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Abstract: Recent research on atmospheric particle formation has shown substantial discrepancies
between observed and modeled atmospheric sulfate levels. This is because models mostly consider
sulfate originating from SO2 oxidation by •OH radicals in mechanisms catalyzed by solar radiation
while ignoring other pathways of non-radical SO2 oxidation that would substantially alter atmo-
spheric sulfate levels. Herein, we use high-level quantum chemical calculations based on density
functional theory and coupled cluster theory to show that monoethanolamine (MEA), a typical alka-
nolamine pollutant released from CO2 capture technology, can facilitate the conversion of atmospheric
SO2 to sulfate in a non–•OH–radical oxidation mechanism. The initial process is the MEA-induced
SO2 hydrolysis leading to the formation of HOSO−

2 •MEAH+. The latter entity is thereafter oxidized
by ozone (O3) and nitrogen dioxide (NO2) to form HSO−

4 •MEAH+, which is an identified stabilizing
entity in sulfate-based aerosol formation. Results show that the HOSO−

2 •MEAH+ reaction with
O3 is kinetically and thermodynamically more feasible than the reaction with NO2. The presence
of an additional water molecule further promotes the HOSO−

2 •MEAH+ reaction with O3, which
occurs in a barrierless process, while it instead favors HONO formation in the reaction with NO2.
The investigated pathway highlights the potential role alkanolamines may play in SO2 oxidation to
sulfate, especially under conditions that are not favorable for •OH production, thereby providing an
alternative sulfate source for aerosol modeling. The studied mechanism is not only relevant to sulfate
formation and may effectively compete with reactions with sulfur dioxide and hydroxyl radicals
under heavily polluted and highly humid conditions such as haze events, but also an important
pathway in MEA removal processes.

Keywords: SO2 oxidation; amine; sulfate; atmospheric fate; aerosol

1. Introduction

Secondary atmospheric aerosol particles, formed from gas-to-particle conversion, are
primarily composed of sulfate, which is one of the major water-soluble inorganic species in
the atmosphere [1,2]. These particles are of great concern for their ability to affect human
health, reduce visibility, acidify rainwater, and to alter the radiation balance of the atmo-
sphere [3–5]. The main source of atmospheric sulfate is from the photooxidation of sulfur
dioxide (SO2) [6] and although a large number of studies have connected the formation
rate of secondary atmospheric aerosol particles to atmospheric sulfate concentration [7–10],
numerical models still fail to reproduce observed atmospheric sulfate concentrations [11].
This has led to considerable debate regarding the mechanisms responsible for sulfate forma-
tion, especially during winter haze events where sunlight radiation is weakened [3,12,13].
The incomplete understanding of the sulfate formation mechanism substantially hinders
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the efficient prediction of haze events, climate change, air quality monitoring, and the
development and implementation of measures to mitigate air pollution [14].

Recently, numerous researchers have focused on atmospheric sulfate formation mech-
anisms and, most importantly, on how they alter aerosol formation rates under severe
pollution conditions. Sulfate is formed from the oxidation of sulfur dioxide (SO2), primarily
by hydroxyl radicals (•OH) in the gas phase and ozone (O3), nitrogen oxides (NOx), hy-
drogen peroxide (H2O2), and O2¯catalyzed by transition metal ions in aqueous-phase and
cloud droplets [15–17]. Multiphase oxidation of SO2 on solid or aqueous particles is con-
sidered a potentially important source of sulfate in the atmosphere as well [18]. Although
various SO2 oxidation pathways have been identified, the sources of sulfate and the relative
importance of the various SO2 oxidation pathways for sulfate formation in the atmosphere
are yet to be clarified. For example, significant increases in sulfate concentrations were
observed during haze events, but their sources remain elusive [19].

The primary gas-phase oxidant, •OH radical, is produced from excited oxygen and
water under solar ultraviolet radiation. Despite the fast oxidation of SO2 by •OH that
initially forms sulfur trioxide (SO3), which is further hydrolyzed to form sulfate, many
observations have indicated that there is insufficient •OH in the atmosphere to account
for the generally observed increasing sulfate formation in polluted environments [12,20].
Such low solar ultraviolet radiation conditions are particularly pronounced during haze
events. Although the abundance of other oxidants (O3, H2O2, NOx) is relatively high,
their reactions with SO2 are generally hindered by high energy barriers. This suggests that
important alternative pathways for atmospheric sulfate formation do exist, yet they have
not been extensively investigated.

