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Abstract: The lake water surface temperature (LWST) is a critical parameter influencing lake ecosys-
tem dynamics and addressing challenges posed by climate change. Traditional point measurement
techniques exhibit limitations in providing comprehensive LWST data. However, the emergence
of satellite remote sensing and unmanned aerial vehicle (UAV) Thermal Infrared (TIR) technology
has opened new possibilities. This study presents an approach for retrieving plateau lake LWST
(p-LWST) from UAV TIR data. The UAV TIR dataset, obtained from the DJI Zenmuse H20T sensor,
was stitched together to form an image of brightness temperature (BT). Atmospheric parameters
for atmospheric correction were acquired by combining the UAV dataset with the ERA5 reanalysis
data and MODTRAN5.2. Lake Water Surface Emissivity (LWSE) spectral curves were derived using
102 hand-portable FT-IR spectrometer (102F) measurements, along with the sensor’s spectral response
function, to obtain the corresponding LWSE. Using estimated atmospheric parameters, LWSE, and
UAV BT, the un-calibrated LWST was calculated through the TIR radiative transfer model. To validate
the LWST retrieval accuracy, the FLIR Infrared Thermal Imager T610 and the Fluke 51-II contact
thermometer were utilized to estimate on-point LWST. This on-point data was employed for cross-
calibration and verification. In the study area, the p-LWST method retrieved LWST ranging from
288 K to 295 K over Erhai Lake in the plateau region, with a final retrieval accuracy of 0.89 K. Results
demonstrate that the proposed p-LWST method is effective for LWST retrieval, offering technical and
theoretical support for monitoring climate change in plateau lakes.

Keywords: unmanned aerial vehicle (UAV); plateau lakes; lake water surface temperature (LWST);
lake water surface emissivity (LWSE); radiative transfer model

1. Introduction

Lake water surface temperature (LWST) plays a pivotal role in shaping local climate
and hydrological processes, standing as a fundamental parameter within lake ecosys-
tems [1]. The investigation of LWST holds significant importance in elucidating the opera-
tional dynamics of lake ecosystems and addressing the challenges presented by climate
change and extreme weather events [2]. Lakes, as indispensable freshwater reservoirs
on Earth, support diverse ecosystems. The quality and temperature of water in lakes are
crucial determinants of biodiversity and ecological equilibrium. With the intensification
of climate change, lake ecosystems encounter unprecedented stressors. Given water’s
notable heat capacity, even slight fluctuations in lake water surface temperature can notably
influence overall water quality and the functionality of ecosystems. The global temperature
elevation has resulted in heightened lake temperatures, posing a threat to lake ecosystems.
The warming of lakes may instigate shifts in water circulation patterns, uneven dispersion
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of oxygen, and an escalation in cyanobacterial blooms, thereby jeopardizing aquatic life [3].
However, the ramifications of elevated LWST on lake aquatic ecosystems are intricate and
multifaceted. Hence, real-time and precise monitoring of temporal and spatial fluctuations
and distributions of LWST stands as a critical necessity. Therefore, the acquisition of high
spatiotemporal resolution LWST data for lakes holds paramount significance.

Given the complexity of inferring LWST, conventional point measurement techniques
in the field struggle to provide accurate and comprehensive LWST coverage over large areas
efficiently. Fortunately, satellite remote sensing data can retrieve Land Surface Tempera-
ture (LST) with high precision, offering ample temporal resolution and complete spatial
coverage, transcending the limitations of singular point measurements [4]. LST holds signif-
icant utility across a spectrum of domains, spanning from the monitoring of mountainous
ecosystems, the analysis of crop growth patterns, the assessment of hydrological cycles,
the surveillance and management of forests, environmental conservation and monitoring,
and the estimation of evapotranspiration. Over the years, multiple algorithms have been
developed to infer LST from satellite Thermal Infrared (TIR) data, typically within the
8–14 µm range [5]. These algorithms include the Single Channel (SC) algorithm [6,7], Split
Window (SW) algorithm [8–13], Temperature Emissivity Separation (TES) algorithm [14,15],
Day-Night (DN) algorithm [16], and Dual-Angle (DA) algorithm [17]. However, it is
crucial to acknowledge that satellite imagery is vulnerable to cloud interference, leading
to temporal disruptions in available data. Additionally, the current spatial resolution of
available satellite TIR data is generally low [18], potentially insufficient to meet the de-
mand for real-time, precise monitoring of LWST spatiotemporal variations and attribution
analysis. [19].

