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Abstract: Deep-learning-based convection schemes have garnered significant attention for their
notable improvements in simulating precipitation distribution and tropical convection in Earth system
models. However, these schemes struggle to capture the stochastic nature of moist physics, which
can degrade the simulation of large-scale circulations, climate means, and variability. To address
this issue, a stochastic parameterization scheme called DIFF-MP, based on a probabilistic diffusion
model, is developed. Cloud-resolving data are coarse-grained into resolved-scale variables and
subgrid contributions, which serve as conditional inputs and outputs for DIFF-MP. The performance
of DIFF-MP is compared with that of generative adversarial networks and variational autoencoders.
The results demonstrate that DIFF-MP consistently outperforms these models in terms of prediction
error, coverage ratio, and spread–skill correlation. Furthermore, the standard deviation, skewness,
and kurtosis of the subgrid contributions generated by DIFF-MP more closely match the test data
than those produced by the other models. Interpretability experiments confirm that DIFF-MP’s
parameterization of moist physics is physically consistent.

Keywords: convection parameterization; diffusion model; generative model; machine learning

1. Introduction

Convection plays a crucial role in atmospheric circulation, transferring heat from the
Earth’s surface to the upper atmosphere, creating a vertical air movement to mix air at
different altitudes, driving cloud formation and extreme precipitation, and shaping the
global mass, momentum, and energy budget. Meanwhile, current numerical models fail to
explicitly resolve convection processes due to the resolution limits posed by computational
constraints. Instead, they rely on convection parameterization schemes to estimate the
influence of convection on resolved variables.

Traditional convection parameterization schemes, coming with error-prone empirical
function forms and free parameters, may introduce significant errors when estimating heating,
moistening, and precipitation rates at the grid scale [1,2], which translates into errors in
continental precipitations and mesoscale convective systems [3,4]. Traditional schemes are
also unable to accurately simulate the self-aggregation of convection [5,6]. They fail to capture
the interactions between deep and shallow convection, as well as the interactions between
convection, clouds, and large-scale atmospheric motions [2,4,5,7]—despite the critical role that
these processes play in assessing climate sensitivity [5].

There is a growing interest in using high-fidelity data, including high-resolution simula-
tions and observations, to calibrate existing convection schemes or develop data-driven simula-
tors using deep neural networks. The latter provides more flexibility and a higher accuracy,
promising a breaker to the deadlock of the convection parameterization problem [8,9]. Deep
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neural networks have been tested thoroughly in numerical models under aquaplanet or realistic
geography setups, showing their potential to be the next-generation convection scheme [10–20].
Gentine et al. [9] and Rasp et al. [16] were among the first to explore deep-learning-based
convection parameterization schemes as a replacement for super-parameterization in global
climate models. Their findings showed that numerical models using deep learning schemes
can simulate the Madden–Julian Oscillation and Kelvin waves with a reasonable amplitude
and speed. Yuval and O’Gorman [19] applied a random forest model to parameterize sub-
grid contributions diagnosed from cloud-resolving data. Once integrated into the numerical
model, their approach successfully reproduced the zonally averaged precipitation distribu-
tion, particularly capturing extreme precipitation events. Subsequent studies have focused on
implementing deep learning convection schemes under realistic geographical conditions for
real-event simulations [12,13,15,17,18].

However, the lack of stochasticity in neural-network-based convection schemes can
negatively impact the performance of numerical models. Gentine et al. [9] found that
the heating and moistening tendencies predicted by deep neural networks exhibited a
reduced variability below 700 hPa. Similarly, Rasp et al. [16] demonstrated that, in multi-
year simulations, the standard deviation of convective heating tendencies below 700 hPa
was significantly lower after incorporating the same neural network into the numerical
model. In contrast, traditional stochastic parameterization schemes have been shown
to improve ensemble prediction skills, as well as the simulation of the Madden–Julian
Oscillation, climate means, and variability [21–23]. It is anticipated that the stochastic
parameterization of moist physics using neural networks could further enhance their
performance in numerical models.

A generative model is a type of deep learning model grounded in probability theory,
which maps a known prior distribution to a target distribution, making it well-suited for
stochastic parameterization. Classic generative models include the variational autoencoder
(VAE) [24] and generative adversarial network (GAN) [25]. GANs have been explored
for the stochastic parameterization of convection, subgrid stress in ocean models, and
stochastic tendencies in the Lorenz-96 model [26–32]. However, VAEs are hindered by
issues such as blurry generated samples and posterior collapse [33,34], while GANs face
challenges with training instability and mode collapse [35,36]. Although efforts have
been made to stabilize GAN training and improve the diversity and quality of generated
samples [33,35–38], achieving a good performance still requires significant case-specific
expertise when using GANs and VAEs.

In recent years, a new family of generative models, probabilistic diffusion models
(PDMs) [39], has garnered significant attention. PDMs serve as the foundation for well-
known text-to-image models such as Stable Diffusion [40] and Dall-E [41]. They divide the
generative process into a series of relatively simple denoising tasks, representing a paradigm
shift that makes PDMs easier to train and less prone to mode collapse. [39,42,43]. PDMs
have demonstrated a strong superiority in producing high-quality generative samples, further
solidifying their prominence in the field [44].