Atmospheric bases, including ammonia and amines, are other important components
of secondary aerosols. Besides alkylamines such as methylamine and dimethylamine that
have been identified as key species in sulfate aerosol formation [21], monoethanolamine
(MEA, H2NCH2CH2OH), a typical alkanolamine, has been found to enhance new particle
formation as well and to stabilize acidic particles [22,23]. MEA is the most widely used
baseline solvent in amine-based post-combustion CO2 capture (PCC) technology [24,25].
Considering the potential large-scale implementation of amine-based PCC, relatively large
amounts of MEA and possibly other alkanolamines may be emitted into the atmosphere
from PCC units due to their relatively high vapor pressure [26,27]. It is estimated that nearly
80 tons of MEA may be released into the atmosphere from a CO2 capture unit that removes
1 million tons of CO2 per year [21,28] thereby increasing the environmental risk that MEA
may potentially pose. Many studies have shown that atmospheric SO2 conversion can be
facilitated by the degradation of amines despite the lack of proper mechanism and kinetics
of the driving process [29,30]. Xie et al. showed that MEA can effectively cluster with
sulfuric acid and significantly enhance new particle formation [23]. They showed that the
removal rate of MEA due to this process was comparable to the rate of MEA oxidation by
•OH at 217 K. Nevertheless, the complete role of MEA in environmental chemistry and
aerosol chemistry remains unclear.

This study investigates the importance of direct SO2 reactions in sulfate aerosol forma-
tion in the absence of •OH radicals. Long-term measurements have continually revealed
the presence of abundant ammonia and amines in ambient air, including in the marine
environment [31,32], and their role has mainly been limited to stabilizing sulfate clusters.
Herein, we have investigated sulfate formation from SO2 oxidation assisted by MEA using
density functional theory calculations and kinetic modeling. The investigated SO2 oxi-
dation assisted by MEA is not only a potential source for atmospheric sulfate, but also a
removal pathway for MEA. The kinetics of the studied reaction were evaluated and its
implication in sulfate aerosol modeling was assessed.
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2. Methods
2.1. Quantum Chemical Calculations

Geometric optimizations of all stationary states of the studied reactions were con-
ducted in Gaussian 09 using the ωB97X-D functional [33] in conjunction with the 6-311++G
(3df,3pd) basis set. Vibrational frequency analysis and zero-point energies of ωB97XD/6-
311++G (3df,3pd) structures were performed at the same level of theory under the harmonic
oscillator-rigid rotor approximation at 298.15 K and 1 atm. This level of theory has been
shown in previous studies to be sufficient for calculating the geometries and thermochem-
istry of atmospherically relevant systems [25,34–38]. Transition state configurations were
determined using the synchronous transit quasi-Newton method [39] at the same level of
theory, while single-point energy corrections on ωB97XD/6-311++G (3df,3pd) structures
were performed at the DLPNO-CCSD(T)/aug-cc-pVTZ level of theory [40,41] using the
ORCA 4.2.1 program package [42].

2.2. Reaction Kinetics Computation

The reaction rate constants were evaluated using the transition-state theory with the
Wigner tunneling correction [43–45]. Previous studies have shown that the formation of a
ternary complex from three separate reactants first proceeds through formation of a binary
complex that interacts with the third species thereafter [46,47]. Given the high atmospheric
concentration of water relative to those of other reactants, it is most likely that initial colli-
sions between the three separate reactants (SO2, H2O and MEA) will preferably form the
hydrates of SO2 and MEA prior to the formation of the ternary complex, MEA•H2O•SO2.
Based on these considerations, SO2•H2O and MEA•H2O will be determinant in computing
the total rate constant of the MEA—assisted SO2 hydrolysis. According to our calculations
(see Table 1), MEA•H2O is the most abundant binary complex among possible binary
complexes and its interaction with SO2 is likely to lead the process of MEA— mediated
SO2 hydrolysis according to the following equation:

