data Source Identification and Emission Flux
‘e a Emission Simulation » Footprint Matrix f  ——» )
(Backward Time Running) AEco, = AXco, * ff
»;pf‘m Error
Ly % OCOData }—>Analysis
- Determine Background Value N Enohl;igﬁint | | Emission Inventory
Determine Receptor (Forward Time Running)
Points XCO, gy —XCO; 1

Data Screening and Backward Model Obtain Footprint Forward Model )
; X . : B . Flux Calculation
Preprocessing Simulation Matrix f Simulation

Figure 3. X-STILT model CO; emission inversion flowchart (XCO,_obs: satellite-observed value;
XCO,_bg: model-calculated background value; f: footprint value).

The X-STILT model represents an extension of the traditional surface-based receptor
method to an air-column-based receptor scheme. This is based on satellite observations, me-
teorological data, and an a priori emission inventory. The model quantifies regional carbon
emissions by simulating regional plume diffusion using meteorological data and combining
this with enhanced values extracted from satellite observations of XCO, concentration data.
Nevertheless, the inversion of carbon emissions from biomass burning remains uncertain
due to the influence of factors such as the spatial resolution of meteorological data, the
quality of satellite data, and emission inventories. Furthermore, due to the inherently
unstable meteorological conditions at the regional scale, the X-STILT model is not suitable
for simulations at this scale.

3.3. GEOS-Chem Model Inversion

Atmospheric chemistry transport models have increasingly become a standard tool
for investigating global and regional changes in atmospheric CO; concentrations. GEOS-
Chem is a three-dimensional global atmospheric chemistry transport model developed
by Harvard University in the United States. The model is capable of simulating the
concentration distribution and evolution process of various atmospheric components
based on the physical and chemical effects of atmospheric composition and its transport
process. It has been employed extensively in the domain of atmospheric chemistry transport
research [32]. The CEOS-Chem nested technology route is illustrated in Figure 4.

Wau et al. constructed an inversion model using GEOS-Chem coupled with the ensem-
ble square root Kalman filter (EnSRF) to estimate both the global and China’s terrestrial
carbon fluxes for 2019. Their findings showed that the global terrestrial and oceanic carbon
sinks accounted for 2.12 and 2.53 Pg C per year, respectively, which corresponds to 21.1%
and 25.1% of global fossil fuel CO, emissions. [33]. In a study published in 2021, Fu et al.
employed the GEOS-Chem model to investigate the responsiveness of CO, concentrations
in East Asia to interannual fluctuations in sources and sinks [19]. Their findings indicated
that alterations in biomass burning emissions may account for up to 7% of the observed
variability, corresponding to a range of 0.8-1.2 ppm. Dong et al. discovered through GEOS-
Chem simulations that the biomass burning emission inventory in northern Eurasia was
overestimated due to the utilization of emission factors based on US vegetation types [34].
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This further underscores the necessity of verifying and enhancing biomass burning emis-
sion inventories. Lutsch et al. demonstrated through a comparison of GEOS-Chem model
simulations using GFASv1.2 as a priori parameters with infrared measurements that the
GEOS-Chem model underestimated the transport of wildfire emissions to the Arctic [35].
Palmer et al. employed a combination of the GEOS-Chem model and inversion algorithms
to infer posteriori fluxes from NOAA and GOSAT data, utilizing prior emission invento-
ries [36]. The researchers discovered that biomass burning in the tropical regions has been
the primary driver of changes in carbon concentrations since the 2014,/2016 El Nifio event.
Su et al. quantified the impact of biomass burning carbon emissions on global atmospheric
CO, concentration changes on the grid-scale based on the GEOS-Chem model [3]. Their
findings indicate that biomass burning can lead to an increase of 2.4 ppm in the global
average atmospheric CO; concentration each year. Xie et al. estimated the carbon emissions
from biomass burning in winter agricultural fires in Heilongjiang Province, China, using
the GEOS-Chem model [32]. They then combined these data with heavy haze events in
Northeast China to conduct a quantitative traceability analysis.

CO, Observation
Biogeochemical Fossil Fuel Boundary 2 Dat
Flux Combustion Flux Conditions ata
i Atmospheric CO, Simulation .
Meteorological Atmospheric Chemistry _'J> P . 2 Simuiatt E’\> Model Validation
Data Transport Model Results in Nested Regions
(GEOS-Chem) l

il N

Ocean
Flux

Spatial and Temporal

Fire Emission Restart Files Distribution of Atmospheric CO,

Flux

Figure 4. The CEOS-Chem nested technology route.