In this study, we develop a stochastic parameterization scheme for moist physics
based on a probabilistic diffusion model (DIFF-MP). Cloud-resolving global simulations
are coarse-grained into resolved variables and subgrid contributions to form the training
data for DIFF-MP. A key limitation of PDMs is their slow inference speed. To address
this, we adapt the approach of Chen et al. [45], training DIFF-MP on a range of noise
levels in a stochastic manner to generalize for larger denoising steps, thereby accelerating
the process. Classifier-free guidance [46] is employed during inference to fine-tune the
influence of conditional information by fusing the denoised latents of both conditioned
and unconditioned models, further enhancing DIFF-MP’s performance. DIFF-MP is then
compared to GANs and VAEs on test data for the stochastic parameterization of moist
physics. Finally, we explore the physical interpretability of DIFF-MP.

We find that DIFF-MP consistently outperforms the other two models across seven key
criteria for the stochastic parameterization of moist physics. This study is one of the first to
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explore the potential of PDMs in stochastic parameterization, and it is expected to inspire
further research into the broader application of PDMs in numerical model development
and atmospheric sciences.

This study is organized as follows. Section 2 provides details on the cloud-resolving
data and scale separation techniques used for generating the training data. It also outlines
the training process for DIFF-MP, including methods for accelerating DIFF-MP and improv-
ing its performance through classifier-free guidance. Section 3 presents the performance of
DIFF-MP on the test data, comparing it with baseline models, including GANs and VAEs,
and discusses the interpretability of DIFF-MP. Finally, Section 4 concludes the study and
offers perspectives for future research.

2. Methodology
2.1. Training Data Preprocessing

The training data are derived from high-fidelity cloud-resolving simulations using
the Global–Regional Integrated Forecast System (GRIST) [47,48], which is formulated on
primitive equations. The GRIST employs a structured Delaunay–Voronoi grid [49] for its
horizontal mesh, making it well-suited for global simulations due to its isotropic properties.
High-fidelity data from high-resolution simulations are commonly used as training data
for machine-learning-based parameterization schemes, as they explicitly resolve most
atmospheric motions, including convection.

The simulations span the following four periods: 1–20 October 1988; 1–20 January
1998; 1–20 April 2005; and 10–29 July 2013, covering four seasons with ENSO and MJO
events of varying intensities. La Niña and El Niño were particularly strong in 1988 and
1998, respectively, while MJO events were prominent in 1988, 1998, and 2005. These
periods were selected to provide diverse training data. The horizontal resolution of the
simulations was 5 km, sufficient to resolve deep convection. There were 30 vertical levels
below 20 km, with additional levels in the boundary layer. The initial conditions were
interpolated from ECMWF Reanalysis v5 (ERA5) [50], and the boundary conditions (sea
surface temperature) were updated every 24 h. The GRIST employed the Yonsei University
(YSU) [51] scheme for boundary-layer parameterization, the Noah-MP land surface model
for surface–atmosphere fluxes, the WRF single-moment 6-class scheme (WSM6) [52] for
microphysics, and the RRTMG schemes [53] for shortwave and longwave radiation. The
model outputs were saved every hour.

The high-resolution data had to be preprocessed into subgrid contributions and large-
scale resolved variables to form the training dataset. Subgrid processes, including mi-
crophysics and subgrid vertical transports, are the outputs of DIFF-MP. These consist
of the subgrid vertical transports of heat and water vapor, as well as the following four
outputs from the WSM6 scheme: temperature tendency (TendT−mp), water vapor tendency
(Tendqv−mp), cloud water (qc), and cloud ice mixing ratios (qi). Rain, snow, graupel mixing
ratios, and subgrid vertical transports of qc and qi were excluded, as they are negligible.
The following six variables are selected as input conditions for DIFF-MP: temperature (T),
water vapor mixing ratio (qv), surface pressure (Ps), sensible heat flux (SHF), latent heat
flux (LHF), and shortwave radiation at surface (SOLIN). The preprocessing steps for the
high-resolution data are outlined as follows.

A random set of points on the high-resolution Delaunay–Voronoi grid, which are
seamlessly connected, were selected for coarse graining and subgrid diagnostics. These
points are labeled as P1, P2, P3, . . ., Pn and were arranged to approximate a regular hexagon
or pentagon as closely as possible. The coarse-grained variable is denoted as a for any
variable a in the high-resolution data.

a =
1
n ∑

Pi∈{P1, P2, P3, ..., Pn}
aPi . (1)
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Through coarse graining (Equation (1)), we can obtain averaged variables for DIFF-
MP’s conditional inputs and outputs, except for the subgrid contributions of T and qv. If
the difference between a and a is a′, then the subgrid vertical flux of a is,

a′w′ =
1
n ∑

Pi∈{P1, P2, P3, ..., Pn}
a′Pi ·w

′
Pi . (2)

The tendency due to the subgrid vertical flux of a is,

Tenda− f lux = −∂a′w′

∂z
. (3)

According to the definition, the subgrid contributions for T and qv are,

Tendqv−sgs = Tendqv−mp + Tendqv− f lux = Tendqv−mp −
∂q ′v w′

∂z
, (4)

TendT−sgs = TendT−mp + TendT− f lux = TendT−mp −
∂T′w′

∂z
. (5)

The reason why the subgrid contributions are formulated as presented above is ex-
plained in the Supplementary Materials. The conditional input and output variables for
DIFF-MP are shown in Table 1.