MEA•H2O + SO2

k1
⇄

k − 1
MEA•H2O•SO2

kuni
→ MEAH+•HOSO−

2 (R1)

Assuming equilibrium between MEA•H2O•SO2 and reactants MEA•H2O and SO2
based on the pseudo steady-state approximation, the overall rate of reaction (R1) can be
written as:

v = kMEA•H2O•SO2[MEA•H2O][SO2] (1)

where kMEA•H2O•SO2 is the reaction rate constant written as

kMEA•H2O•SO2 =
k1

k−1
kuni = Keqkuni (2)

k1 is the collision frequency of MEA•H2O and SO2 to form MEA•H2O•SO2, k−1 is the de-
composition rate constant of MEA•H2O•SO2 back to initial reactants, Keq is the equilibrium
constant of formation of the reactant complex, kuni is the unimolecular rate constant of the
reaction of the reactant complex to the product. The equilibrium constant is expressed as:

Keq = exp
(
−

∆Geq

RT

)
(3)

where ∆Geq is the Gibbs free energy change for the formation of the reactant complex, R is
the gas constant, and T is the absolute temperature. kuni is expressed as

kuni = Γ
kBT

h
exp

(
−∆G‡

RT

)
(4)
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with ∆G‡ being the activation Gibbs free energy change separating the reactant complex from
the product state. Γ is the tunnelling effect factor, given by Wigner tunnelling correction:

Γ= 1+
1

24

(
hν±

kBT

)2

(5)

where h is the Planck constant, ν± the imaginary frequency of the transition state, kB is the
Boltzmann constant, T is the absolute temperature.

3. Results and Discussion
3.1. MEA—Assisted SO2 Hydrolysis

As explained above, the formation of the ternary complex would proceed through the
prior formation of the binary complex, followed by interaction with the third species [46,47].
According to our calculations, the formation of MEA•H2O and H2O•SO2 is more fa-
vorable than that of MEA•H2O as can be seen from the equilibrium constants of their
formation presented in Table 1. The two pathways of MEA•H2O•SO2 formation from
MEA•H2O + SO2 and H2O•SO2 + MEA interactions were readily assessed (see Figure 1).
While the formation of MEA•H2O is energetically more favorable (electronic energy change
of −5.49 kcal mol−1 relative to precursor reactants) than H2O•SO2 (electronic energy
change of −3.12 kcal mol−1 relative to precursor reactants) due to higher ability to form
hydrogen bonds, MEA•H2O•SO2 is formed from both MEA•H2O + SO2 and H2O•SO2 +
MEA interactions with nearly identical electronic energy changes, −13.04 kcal mol−1 and
−13.10 kcal mol−1, respectively. The formation Gibbs free energies of these MEA•H2O•SO2
isomers at 298.15 K and 1 atm are similar within 1.70 kcal mol−1, with the formation from
MEA•H2O + SO2 interaction being more favorable. Though both interactions will cumula-
tively form MEA•H2O•SO2 at standard atmospheric conditions, for simplicity, only the
numerical results from MEA•H2O + SO2 interaction are reported in Table 1.

Table 1. Electronic energy change (∆E in kcal mol−1) and Gibbs free energy change (∆G in kcal mol−1),
equilibrium constants (Keq, cm3 molecule−1) of relevant reactions and equilibrium concentration (in
molecule cm−3) for some binary complexes in the MEA—assisted SO2 hydrolysis, all calculated at
298.15 K and 1 atm. These electronic energy changes are plotted in Figures 1 and 3–6.

∆E ∆G Keq Concentration

MEA•H2O −5.49 5.90 1.92 × 10−24 3.63 × 109

SO2•H2O −3.12 4.94 9.85 × 10−24 7.66 × 106

H2O•H2O −2.78 5.12 7.20 × 10−24 4.35 × 1012

MEA•SO2 −4.01 6.40 8.37 × 10−25 2.03 × 103

MEA•H2O•SO2 −13.04 8.98

TS1a −6.21 16.86

HOSO−
2 • MEAH+ −11.14 15.77

O3•HOSO−
2 • MEAH+ −37.05 −3.61

TS5 −16.99 −1.29

HO2•OSO−
3 • MEAH+ (PD1) −75.84 −5.85

TS6 −67.21 −2.78

HSO−
4 • MEAH+•O2 −84.71 −0.76

NO2•HOSO−
2 • MEAH+ −2.76 5.79

TS3 22.82 37.96

HSO−
4 •MEAH+•NO −34.15 −3.42

With an additional water molecule
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Table 1. Cont.