The GEOS-Chem model is capable of simulating the impact of biomass burning
emissions on the dynamic changes in atmospheric CO, concentrations on a range of
spatial scales (from regional to global). The model can be used as a forward model to
assimilate multi-source observational data based on Bayesian principles to invert and
obtain high-precision posterior biomass burning emission inventory data, thus enabling the
quantification of the global carbon flux from biomass burning in real time [37]. However,
the accuracy of the inversion is largely dependent on the precision of the a priori emission
inventory, the timeliness of the observational data, and the accuracy of the inversion
algorithm [38].

The objective of the top-down method is to reduce the discrepancy between the
simulated and observed CO, concentrations with respect to spatial and temporal scales.
However, the accuracy of the a priori emission inventory and the complexity of the model
parameterization scheme have a significant impact on the accuracy of the simulation results.
Despite the potential for real-time detection across a vast geographic area, satellite remote
sensing is constrained by the influence of complex meteorological conditions, including
cloud cover, precipitation, and aerosol pollution. The assimilation and inversion of global
carbon emissions from biomass burning is hindered by several issues, including low data
utilization, an uneven spatial and temporal distribution of data, and insufficient inversion
accuracy. These challenges contribute to an increased level of uncertainty in the process.

4. Trends and Prospects of Carbon Emission Research on Biomass Combustion

The following sections outline key methods for enhancing the precision and reliability
of biomass burning emission monitoring through remote sensing technologies:
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4.1. High Precision of Data and Multi-Source Fusion

(1) The acquisition of high-precision observational data: The advent of remote sensing
technology has allowed for the utilization of high-resolution satellite data, exemplified
by MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared
Imaging Radiometer Suite), a standard practice for the monitoring of carbon emissions
from biomass burning [39]. However, the limitations of a single data source have prompted
researchers to gradually shift their attention to multi-source data fusion, which can enhance
spatial and temporal resolution by integrating data from disparate sensors, including the
GOSAT, OCO-2, and TROPOML. For example, the high-resolution column-averaged car-
bon dioxide concentration (XCO,) observations from the OCQO-2 satellite of the National
Aeronautics and Space Administration (NASA) are a valuable resource for estimating the
spatial and temporal distribution of fire emissions [40]. (2) Integration and validation of
multi-source data: By integrating ground-based observations (e.g., TCCON), airborne sen-
sor data, and satellite remote sensing data, researchers can construct more comprehensive
and accurate biomass burning emission inventories. This multi-source data integration
approach has been widely employed in global carbon budgets, facilitating more reliable
estimates through comparison and validation. For instance, the integration of TCCON
ground-based measurements with satellite data (e.g., GOSAT) has been shown to markedly
reduce satellite observation errors [39].

4.2. Model Optimization and Introduction of New Algorithms

(1) Model parameter optimization: It is acknowledged that traditional emission inven-
tory models, such as the GFED and the GFAS, are not without uncertainty when applied
globally. This is primarily due to the manner in which the model parameters are set. In
recent years, researchers have reduced these uncertainties by incorporating additional mea-
sured data into the model calibration process and utilizing more sophisticated combustion
efficiency and emission factor formulas. By constructing the CASA model, improving
the fuel consumption parameter settings, and accurately estimating the net primary pro-
ductivity of vegetation, Fu et al. were able to reduce the emission estimation error of the
GFED4 model by 15% [41]. (2) The introduction of new algorithms: The rapid development
of big data and machine learning techniques has created new avenues for research on
carbon emissions from biomass burning. The application of machine learning algorithms to
historical fire data enables more precise forecasting of future fire occurrences and associated
emissions. Xu et al. implemented a deep learning model (YOLOv5n-CB) for real-time
forest fire monitoring, improving detection accuracy and speed [42]. This supports the role
of machine learning in enhancing fire detection and biomass burning emission tracking.
Farahmand et al. introduced the Fire Danger from Earth Observations (FDEO) system,
which uses satellite data and machine learning to predict wildfire danger by up to two
months in advance. This highlights how advanced algorithms improve fire prediction and
emissions forecasting [43].