Table 1. The conditional input and output variables of machine learning schemes in this study. Level
numbers for each variable are also presented.

Conditional Input Level Number Output Level Number

Temperature 30 Subgrid tendencies for T 30
Water vapor mixing ratio 30 Subgrid tendencies for qv 30

Surface pressure 1 Cloud water mixing ratio 30
Sensible heat flux 1 Cloud ice mixing ratio 30
Latent heat flux 1

Shortwave radiation at surface 1

This study considers the following four resolutions: 120 km, 60 km, 30 km, and 15 km,
corresponding to 576, 144, 36, and 9 points, respectively, as defined in Equations (1) and (2).
The number of training samples was the same for all four resolutions. The conditional
input for DIFF-MP consisted of four surface-layer variables, each of which was vertically
duplicated 30 times to align with the vertical profiles of T and qv, forming the input matrix.
T and Ps were normalized by subtracting the 0.05 quantile and dividing by the difference
between the 0.95 quantile (a0.95) and 0.05 quantile (a0.05),

anorm =
a− a0.05

a0.95 − a0.05
. (6)

The other conditional input and output variables were normalized by dividing by a0.95,

anorm =
a

a0.95
. (7)

After normalization, samples containing output variables larger than 3.0 were replaced
with neighboring samples below this threshold to exclude abnormally high values. Each
of the four simulations covered 20 days, with the first day being discarded due to model
spin-up. The subsequent 13 days were used for training, the 4 following days for validation,
and the final 2 days for testing. Data from all four periods were randomly mixed, resulting
in 51,118,080 training samples, 15,728,640 validation samples, and 7,864,320 testing samples.
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To expedite the validation and testing of DIFF-MP, only a random subset of 10,000 validation
samples and 1,600,000 testing samples was used.

2.2. DIFF-MP, Inference Acceleration, and Classifier-Free Guidance
2.2.1. DIFF-MP

Figure 1 illustrates the preprocessing of high-resolution data and how DIFF-MP
stochastically parameterizes moist physics. DIFF-MP operates through forward and re-
verse diffusion processes. In the forward diffusion process, target data are progressively
corrupted by Gaussian noise at each step until they become complete noise (represented
by the blue arrows in Figure 1). Training data for DIFF-MP are generated during this
forward process. At each step, both the added Gaussian noise and the target data fused
with noise (denoised latents xt in Figure 1) are saved. DIFF-MP is then trained to reverse
this forward process, generating target data step-by-step in the reverse process (red arrows
in Figure 1). DIFF-MP predicts the noise added to the denoised latents at each time step
based on conditional inputs and the denoised latent itself, and then subtracts the predicted
noise to recover the target data. A detailed explanation of PDMs’ mathematical derivations,
training, and sampling algorithms is provided in the Supplementary Materials.
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Figure 1. The schematic diagram of high-resolution data preprocessing (black arrows), and how
DIFF-MP stochastically parameterizes moist physics. Blue and red arrows are the forward diffusion
process and reverse diffusion process of DIFF-MP. Green arrows are conditional information flows
during reverse process.

DIFF-MP is a hierarchical one-dimensional probabilistic diffusion model (PDM), with
its structure shown in Figure A1. It draws inspiration from WaveGrad [45] for its network
architecture and GAN-TTS [54] for its U-block structure. Feature-wise Linear Modulation
(FiLM) [55] is employed to integrate information from the noise level

√
αt, denoised latent

xt, and conditional input c. The noise level serves as an indicator, guiding DIFF-MP through
the different stages of the denoising process. D-blocks and U-blocks are utilized to decode
information from the denoised latent and conditional input layer by layer. The final output
of DIFF-MP is the noise ϵ added to the denoised latent during the forward process. Based
on hyperparameter tuning, DIFF-MP is configured with 128 filters and 6 layers.

The Adam optimization algorithm, combined with cyclical learning rates ranging from
1 × 10−4 to 1 × 10−3, was used to train DIFF-MP [56,57]. The loss function was the mean
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squared error and the batch size was set to 8000. DIFF-MP was trained for five epochs,
with the model weights saved at the end of the final epoch. The training was conducted
using the Keras 3.0 Python package [58] on an Nvidia 4090 GPU. To thoroughly validate its
performance, separate DIFF-MP models were trained for each resolution.