In recent years, the utilization of unmanned aerial vehicle (UAV) TIR remote sensing
has gained substantial traction, capitalizing on its advantages of high spatial resolution
and resilience to cloud interference. This technology has found widespread application,
notably in temperature retrieval [20–23]. Numerous studies have explored the potential
of UAV TIR data for retrieving LST. For instance, Awais et al. employed the DJI M300
RTK UAV equipped with the DJI Zenmuse XT2 TIR camera to capture TIR images. They
converted grayscale values directly into LST, validating the retrieved temperatures using
contact thermometers [24]. Naughton et al., utilizing the DJI M100 UAV paired with the DJI
Zenmuse XTR TIR camera, obtained high-resolution LST in their study area, assessing daily
variations and uncertainties in LST [25]. Heinemann et al. concentrated on agricultural
areas and proposed an LST retrieval algorithm by integrating multispectral and UAV TIR
remote sensing images along with NDVI thresholds [26]. Some studies have ventured
into utilizing UAVs for research on LWST. For instance, Xu et al. employed UAVs for
continuous daytime and nighttime observations of urban LST, analyzing thermal runoff
pollution and its subsequent impact on LWST [27]. However, none of the aforementioned
methodologies directly and independently retrieved the temperatures of large water bodies.
This underscores the existing gap in utilizing UAV TIR data for the direct retrieval of
LWST, particularly in the context of plateau LWST retrieval. The method proposed in this
paper can serve as a reference for UAV TIR retrieval studies of plateau LWST and provide
technical support for monitoring changes in LWST and attributive analysis.

Based on this, we propose a method for remote sensing retrieval of plateau lake water
surface temperature (p-LWST). The main steps of the p-LWST method are as follows:

(a) Employing an UAV equipped with a TIR camera to acquire TIR data.
(b) Utilizing ERA5 reanalysis data and MODTRAN5.2 to estimate atmospheric param-

eters in the study area for atmospheric correction.
(c) Determining lake water surface emissivity (LWSE) spectral curves by using 102

hand portable FT-IR spectrometer (102F) measurements combined with the sensor’s spectral
response function to obtain the corresponding LWSE.

(d) Employing the FLIR T610 infrared thermal imaging camera to obtain on-point
LWST, performing cross-calibration of the surface temperature obtained by the UAV, and
ultimately retrieving LWST.
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2. Materials
2.1. Study Area

This study focuses on a typical plateau lake, Erhai Lake, situated in Dali City, Dali Bai
Autonomous Prefecture, Yunnan Province, China (Figure 1). Erhai Lake is located between
99◦58′ and 100◦27′ E longitude and 25◦25′ and 25◦58′ N latitude. It falls within the North
Subtropical Plateau Monsoon Climate Zone, characterized by minimal annual temperature
fluctuations and indistinct seasonal variation.
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Figure 1. Study area (the area enclosed in the red box in the right picture is the study area).

2.2. Air-Ground Synchronization Experiment

By designing an air-ground synchronization experiment, TIR data from the UAV,
measured LWST, and measured LWSE data were simultaneously obtained. It is assumed
that overall changes in LWST and LWSE are negligible during the UAV flight process.

The experiment consists of two parts: (1) UAV TIR imaging and (2) random measure-
ments of LWSE and LWST. The air-ground synchronization experiment was conducted
on 4 November 2023, between 10:30 and 11:30 in the morning. The UAV operated at
an altitude of 300 m, maintaining a speed of 8 m/s, with a 90% heading overlap, and a
90% side overlap. The flight route is a total of 12,684 m long, covering an aggregate area
of 204,313 m2. These parameters were meticulously chosen to ensure substantial image
overlap critical for subsequent orthomosaic image integration. The weather conditions on
that day were characterized by clear skies and minimal cloud cover. Solar radiance was
pronounced during this period, contributing to the relatively elevated LWST. In conjunction
with the TIR imaging by the UAV, 102F was concurrently deployed on a ship for random
measurements of the LWSE (Figure 2a). The synchronized lake imaging was conducted for
cross-calibration purposes using the FLIR T610 infrared thermal imaging camera (Figure 2b)
and the Fluke 51-II contact thermometer (Figure 2c). The focus of this study lies in water
surface temperature rather than direct water body temperature assessment. Hence, the
accuracy validation was performed using the FLIR T610 infrared thermal imaging camera.
The final inversion-derived LWST results can be validated by comparing them with the
LWST results obtained from T610. This comparison serves to verify the accuracy of the
research methodology employed.
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measuring LWST, (c) Fluke 51-II contact thermometer, (d) DJI M300 RTK UAV equipped with a DJI
Zenmuse H20T TIR camera.