4.3. Detailed Regional Studies and Applications on a Global Scale

(1) Regional-scale research: In light of the findings of global-scale research, regional-
scale research has gradually become a focal point in its own right. For example, studies
on biomass burning emissions in the Amazon rainforest and Sub-Saharan Africa have
not only revealed the characteristics of burning emissions in different ecosystems but also
provided a scientific basis for environmental protection and policy formulation in these
regions [3]. Wiedinmyer et al. employed the regional model NCAR to simulate fire activity
in Sub-Saharan Africa and indicated that these fires were responsible for 25% of global
atmospheric CO, concentrations [44]. (2) Application and extension at the global scale:
While regional studies are indispensable, the prevailing emphasis in the context of global
climate change research remains on the application of these findings to the monitoring of
carbon emissions on a global scale. Global biomass burning emission inventories, such as
GFED and FINN, have been implemented globally and provide fundamental data support
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for global carbon cycle research. It is imperative that future research endeavors to enhance
the precision of these inventories and integrate a greater quantity of real-time observational
data [39].

4.4. Assimilation Technology and Dynamic Monitoring

(1) Application of data assimilation techniques: By employing atmospheric chemistry
transport models (e.g., GEOS-Chem) and data assimilation techniques, researchers can inte-
grate multi-source observational data with model simulations to generate high-precision
post-processing emission inventories. This method has the additional benefit of correcting
systematic errors in the model and improving the accuracy of carbon emission estimates.
For instance, the GEOS-Chem model, when used in conjunction with OCO-2 satellite data,
enables the real-time updating of fire emission estimates, thereby markedly enhancing the
responsiveness to sudden fire occurrences [3]. (2) Realization of dynamic monitoring: The
dynamic monitoring of biomass combustion emissions has become a more feasible under-
taking with the advent of near real-time data processing and analysis systems. In recent
years, dynamic monitoring systems have been employed to facilitate rapid responses to
emergencies such as forest fires and to generate emission estimates within a short period of
time. Such systems have been implemented for the monitoring of forest fires in the United
States and Australia, thereby markedly enhancing disaster response capabilities [39].

4.5. Interdisciplinary Cooperation and International Collaboration

(1) Interdisciplinary collaboration: The study of carbon emissions from biomass burn-
ing is a complex undertaking that requires the expertise of numerous disciplines, including
ecology, meteorology, remote sensing technology, and atmospheric chemistry. Additionally,
it necessitates the integration of social and economic considerations. Future research will
increasingly prioritize interdisciplinary collaboration, with the integration of knowledge
and technology from diverse fields facilitating more comprehensive carbon emission mon-
itoring and assessments. For example, the study conducted by Liousse and colleagues
integrated atmospheric chemistry, social economics, and remote sensing technology to
develop a comprehensive methodology for estimating emissions from biomass burning [45].
(2) International collaboration and data sharing: In the context of globalization, interna-
tional collaboration in the study of biomass burning emissions is of particular importance.
The establishment of a global observation network and data sharing platform enables
researchers from disparate countries to collaborate on addressing the challenges of global
climate change. As evidenced by the Sixth Assessment Report (AR6) of the IPCC and the
research of He et al., international collaboration and data sharing can markedly enhance
the precision of global carbon emission monitoring, thereby facilitating countries’ collective
efforts to tackle climate change [46].

5. Conclusions

Significant progress has been made in monitoring global carbon emissions from
biomass burning over the past few decades. Nevertheless, current research continues to
encounter certain challenges, including the absence of consistent monitoring techniques,
constraints in spatial and temporal resolution, and shortcomings in satellite remote sensing
technology. Despite these issues, the introduction of new algorithms, the optimization of
models, and the strengthening of interdisciplinary collaboration across field like ecology,
meteorology, atmospheric chemistry, and remote sensing, as well as international coopera-
tion and data sharing, are expected to result in a significant improvement in the accuracy
and reliability of monitoring carbon emissions from biomass burning. Future research
should further integrate multi-source data, promote innovation in satellite remote sensing
technology, and optimize global carbon emission inventories to achieve more accurate
assessments and predictions of global carbon cycles and climate change. These advances
will not only provide more robust data support for scientific research but will also serve as
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crucial reference points for the development of global GHG emission reduction policies,
thereby facilitating global efforts to address climate change.
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