2.2.2. Inference Acceleration of DIFF-MP

The detailed training and sampling algorithms for DIFF-MP, including inference
acceleration, are illustrated in Algorithms 1 and 2. Typically, PDMs are trained on a fixed
noise schedule {αt}. However, when fewer time steps are used, models follow a denoising
path they were not trained on, leading to a degraded performance. To enhance DIFF-MP’s
adaptability to fewer denoising steps, it is directly conditioned on the noise level

√
αt, a

technique also adopted by Song and Ermon [59,60] in their score-matching framework.
Moreover, we define a fixed noise schedule

{
α′t
}

with a total of T time steps. At each step
during training, time t is sampled from a uniform distribution U({1, 2, . . . , T}) and αt is
drawn from U

(
α′t−1, α′t

)
. This approach eliminates the need for a fixed series of noise levels,

allowing DIFF-MP to be trained on an infinite range of noise levels, significantly improving
its generalizability to various denoising schedules. Inference acceleration is achieved by
employing different denoising schedules with fewer time steps. As shown in Algorithm 2,
new schedules are interpolated from the noise level function f (t) (see Figure S1). This
algorithm is adapted from Chen et al. [45], with modifications made to the inference stage.

Algorithm 1. The training algorithm of DIFF-MP with inference acceleration.

Require: a fixed noise schedule
{

α′t
}

1: repeat
2: x0, c ∼ q(x0, c)
3: t ∼ U({1, 2, . . . , T})
4: αt ∼ U

(
α′t−1, α′t

)
5: ε ∼ N(0, I)
6: take gradient descent step on

∇θ

(
ϵ− ϵθ

(√
αtx0 +

√
1− αtϵ, c,

√
αt
))2

7: until converged

Algorithm 2. The sampling algorithm of DIFF-MP with inference acceleration.

Require: denoising steps T
Require: noise level function f (t)
1: get denoising schedule {αt} from f (t)
2: xT ∼ N(0, I) , c ∼ q(x0, c)
3: for t = T, . . . , 1 do
4: z ∼ N(0, I)if t > 1, else z = 0

5: xt−1 = 1√
αt

(
xt − 1−αt√

1−αt
ϵθ

(
xt, c,

√
αt
))

+
∼
βtz

6: end for
7: return x0

To demonstrate the adaptability of DIFF-MP with inference acceleration across differ-
ent denoising steps, we compare it with DIFF-MPs trained on fixed time steps. The other
DIFF-MPs are trained using fixed noise schedules, where αt linearly decreases from 9.9999
to 9.94, with a total of n time steps. The values of n are set to 100, 50, 20, 10, 5, and 2. All
models are trained for five epochs until convergence, with the model weights saved at the
end of the final epoch.

The validation criteria include the mean squared error, Pearson correlation coefficient,
coverage ratio, spread–skill correlation, standard deviation, kurtosis, and skewness. Since
DIFF-MP is a stochastic parameterization scheme, validation must be conducted on an
ensemble of outputs. For each conditional input, 32 different outputs are generated. The
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mean squared error and correlation coefficient assess the error of DIFF-MP. The coverage
ratio measures the proportion of validation data that fall within the range of the DIFF-MP
output ensemble, with a high coverage ratio indicating that the output ensemble effectively
captures the validation data. The spread–skill correlation evaluates the relationship be-
tween DIFF-MP’s prediction error and the spread of its outputs. It should be high, because
larger errors should correspond to a greater spread. The standard deviation, kurtosis, and
skewness capture the higher-order statistics of the DIFF-MP-generated samples, which
should closely match those of the validation data. The calculations for these criteria are
provided in the Supplementary Materials.

Figures 2 and 3 display the performances of the different DIFF-MPs on the validation
data. These models were trained on data with a 120 km resolution, with similar results
being observed for other resolutions. For the DIFF-MPs trained on fixed time steps, their
performances degraded rapidly as the number of steps decreased, except for the coverage
ratio (Figure 2). The increase in the coverage ratio was due to the sample spread becoming
excessively large when the denoising steps were too few (Figure 2). In contrast, for the
DIFF-MP trained with inference acceleration, the correlation coefficient, mean squared error,
and spread–skill correlation remained relatively stable across different steps (Figure 3). The
standard deviation, skewness, and kurtosis also deviated only slightly from the validation
data (Figure 3). The DIFF-MP trained with inference acceleration significantly outperformed
those trained on fixed steps. Training on a range of noise levels effectively mitigated
overfitting to specific fixed steps and enhanced the model’s generalization to different steps.
Balancing inference acceleration with sample quality, DIFF-MP uses five denoising steps
throughout the remainder of the study.
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2.2.3. Classifier-Free Guidance of DIFF-MP

The standard deviation, skewness, and kurtosis of the samples generated by DIFF-MP
deviate from the validation data for TendT−sgs and Tendqv−sgs when using five denoising
steps (Figure 3a,b). The standard deviation is also lower for qc and qi (Figure 3c,d). These
statistical deviations are due to the limited number of denoising steps used in inference
acceleration. The unconditional DIFF-MP reproduces the statistics of the training data
more accurately than the conditional DIFF-MP. This occurs because the conditional model
tends to exploit shortcuts, directly linking the conditional input to the output, whereas
the unconditional model does not have this option. A potential improvement could be
achieved by combining the outputs of both the unconditional and conditional DIFF-MP
models, enhancing the overall performance. This approach aligns with the philosophy
of classifier-free guidance [46], where the statistics are restored to their original values by
fusing the denoised latents of both models during the inference stage (Equation (8)).