In this study, the Root Mean Square Error (RMSE) is employed as a metric to gauge the
disparity between the inverted results and actual values. A smaller RMSE value indicates a
superior fidelity of the inverted results to the ground truth.

The experiment utilized a DJI M300 RTK UAV equipped with a DJI Zenmuse H20T
camera (both from DJI, China) to capture TIR data (Figure 2d). The DJI Zenmuse H20T
camera, produced by DJI, is a multifunctional camera that integrates four types of sensors.
It includes a TIR sensor, two visible light sensors, and a laser rangefinder. The TIR sensor
has an image resolution of 640 × 512 pixels, a pixel pitch of 12 µm, a wavelength range of 8
to 14 µm, a temperature measurement range of −40 ◦C to 150 ◦C, an accuracy of ±2 ◦C,
and a sensitivity of <0.05 ◦C.

The 102F is manufactured by Designs and Prototypes company (USA). It is designed
for measuring the radiance or emissivity of the Earth’s surface and calibrating atmospheric
effects for satellites or airborne scanners. The spectral range of 102F spans from 2 to 16 µm,
with a spectral accuracy of ±1 cm−1.

The FLIR T610 infrared thermal imaging camera, manufactured by Teledyne FLIR,
features a TIR resolution of 640 × 480 pixels, a wavelength range of 7.5 to 14 µm, a
temperature measurement range of −40 ◦C to 150 ◦C, an accuracy of ±2 ◦C, and a sensitivity
of <0.04 ◦C.

The Fluke 51-II contact thermometer, produced by Fluke, is a single-channel temper-
ature meter equipped with an 80PK-1 K-type thermocouple probe. It has a temperature
measurement range of −200 ◦C to 1372 ◦C, with an accuracy of ±[0.05% + 0.3 ◦C].

2.3. Data Preprocessing

Initially, the TIR images captured by the UAV require processing. These original
images, obtained from DJI Zenmuse H20T, are currently in JPG format. The primary
objective is to convert each H20T image into TIFF format to facilitate the extraction of
brightness temperature information (◦C). However, it’s crucial to acknowledge the potential
loss of geolocation data during this conversion process. To mitigate this, it is recommended
to first utilize DJI Terra (v3.9.0) software for the extraction and preservation of geolocation
data from the images before proceeding with the conversion from JPG to TIFF format.
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It is crucial to emphasize that the quality of mosaic stitching directly affects the
subsequent retrieval of LWST. Hence, obtaining clear images and selecting appropriate
image stitching methods become pivotal. In this study, we utilized Pix4dMapper (v4.4.12)
software to achieve satisfactory mosaic results. Ultimately, we acquired the TIR image
brightness temperature data for the entire study area (Figure 3).
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Previous research findings have consistently highlighted the influence of UAV flight
altitude and image overlap rate on the stitching outcome. After conducting multiple UAV
flight experiments, it was established that within our study area, setting the UAV’s flight
altitude in the range of 250 to 300 m, with both heading and side overlap rates set at 85% or
higher, consistently yields optimal stitching results.

Figure 3 illustrates that higher temperatures are predominantly concentrated on the
ground and in surrounding villages. Overall, the brightness temperatures within the lake
area remain relatively low, and no significant outliers are observed within the lake.

3. Methods
3.1. LWST Retrieval Algorithm Based on Radiative Transfer Equation

The TIR radiance received by the UAV sensor primarily consists of three components [4,18]:
surface thermal radiance, atmospheric upwelling radiance from the water surface to the
flight altitude of the UAV, and atmospheric downwelling radiance from the entire atmo-
spheric column, including the reflection from the water surface, as shown in Figure 4.
Therefore, the radiance received by the TIR camera can be succinctly expressed as follows:

LTOA =
[
ε·B(TS) + (1 − ε)·L↓

]
·τ + L↑ (1)

In Equation (1), L represents the radiance at the entrance pupil of the sensor
(W/(m2·sr·µm)); τ is the atmospheric transmittance from the water surface to the flight alti-
tude; ε is the emissivity of the water surface; B(Ts) is the blackbody radiance (W/(m2·sr·µm))
corresponding to the surface temperature Ts; L↓ and L↑ denote the atmospheric down-
welling and upwelling radiance (W/(m2·sr·µm)).
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Based on Equation (1), the blackbody radiance B(Ts) of the water surface temperature
Ts can be expressed as follows:

B(Ts) =

[
LTOA − L↑ − τ·(1 − ε)·L↓]

τ·ε (2)

According to the experimental values of L, L↑, L↓, τ, and as obtained using Equation
(2), we can calculate B(Ts). Subsequently, by employing the Planck formula retrieval, we
can determine the water surface temperature.