During the training stage, DIFF-MP’s conditional input c is replaced by the denoised
latent xt with a probability of 0.1, allowing an unconditional DIFF-MP to be trained simulta-
neously. The final output is a combination of the denoised latents from both the conditional
and unconditional DIFF-MPs, blended using a mixing ratio ω. For each denoising step,

∼
Pθ(xt−1|xt, c) = (1 + ω)Pθ(xt−1|xt, c)−ωPθ(xt−1|xt, xt), (8)

where Pθ is the original DIFF-MP and
∼
Pθ is the combined DIFF-MP. The training and

sampling algorithms of DIFF-MP using classifier-free guidance and inference acceleration
are presented in Algorithms 3 and 4.

Figure 4 illustrates the effect of the mixing ratio ω on DIFF-MP’s performance using
validation data at a resolution of 120 km. As ω increases, kurtosis and skewness decrease
significantly, while the standard deviation rises. Classifier-free guidance effectively aligns
the statistics of the DIFF-MP-generated samples with those of the validation data. Mean-
while, the other four validation criteria remain relatively unchanged. The optimal ω for
TendT−sgs and Tendqv−sgs is 0.5, whereas for qc and qi, no mixing yields better results. It is
also observed that using different values of ω for different output variables does not cause
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interference during the inference stage. Similar validations for ω are conducted at other
resolutions, and the optimal values for all four resolutions are provided in Table 2, which
DIFF-MP follows in this study.

Algorithm 3. The training algorithm of DIFF-MP with classifier-free guidance and inference acceleration.

Require: a fixed noise schedule
{

α′t
}

Require: probability of unconditional training puncond
1: repeat
2: x0, c ∼ q(x0, c)
3: t ∼ U({1, 2, . . . , T})
4: αt ∼ U

(
α′t−1, α′t

)
5: ε ∼ N(0, I)
6: c←

√
αtx0 +

√
1− αtε with probability puncond

7: take gradient descent step on
∇θ

(
ϵ− ϵθ

(√
αtx0 +

√
1− αtϵ, c,

√
αt
))2

8: until converged

Algorithm 4. The sampling algorithm of DIFF-MP with classifier-free guidance and inference acceleration.

Require: denoising steps T
Require: noise level function f (t)
Require: guidance strength ω

1: get denoising schedule {αt} from f (t)
2: xT ∼ N(0, I) , c ∼ q(x0, c)
3: for t = T, . . . , 1 do
4: z ∼ N(0, I) if t > 1, else z = 0
5:

∼
ϵt = (1 + ω)ϵθ

(
xt, c,

√
αt
)
−ωϵθ

(
xt, xt,

√
αt
)

6: xt−1 = 1√
αt

(
xt − 1−αt√

1−αt

∼
ϵt

)
+
∼
βtz

7: end for
8: return x0
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Figure 4. DIFF-MP performance on validation data for different mixing ratios (ω) at resolution of
120 km. Results of TendT−sgs (a), Tendqv−sgs (b), qc (c), and qi (d) are shown. The layout is similar to
Figure 2. Note that y-axis of mean squared error is placed at the right-hand side of the subplots.



Atmosphere 2024, 15, 1219 10 of 21

Table 2. The best mixing ratios (ω) for different output variables and different resolutions.

120 km 60 km 30 km 15 km

TendT−sgs 0.5 0.6 0.6 0.8
Tendqv−sgs 0.5 0.6 0.6 1.0

qc 0.0 0.0 0.0 0.3
qi 0.0 0.0 0.0 0.0

3. Results
3.1. Baseline Models and Their Trainings

Conditional VAE (CVAE-MP) and conditional GAN (CGAN-MP) are selected as baseline
models. VAE maps each sample from the training data to a known distribution in the latent
space, enabling the random generation of similar data [24]. GAN consists of two competing
networks, where the generator produces data that the discriminator cannot distinguish
from real data [25]. Both models are widely used in generative learning and are suitable
for the stochastic parameterization of moist physics. The variables in Table 1 are also used
as conditional inputs for CVAE-MP and CGAN-MP. For a fair comparison between the
generative models, DIFF-MP, CVAE-MP, and CGAN-MP are designed to have the same
model size. The structures of CGAN-MP and CVAE-MP are shown in Figures S2 and S3,
respectively.

The training settings for CVAE-MP and CGAN-MP follow those of DIFF-MP. The
CGAN-MP output is the sum of a pretrained neural network and the generator, with
the neural network providing deterministic output profiles and its weights being frozen
during the CGAN-MP training. The Wasserstein GAN technique is applied to stabilize
the CGAN-MP training [35]. CVAE-MP and CGAN-MP are trained for 2 and 22 epochs,
respectively, until convergence. The best-performing models on the validation data are
saved for further comparison with DIFF-MP on the testing data. The validation criterion
is the average of the correlation coefficient, spread–skill correlation, and coverage ratio.
Different models for CVAE-MP and CGAN-MP are also trained at different resolutions.