Ts = k2/
[

λ·ln
(

1 +
k1

λ5·B(Ts)

)]
(3)

In Equation (3), k1 and k2 are constants (k1 = 1.19104× 10−16 W·m2 and k2 = 1.43877 × 10−2 m·K);
λ represents the effective wavelength of the sensor’s spectral band (λ = 11.0580 µm).

3.2. Atmospheric Correction

The TIR data obtained by the UAV are primarily influenced by three components:
surface thermal radiance, atmospheric upwelling radiance from the water surface to the
UAV’s flight altitude, and downwelling radiance from the entire atmospheric column due
to water surface reflection. In order to mitigate their impact on the TIR signals, it is essential
to acquire these three parameters initially.

ERA 5, the fifth-generation atmospheric reanalysis produced by the European Centre
for Medium-Range Weather Forecasts (ECMWF), currently spans the time period from 1940
to the present day. It provides the requisite atmospheric profiles for atmospheric correction,
offering a meteorological dataset of 1-hourly pressure level analyses. This dataset encom-
passes air temperature, relative humidity, and geopotential height at 37 pressure levels,
ranging from 1000 hPa to 1 hPa, with a spatial resolution of 0.25◦ × 0.25◦. These data can
be obtained from the ECMWF website (https://cds.climate.copernicus.eu/ (accessed on 10
November 2023)).

The Moderate Resolution Atmospheric Transmission model (MODTRAN5.2) [28] was
utilized to simulate the atmospheric transmission process and calculate atmospheric param-
eters for TIR imaging from an UAV. Atmospheric profile data for the corresponding time
(morning of 4 November 2023, from 10:30 to 11:30) were obtained from ERA5 reanalysis
data. Subsequently, MODTRAN5.2 was employed to calculate the entire atmospheric down-

https://cds.climate.copernicus.eu/
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welling radiance. By convolving the spectral response functions of the DJI Zenmuse TIR
lens with simulated data from MODTRAN5.2, one can derive the atmospheric upwelling
radiance, atmospheric downwelling radiance, and atmospheric transmittance across the
entire spectrum.

3.3. Estimation of LWSE

The 102F serves as the primary tool in this study, operating based on the following
principles: Infrared radiation emitted by the target under examination is initially directed
through a sampling lens into the spectrometer. Subsequently, the radiation undergoes
spectral analysis via Fourier transformation. The spectrally resolved radiation is then
directed to a detector for reception, enabling precise determination of the target’s emissivity.
This advanced spectral analysis technique provides a highly sensitive and accurate means
for investigating the emissivity of various components within water bodies.

Due to the focus of this study on water body analysis, the emissivity of the study area’s
waters was determined using 102F. To acquire a more comprehensive dataset, systematic
and random emissivity measurements were conducted at various distances from the
shoreline. This grid-based sampling approach aids in capturing spatial variations in water
properties, thereby providing a more detailed foundational dataset for subsequent analyses.

In the nearshore waters, there is a substantial presence of aquatic plants, such as
the Ottelia (Figure 5a). To comprehensively understand the impact of water lilies on
the emissivity of the water body, emissivity measurements were conducted in both the
water areas covered by water lilies and the deeper regions. Figure 5b illustrates the
emissivity spectral curves obtained from these two categories of water areas, revealing slight
discrepancies with minimal variations observed. By convolving the measured emissivity
spectral curves with the spectral response function of the sensor, emissivity values were
derived, and their average was taken as the emissivity for the lake surface.

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 16 
 

 

downwelling radiance. By convolving the spectral response functions of the DJI Zenmuse 

TIR lens with simulated data from MODTRAN5.2, one can derive the atmospheric 

upwelling radiance, atmospheric downwelling radiance, and atmospheric transmi�ance 

across the entire spectrum. 

3.3. Estimation of LWSE 

The 102F serves as the primary tool in this study, operating based on the following 

principles: Infrared radiation emi�ed by the target under examination is initially directed 

through a sampling lens into the spectrometer. Subsequently, the radiation undergoes 

spectral analysis via Fourier transformation. The spectrally resolved radiation is then di-

rected to a detector for reception, enabling precise determination of the target’s emissivity. 

This advanced spectral analysis technique provides a highly sensitive and accurate means 

for investigating the emissivity of various components within water bodies. 

Due to the focus of this study on water body analysis, the emissivity of the study 

area’s waters was determined using 102F. To acquire a more comprehensive dataset, sys-

tematic and random emissivity measurements were conducted at various distances from 

the shoreline. This grid-based sampling approach aids in capturing spatial variations in 

water properties, thereby providing a more detailed foundational dataset for subsequent 

analyses. 

In the nearshore waters, there is a substantial presence of aquatic plants, such as the 

O�elia (Figure 5a). To comprehensively understand the impact of water lilies on the emis-

sivity of the water body, emissivity measurements were conducted in both the water areas 

covered by water lilies and the deeper regions. Figure 5b illustrates the emissivity spectral 

curves obtained from these two categories of water areas, revealing slight discrepancies 

with minimal variations observed. By convolving the measured emissivity spectral curves 

with the spectral response function of the sensor, emissivity values were derived, and their 

average was taken as the emissivity for the lake surface. 

  
(a) (b) 

Figure 5. (a) Aquatic plants in the study area (O�elia), (b) The emissivity of the water body meas-

ured by using the 102F (the blue solid line and the green dashed line represent the LWSE measured 

at different locations). 

3.4. Cross-Calibration 

The brightness temperature data captured by the equipped TIR lens requires calibra-

tion. This study employs the FLIR T610 infrared thermal imaging camera and the Fluke 

51-II contact thermometer to cross-calibrate the remotely sensed LWST from the UAV, en-

hancing the precision of the inferred LWST. 

�� = ��� ����
� + �1 − ��������������� (4)

Figure 5. (a) Aquatic plants in the study area (Ottelia), (b) The emissivity of the water body measured
by using the 102F (the blue solid line and the green dashed line represent the LWSE measured at
different locations).

3.4. Cross-Calibration

The brightness temperature data captured by the equipped TIR lens requires calibra-
tion. This study employs the FLIR T610 infrared thermal imaging camera and the Fluke
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51-II contact thermometer to cross-calibrate the remotely sensed LWST from the UAV,
enhancing the precision of the inferred LWST.

Lg = εgB
(

Tsg

)
+

(
1 − εg

)
Renvironment (4)

Lw = εB(Tsw) + (1 − ε)Renvironment (5)

In the equation, Lg and Lw represent the radiance (W/(m2·sr·µm)) measured from
the golden plate and water body, respectively. εg denotes the emissivity of the golden
plate (εg = 0.04). B(TSg) and B(TSw) stand for the blackbody radiance (W/(m2·sr·µm)) corre-
sponding to the temperature of the golden plate (TSg) and the measured water temperature
(TSw). Renvironment accounts for the environmental radiance. TSg is known from the Fluke
51-II contact thermometer. B(TSg) can be determined by using the Planck formula.

Based on Equation (4), the environmental radiance Renvironment can be expressed as:

Renvironment =
Lg − εgB

(
Tsg

)
(
1 − εg

) (6)

Based on the determined values of Lg, εg, and the computed B(TSg), the environmental
radiance can be calculated. Assuming a constant environmental radiance, given the mea-
sured Lw, ε, and the computed Renvironment, the Plank formula allows for the derivation of
B(TSw).

B(Tsw) =
Lw − (1 − ε)Renvironment

ε
(7)

Based on the derived B(TSw), the LWST obtained from the FLIR infrared thermal
imager T610 can be determined according to Equation (3). Random sampling within the
study area theoretically suggests that the LWST retrieved from T610 is higher compared to
the LWST retrieved from UAV TIR data. Therefore, the cross-calibration Equation can be
expressed as:

δTs =
1
N

N

∑
k=1

(
Tsw,k − Tsk

)
(8)

In the Equation, N represents the total number of sampling points. After obtaining
δTS, the final calculation Equation for LWST is determined as follows:

LWST = TS + δTs (9)

3.5. Retrieval Accuracy Verification of LWST

In this study, the actual LWST measured by the FLIR infrared camera T610 was used
to verify the accuracy of the retrieved LWST by the p-LWST method. The actual LWST was
measured randomly on the surface of lakes in the study area and then compared with the
retrieval LWST obtained by the p-LWST method. The retrieval error calculation formula
can be expressed as follows:

RMSE =

[
1
N

N

∑
k=1

(
Tsw,k − Tsk

)2
]1/2

(10)

where the RMSE is the root-mean-squared error.