3.2. Performance Comparison between Models

The performances of CGAN-MP, CVAE-MP, and DIFF-MP on the testing data at
different resolutions are shown in Figure 5. In terms of the mean squared error, DIFF-
MP significantly outperforms the other models for qc and qi, and is nearly the best for
TendT−sgs and Tendqv−sgs. DIFF-MP consistently achieves the best performance for both
the correlation coefficient and spread–skill correlation. It also surpasses the other two
models in coverage ratio, except for TendT−sgs. Regarding the statistical properties of the
generated samples, DIFF-MP aligns more closely with the testing data and demonstrates
a more consistent performance across different resolutions. Overall, DIFF-MP is robustly
superior to both CGAN-MP and CVAE-MP on the testing data.

It is noteworthy that the performances of the mean squared error and correlation
coefficient decrease as the resolution increases. This is attributed to the fact that, as the grid
spacing becomes larger, coarse graining involves more averaging over turbulent and cloud
processes, making subgrid processes more predictable. A similar performance degradation
has been observed in other studies as well [19,61].

The global distribution of the mean squared error by DIFF-MP and the error differences
between the models at a 120 km resolution are shown in Figure 6. DIFF-MP’s mean squared
error is primarily concentrated in the midlatitudes, where extratropical cyclones are most
active. Additionally, the mean squared errors for TendT−sgs and Tendqv−sgs are found along
large-scale terrain and in tropical regions with active shallow convection (Figure 6a,d).
Except for Tendqv−sgs, DIFF-MP consistently exhibits a lower mean squared error than the
other two models globally. The red areas in the background highlight DIFF-MP’s lower
systematic error. Figure 7 presents the global distribution of whether the testing data are
captured by the model ensemble at a 120 km resolution. DIFF-MP successfully covers
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nearly 90% of the testing data across all variables. The uncovered regions correspond to
areas with a higher mean squared error, as seen in Figure 6. Notably, CVAE-MP fails to
cover most of the TendT−sgs testing data (Figure 7b), while CGAN-MP performs poorly on
qc and qi (Figure 7i,l). Figures 6 and 7 further confirm DIFF-MP’s robust performance and
superiority over the other models.
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Figure 8 displays the per-level distribution of the model-generated samples at a
resolution of 120 km. The testing data distributions in Figure 8 are truncated at −3.0 and
3.0 due to the exclusion of abnormal extreme data. Two distinct signals of shallow and deep
convection are evident in Figure 8a. TendT−sgs is primarily positive at the upper levels of
the boundary layer (around level seven) but negative at lower levels. This pattern results
from the condensation of water vapor in shallow convection, where latent heat is released
near the top of the boundary layer and collected at lower levels. In Figure 8e, Tendqv−sgs
is positive near the top of the boundary layer and negative below, indicating the vertical
transport of water vapor by shallow convection. Shallow convection is also evident in the
lower-level extremes of qc and qi (Figure 8i,m). Above the boundary layer, another heating
peak for TendT−sgs is observed between levels 10 and 15, corresponding to deep convection
(Figure 8a). Deep convection is also reflected in the upper levels of qi (Figure 8m).

All three generative models capture the signals of shallow and deep convection.
However, their predictions for extreme data distributions differ. DIFF-MP nearly perfectly
reproduces the testing data distribution, even reflecting the artificial cutoff at ±3.0. The
only notable underestimation occurs for TendT−sgs above level 15 (Figure 8b). CVAE-MP is
overly conservative regarding extreme values, capturing only the probability density of
large values (Figure 8d,h,l,p). In contrast, CGAN-MP is excessively aggressive, resulting in
an overly broad probability distribution (Figure 8c,g,k,o), and it also predicts unrealistic
negative values for qc and qi. Figure A2, which presents results from a 30 km resolution,
aligns with the findings in Figure 8.
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Figure 6. The global distribution of mean squared error by DIFF-MP (a,d,g,j), and mean-squared-error
difference between DIFF-MP and CVAE-MP (b,e,h,k), DIFF-MP, and CGAN-MP (c,f,i,l). The time is
20 April 2005, UTC 00:00. The testing data are at about 400 m height under 120 km resolution.

Figure 9 compares the ensemble output profiles from different models with the corre-
sponding profiles from testing data at a 120 km resolution. All models’ ensembles capture
the overall vertical variability of the testing data profiles. However, for TendT−sgs and
Tendqv−sgs, the ensembles from CGAN-MP and CVAE-MP are centered around zero and
deviate from the testing data, particularly between levels 10 and 15 (Figure 9a,b,d,e). In
contrast, DIFF-MP’s ensemble closely follows the vertical variability of the testing data
(Figure 9c,f). For qc and qi, CGAN-MP’s ensemble extends to higher values (2.0–2.5), as
seen in Figure 9g,h, consistent with the excessive extreme values predicted by CGAN-MP
in Figure 8. In comparison, the value ranges of CVAE-MP’s and DIFF-MP’s ensembles
better align with the testing data. The results at a 30 km resolution are similar to those in
Figure 9 and are presented in Figure A3.
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Figure 9. Vertical profiles of an ensemble of 32 samples from different models (blue) and the
corresponding profiles (black) in testing data. Profiles of TendT−sgs (a–c), Tendqv−sgs (d–f), qc (g–i),
and qi (j–l) are presented. They are all normalized to the same scale for comparison. The resolution is
120 km.