4. Results
4.1. Results Analysis of LWST Retrieved by the p-LWST Method

The data regarding atmospheric upwelling radiance, atmospheric downwelling radi-
ance, and atmospheric transmittance for the study area were acquired using MODTRAN5.2
(Table 1). The LWSE, measured by 102F, is ε = 0.993. The focus of this study is the water
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body, yet the thermal imaging via UAV encompasses land areas. Consequently, a masking
procedure was applied to the land sections, which are disregarded during the retrieval
process, ensuring a dedicated focus on retrieving LWST.

Table 1. Calculated atmospheric parameters using MODTRAN5.2.

Height
m

Atmospheric
Upwelling Radiance

W/(m2·sr·µm)

Atmospheric
Downwelling Radiance

W/(m2·sr·µm)

Atmospheric
Transmittance

300 0.8570 4.8608 0.9035

Through cross-calibration, the LWST of the study area was successfully retrieved, as
depicted in Figure 6. The retrieval results indicate that LWST predominantly ranges be-
tween 288 K and 295 K, exhibiting pronounced spatial variations. Particularly in nearshore
areas, temperatures remain relatively higher, ranging between 292 K and 293 K. In contrast,
regions closer to the lake center display lower temperatures, notably in the lower right
corner of the study area, where temperatures reach a minimum between 288–290 K. Over-
all, the majority of the area shows water temperatures concentrated within the range of
290–291.5 K, as illustrated in Figure 7.

The spatial variability in temperature distribution can be influenced by multiple factors.
Specifically, higher temperatures observed near shorelines might be associated with the
extensive presence of algae blooms and aquatic vegetation in these regions. Furthermore,
during the experiment, there was a notably intense direct solar radiance, which exerted
a prolonged impact due to extended exposure to sunlight. It is worth noting that our
retrieval of LWST closely corresponds to the observed conditions, potentially attributed to
an extended duration without cloud cover, resulting in direct solar radiation.
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4.2. Accuracy Validation of LWST

In this paper, 20 randomly sampled values obtained by the FLIR T610 infrared thermal
imaging camera in the study area were compared with the LWST derived from UAV TIR
data (Table 2). As depicted in Figure 8, the RMSE is 0.89 K. This signifies that the proposed
methodology achieves a high level of accuracy in LWST retrieval.

Table 2. The LWST from T610 and the p-LWST method, respectively.

Code LWST from T610 LWST from the p-LWST Method Bias

1 291.06 291.35 0.29
2 291.99 291.29 −0.70
3 291.52 291.28 −0.24
4 291.30 291.22 −0.08
5 291.38 291.00 −0.39
6 291.36 291.04 −0.33
7 291.72 290.91 −0.81
8 290.20 291.05 0.85
9 290.42 289.99 −0.43

10 290.22 290.20 −0.02
11 291.73 290.28 −1.45
12 291.33 290.64 −0.69
13 291.03 290.59 −0.44
14 291.14 290.83 −0.31
15 291.04 290.87 −0.17
16 291.34 290.95 −0.39
17 291.04 291.10 0.07
18 290.44 291.65 1.21
19 290.93 292.32 1.39
20 290.64 293.28 2.63
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5. Discussion
5.1. The Influence of Flight Altitude on Retrieval Results

During UAV flights, despite operating at a relatively low altitude, the atmospheric
conditions significantly impact the signal reception of the TIR camera onboard. Through
remote control manipulation, we observed a non-linear trend in the brightness temperature
at a specific location corresponding to the increase in UAV flight altitude. Notably, there
was a substantial decrease in the brightness temperature of the ground area, ranging from
15 ◦C to 20 ◦C, while the water surface experienced losses within the range of 10 ◦C to
13 ◦C.

It is noteworthy that prior investigations also employed DJI Zenmuse series TIR lenses,
typically constraining UAV flight altitudes to the range of 70 m to 150 m [27]. However,
within this altitude range, such a pronounced phenomenon of brightness temperature loss
was not evident. Kelly et al. [26] extensively probed this issue and emphasized the TIR
camera’s susceptibility to internal temperature variations, particularly in low-cost models
that often lack radiometric calibration. Common factors influencing UAV flights, such as
wind and temperature drift, lead to a non-linear relationship between camera output and
sensor temperature. To obtain high-quality stitched images of water surfaces and cover
extensive water bodies, we ultimately opted for a UAV flight altitude of 300 m. However,
this decision unavoidably magnified the impacts of wind and temperature drift.

Considering the study’s practical needs, we selected time periods with lower wind
speeds for experimentation and carefully deliberated on flight speed to strike a balance
between image quality and the necessary coverage range, aiming to mitigate wind and
temperature drift effects. Despite these considerations, temperature drift persisted [29].
Future endeavors may explore suitable temperature-correction algorithms to further refine
image quality.

5.2. The Influence of Cross-Calibration on Retrieval Results

To address the issue of brightness temperature loss, we conducted a cross-calibration
process on the acquired image brightness temperatures. Based on theoretical feasibility,
a correction value (δTS = 12.82 K) was applied uniformly to all temperature values to
ensure that the retrieved LWST fell within a normal range. However, cross-calibration also
introduces errors. As this study did not validate the precision of the LWST retrieval, it was
assumed that the impact of cross-calibration was relatively minor. In future research en-
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deavors, we aim to employ appropriate methodologies for a more comprehensive accuracy
assessment of both LWST retrievals and cross-calibration. This effort will aid in evaluating
the precise influence of cross-calibration on the final outcomes, thereby enhancing the
study’s reliability.

5.3. The Influence of UAV Image Stitching on the Retrieval Results

The imagery in this study was stitched using Pix4DMapper (v4.4.12) software, long
regarded as the premier choice for UAV image stitching [24]. The primary focus of this
research lies on bodies of water, an area where image stitching has historically posed a
challenge in photogrammetry. Due to certain issues with flight path configurations, images
captured along flight lines near the lake’s center solely depict the water body, resulting in
an insufficient extraction of feature points during the image registration process, thereby
causing stitching failures.

Despite achieving satisfactory final stitching outcomes, uncertainties persist regarding
potential information loss in the water body region. Against this backdrop, for a more
comprehensive assessment of the accuracy and integrity of the water body area, it is
imperative for future endeavors to undertake in-depth analyses and investigations.

5.4. The Influence of Water Body Emissivity on Retrieval Results

While this study randomly determined the emissivity of the water body, it did not
achieve a per-pixel determination. Consequently, the final emissivity value of the water
body was obtained by averaging the emissivity values of all sampled points. The study
did not account for the emissivity of aquatic vegetation, such as Ottelia, within the lake.
Considering the widespread coverage of macrophytes in nearshore areas, this absence
might impact the retrieval results of the LWST in these nearshore regions. Moreover, as the
water depth varies, the lake’s central position approximates pure water, inevitably differing
in emissivity from the water body in nearshore areas.

5.5. Future Work and Prospects

In regard to this study, there are still areas for improvement. While we consistently
underscored the impact of atmospheric radiance on our research, we only considered
the atmospheric profile at a UAV’s flight altitude, assuming minimal variations in the
atmospheric profile below this altitude. To enhance the accuracy of LWST retrieval, future
research could contemplate conducting experiments using UAVs at various flight altitudes
during the same time frame.

Considering that our study primarily addresses the issue of brightness temperature
loss rather than rigorously verifying LWST accuracy, we conducted an initial estimation of
the errors introduced by the cross-calibration. In forthcoming research endeavors, we plan
to undertake a more thorough and comprehensive validation of the LWST retrieval out-
comes to holistically assess the accuracy and reliability of the cross-calibration methodology.
Despite our choice of this approach to achieve completeness in brightness temperature data,
we acknowledge the potential for introducing a certain level of uncertainty in any data
processing method when applied practically. Hence, we advocate for future investigations
to delve deeper into refining and optimizing the cross-calibration method to enhance the
precision and credibility of LWST retrieval outcomes.

In future research endeavors, we aim to explore more effective radiometric calibration
methods and compensatory strategies to address the influence of wind and temperature
drift on the TIR camera’s stability during high-altitude flights. This effort is crucial in
ensuring the acquisition of accurate and reliable TIR data, thereby providing a more robust
foundation for water body monitoring and land surface temperature analysis.

Furthermore, this study utilized only a single set of UAV images. Subsequent research
could involve contrasting experiments across different time periods and diverse climatic
conditions to refine the p-LWST retrieval method. Such comparative experiments would en-
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able a more comprehensive attribution analysis of LWST changes from various perspectives
and dimensions, thereby offering deeper insights for subsequent monitoring endeavors.