DIFF-MP is more effective than CGAN-MP and CVAE-MP at reproducing the data
distributions for subgrid moistening, heating, and cloud processes. Additionally, DIFF-MP
generates a more accurate ensemble that better encompasses the output profiles from the
testing data compared to the other two models. Overall, DIFF-MP demonstrates a superior
performance in the stochastic parameterization of moist physics.

3.3. Interpretability of DIFF-MP

Testing the interpretability of DIFF-MP is crucial for ensuring its physical robustness.
Figure 10 illustrates the effect of boundary-layer stratification changes on DIFF-MP’s out-
puts. Initially, the boundary layer exhibits unstable stratification. When the T profile is
neutralized, both TendT−sgs and Tendqv−sgs approach zero (Figure 10c,d), and qi at higher
levels decreases, indicating the cessation of shallow and deep convection (Figure 10f). Mean-
while, qc and qi increase within the boundary layer (Figure 10e,f) as qv accumulates due to
suppressed shallow convection, leading to excessive condensation. After qv is neutralized,
Tendqv−sgs becomes positive and qc disappears in the boundary layer (Figure 10d,e). This is
because qv is not saturated after the neutralization, causing shallow clouds to evaporate
and DIFF-MP to restore qv in the boundary layer. Figure 11 shows the impact of surface flux.
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As the surface flux decreases, TendT−sgs, Tendqv−sgs, and qi at higher levels significantly
decrease (Figure 11a,b,d) due to the reduction in deep convection caused by a lower surface
flux. qc in the boundary layer initially increases and then decreases as the surface flux is
further reduced. Similar to Figure 10e, qc accumulates when convection is suppressed, but
diminishes when convection becomes severely constrained. Figures 10 and 11 confirm
that DIFF-MP’s response to input variation is physically reasonable, supporting its future
implementation in the GRIST model.
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flux and water vapor flux are reduced for 40% (red and blue lines) or 70% (green and pink lines) are 

Figure 10. Interpretability experiment of DIFF-MP showing how output profiles change with stratifi-
cation change in boundary layer. Subplots (a,b) show the way how T and qv profiles change. The
corresponding output profiles of TendT−sgs (c), Tendqv−sgs (d), qc (e), and qi (f) due to the change in T
and qv are colored as red and blue. The original input and output profiles are black lines. They are all
normalized to the same scale for comparison.
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Figure 11. Interpretability experiment of DIFF-MP showing how output profiles change with surface
heat flux and water vapor flux reduction. The vertical profiles produced by DIFF-MP after heat flux
and water vapor flux are reduced for 40% (red and blue lines) or 70% (green and pink lines) are
presented. Profiles of TendT−sgs (a), Tendqv−sgs (b), qc (c), and qi (d) are shown. The original input
and output profiles are black lines. They are all normalized to the same scale for comparison.
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4. Conclusions and Discussions

This study introduces a stochastic moist physics parameterization scheme, DIFF-MP,
based on a one-dimensional PDM. DIFF-MP is trained on a range of noise levels, enhancing
its generalizability to large denoising steps and achieving a 20-fold acceleration without
significant performance degradation. Classifier-free guidance is employed to minimize the
statistical deviations between the DIFF-MP-generated samples and the validation data.

DIFF-MP’s capability to stochastically parameterize the subgrid contributions of moist
physics is compared with that of CVAE-MP and CGAN-MP on the testing data. DIFF-MP
consistently outperforms the other models in terms of the prediction error, spread–skill
correlation, coverage ratio, and reproduction of subgrid contribution statistics, including
standard deviation, kurtosis, and skewness. Its performance remains consistent across four
different resolutions, with improvements in prediction error reaching up to 40% compared
to the other models.

DIFF-MP’s prediction error and the testing data not captured by its predicted ensemble
are concentrated along large-scale terrain and midlatitude regions, where extratropical
cyclones are most active. Globally, DIFF-MP exhibits lower prediction errors than the
other models. In terms of coverage ratio, DIFF-MP includes nearly 90% of the testing
data within its predicted ensemble. Furthermore, DIFF-MP’s predicted ensemble profiles
demonstrate a more reasonable vertical variability and value ranges than those produced
by the other models.

DIFF-MP nearly perfectly reproduces the per-level distributions of different variables.
CGAN-MP tends to predict excessive extreme values, while CVAE-MP predicts too few.
When unstable stratification in the boundary layer is neutralized or surface flux is reduced,
deep convection is significantly suppressed, while low clouds accumulate in the boundary
layer due to constrained shallow convection. The interpretability experiments confirm that
DIFF-MP’s predictions are physically consistent.

This study focuses solely on parameterizing moist physics as a proof of concept for
PDMs in stochastic parameterization. DIFF-MP can be extended to include additional
physical processes such as boundary-layer turbulence, longwave radiation, and shortwave
radiation to create a unified parameterization for all physical processes. Future work will
involve implementing DIFF-MP into the GRIST model and investigating its impact on the
numerical simulation of the Madden–Julian Oscillation, the intertropical convergence zone,
and climate mean and variability.