Given the variations in results captured by the UAV’s TIR camera at different obser-
vation angles for the same location, we propose comparing two approaches: temperature
retrieval from individual TIR images before stitching and temperature retrieval after image
stitching. Such a comparative analysis might effectively enhance the precision of LWST
retrieval. Future investigations could delve into an in-depth comparison between these
two approaches to determine the optimal data processing strategy.

During the process of image stitching, especially for images near the center of the
lake, we encountered challenges in extracting water features. This may have arisen due to
inadequate flight path configurations. Therefore, we recommend future studies meticu-
lously consider flight path planning to ensure the acquisition of a more representative set
of images, particularly in the areas concerning water bodies. To enhance the accuracy of
water body image stitching, improved image acquisition techniques or alternative UAV
image stitching algorithms could be considered. Additionally, placing floating objects or
markers within the lake may augment its capability to capture water features. Potential
enhancements also involve the utilization of multispectral or hyperspectral sensors to
gather more comprehensive information about the texture and composition of water bodies,
facilitating a more thorough reconstruction of the actual conditions within these areas.

Due to the complexity of internal lake structures, such as hydrological variations
that may exist in the central lake region, we suggest further exploration in future studies
regarding variations in the emissivity of water bodies in these central locations. This
exploration aims to provide a comprehensive understanding of the optical characteristics of
lakes. Categorizing lakes into different water types and conducting in-depth investigations
into their internal composition and optical properties would contribute to improving the
accuracy and reliability of LWST.

In addition, our study was confined to the lakeshore area. Despite the broad field
of view around the study area, we were constrained by local regulations regarding the
maximum flight altitude for UAVs. Despite the limitations on flight duration and legal
constraints, UAVs still hold an unparalleled advantage in collecting distributed, high spatial
resolution temperature data compared to satellites. Furthermore, in contrast to satellite
data limited to daily to weekly scales of monitoring, UAVs can fly on-demand, capturing
temperature changes in sensitive areas around the clock.

Overall, through cross-calibration and retrieval analysis of multisource remote sensing
data, we successfully revealed the spatiotemporal distribution characteristics of LWST in the
study area and made preliminary discussions on its changing trends. This study provides
crucial references and foundations for a deeper understanding of the thermodynamics of
water bodies in this region. We believe these findings will have a positive impact on related
research and aspects such as water resource management.

Finally, this paper emphasizes the practicality of using UAVs to capture LWST changes
at a small spatial scale. The overall lake environment exhibits complexity in spatial distri-
bution that is difficult to capture beyond high-resolution remote sensing technologies. Our
findings indicate that UAVs can also serve as valuable tools in assessing changes in other
lake parameters, such as chlorophyll-a concentration, water color remote sensing, and more.
Therefore, UAV technology holds significant potential in assessing the spatial complexities
of ecological and urban environments, remote sensing modeling, and parameter retrieval,
among other areas. In future research, we will continue exploring and expanding the
application of drone technology in the field of Earth observation.

6. Conclusions

In the current realm of UAV-based Thermal Infrared (TIR) data research, temperature
retrieval methods have predominantly focused on flat surfaces and complex terrains, with
limited attention dedicated to the specific challenges posed by lake water surface tem-
perature (LWST) retrieval. This study introduces a novel approach (p-LWST) specifically
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designed for remotely sensing the water surface temperature of plateau lakes. The method-
ology leverages TIR image data captured by the DJI Zenmuse H20T, incorporating Lake
Water Surface Emissivity (LWSE) measured by the 102F spectrometer and atmospheric
parameters simulated by MODTRAN5.2 using ERA5 reanalysis data. The method employs
cross-calibration with data acquired from the FLIR T610 infrared thermal imaging camera
and the Fluke 51-II contact thermometer, ultimately retrieving LWST through a radiative
transfer model.

The study utilized the 102F to randomly determine LWSE within the research area,
yielding an emissivity value of ε = 0.993. Calibration of the UAV TIR sensor was conducted
using the FLIR T610 and Fluke 51-II, resulting in a cross-calibration correction value of
δTS = 12.82 K. The final retrieval indicates a spatially varying LWST range for the study
area, spanning from 288 K to 295 K.

To validate the accuracy of the p-LWST method, empirical data from the FLIR T610
was employed. The validation results demonstrate a high level of precision in the retrieved
LWST, with a Root Mean Square Error (RMSE) of 0.89 K for 20 randomly selected points.
This method introduces a valuable approach for LWST monitoring in plateau lakes, pro-
viding essential technical support for the ongoing monitoring and analysis of ecosystem
changes in these unique environments.
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