The integration of Python-based machine learning models into Fortran-based Earth system
models remains challenging. Previous efforts often hard-coded Python models into Fortran
through self-developed tools, which can be cumbersome and time-consuming [11,16,17]. It
is crucial for Earth system model development teams to create official tools to streamline
the implementation process. One potential solution is to modularize Earth system models,
wrapping them with Python interfaces that allow for easy implementation and support for
heterogeneous computing using both GPUs and CPUs [62]. This approach would enable
machine learning models to run on GPUs while numerical integration is performed on CPUs,
optimizing efficiency. Additionally, with advances in large language models, it may become
feasible to translate Fortran-based Earth system models into Python, enabling the entire system
to run on GPUs, thereby eliminating the implementation bottleneck and accelerating the
development of machine-learning-based parameterization schemes [63,64].
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Figure A1. The structure of DIFF-MP (a). Detail structures of Dblock (b), FiLM (c), and UBlock (d) 
modules are also depicted. “Conv, 128” is one-dimensional convolution module with kernel size 3 
and 128 filters. “Conv, 1, 128” has kernel size 1 and 128 filters. “Dense, 30” is fully connected layer 
of 30 neurons. “Noise embedding” adopts the sinusoidal positional embedding of Vaswani et al. [65] 
with minor modifications. “⊙” is element-wise multiplication. 

Figure A1. The structure of DIFF-MP (a). Detail structures of Dblock (b), FiLM (c), and UBlock (d)
modules are also depicted. “Conv, 128” is one-dimensional convolution module with kernel size 3
and 128 filters. “Conv, 1, 128” has kernel size 1 and 128 filters. “Dense, 30” is fully connected layer of
30 neurons. “Noise embedding” adopts the sinusoidal positional embedding of Vaswani et al. [65]
with minor modifications. “⊙” is element-wise multiplication.
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54. Bińkowski, M.; Donahue, J.; Dieleman, S.; Clark, A.; Elsen, E.; Casagrande, N.; Cubo, L.C.; Simonyan, K. High fidelity speech

synthesis with adversarial networks. arXiv 2019, arXiv:1909.11646.

https://doi.org/10.1007/s00162-021-00581-z
https://doi.org/10.1016/j.physd.2021.132894
https://doi.org/10.1029/2019MS001896
https://doi.org/10.1017/eds.2022.32
https://doi.org/10.5194/gmd-16-4501-2023
https://doi.org/10.1029/2023MS003681
https://doi.org/10.1029/2018MS001539
https://doi.org/10.1175/MWR-D-19-0305.1
https://doi.org/10.1175/1520-0493(1995)123%3C1881:NIOTSW%3E2.0.CO;2
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1029/2008JD009944


Atmosphere 2024, 15, 1219 21 of 21

55. Park, T.; Liu, M.Y.; Wang, T.C.; Zhu, J.Y. Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019.

56. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
57. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017.
58. Keras. Available online: https://keras.io (accessed on 10 September 2024).
59. Song, Y.; Ermon, S. Generative modeling by estimating gradients of the data distribution. In Proceedings of the 33rd Annual

Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.
60. Song, Y.; Ermon, S. Improved techniques for training score-based generative models. In Proceedings of the 34th Annual

Conference on Neural Information Processing Systems, Online, 6–12 December 2020.
61. Wang, L.-Y.; Tan, Z.-M. Deep learning parameterization of the tropical cyclone boundary layer. J. Adv. Model. Earth Syst. 2023, 15,

e2022MS003034. [CrossRef]
62. McGibbon, J.; Brenowitz, N.D.; Cheeseman, M.; Clark, S.K.; Dahm, J.P.; Davis, E.C.; Elbert, O.D.; George, R.C.; Harris, L.M.;

Henn, B.; et al. fv3gfs-wrapper: A Python wrapper of the FV3GFS atmospheric model. Geosci. Model. Dev. 2021, 14, 4401–4409.
[CrossRef]

63. Pietrini, R.; Paolanti, M.; Frontoni, E. Bridging Eras: Transforming Fortran legacies into Python with the power of large language
models. In Proceedings of the 2024 IEEE 3rd International Conference on Computing and Machine Intelligence, Mount Pleasant,
MI, USA, 16–17 March 2024.

64. Zhou, A.; Hawkins, L.; Gentine, P. Proof-of-concept: Using ChatGPT to Translate and Modernize an Earth System Model from
Fortran to Python/JAX. arXiv 2024, arXiv:2405.00018.

65. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://keras.io
https://doi.org/10.1029/2022MS003034
https://doi.org/10.5194/gmd-14-4401-2021

	Introduction 
	Methodology 
	Training Data Preprocessing 
	DIFF-MP, Inference Acceleration, and Classifier-Free Guidance 
	DIFF-MP 
	Inference Acceleration of DIFF-MP 
	Classifier-Free Guidance of DIFF-MP 


	Results 
	Baseline Models and Their Trainings 
	Performance Comparison between Models 
	Interpretability of DIFF-MP 

	Conclusions and Discussions 
	
	References