∆E ∆G Keq Concentration

MEA•H2O•H2O −13.14 9.67

MEA•2H2O•SO2 −18.28 15.41

TS2 −14.61 18.09

HOSO−
2 •MEAH+•H2O −23.35 15.47

O3+HOSO−
2 •MEAH++ H2O →

HSO−
4 •MEAH+•O2•H2O

−93.89 −6.83

NO2•HOSO−
2 •MEAH+•H2O −15.74 5.43

TS4a 30.35 51.96

HSO−
4 •MEAH+•NO•H2O −46.46 −23.30

TS4b 11.24 33.33

SO−
3 •MEAH+•HONO•H2O −15.24 9.19
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Figure 1. Energy surface for the MEA—catalyzed SO2 hydrolysis. Color coding is yellow for sulfur
atoms, red for oxygen atoms, white for hydrogen atoms, and blue for nitrogen atoms. Electronic
energy values of all stationary states are indicated, and corresponding Gibbs-free energy values are
presented in Table 1.
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This complex rearranges through a transition state configuration located at −6.21 kcal
mol−1 below separate reactants, to form HOSO−

2 •MEAH+. As expected from the average
local ionization energy mapped van der Waals surface shown in Figure 2, the nitrogen atom
is the reactive site of MEA in this process. This is the site with the most deficient potential,
which is hence the most susceptible to undergo an electrophilic addition.
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The electronic energy barrier height in HOSO−
2 • MEAH+ formation is 6.83 kcal mol−1,

much lower than the 33.9 kcal mol−1 energy barrier in the SO2 +H2O → H2SO3 reaction,
as reported in a much earlier study [48]. A previous quantum chemical study showed that
ammonia can lower the barrier height of SO2 hydrolysis to ~12.0 kcal mol−1 [49]; however,
it is still higher than that reported for the MEA—assisted SO2 hydrolysis in the current
study. Much lower barriers were determined in SO2 hydrolysis assisted by methylamine
(5.80 kcal mol−1) and dimethylamine (3.17 kcal mol−1) [50]. Despite little differences that
may arise as the result of different theoretical methods, the decreasing effect of ammonia,
MEA, methylamine, and dimethylamine on the energy barrier in SO2 hydrolysis is in line
with the order of their basicity [51]. This further confirms the stronger ability of amines,
compared to ammonia, to promote SO2 hydrolysis.

Our calculations indicate that although a second water molecule did not explicitly
participate in the reaction, it contributed to further reducing the energy barrier height
for HOSO−

2 • MEAH+ formation down to 4.18 kcal mol−1, rendering the SO2 hydrolysis
more favorable, as shown in the energy profile of Figure 3. Similar effects of water in
decreasing energy barrier heights in chemical processes have been observed in several
previous studies [49,52–54].

3.2. Further Reaction with NO2

The sulfite ion in HOSO−
2 • MEAH+ is susceptible to react with relevant atmospheric

oxidants. For example, it can be oxidized by NO2 to form the HSO−
4 (reaction (R4)). The

different steps in this process are the formation of an intermediate complex, HOSO−
2

MEAH+•NO2 lying at −2.76 kcal mol−1, and overcoming a relatively high energy barrier
prior to HSO−

4 • MEAH+•NO formation (see Figure 4). The energy barrier in this process
is 25.58 kcal mol−1, which drastically increases to 46.09 kcal mol−1 in the presence of an
additional water molecule (reaction (R5), Figure 5). This substantial increase in the energy
barrier height is the result of a strong stability of the reactant complex due to additional wa-
ter that facilitates the formation of a tighter ring structure than without water. Even though
this process is highly exergonic (with −23.42 kcal mol−1 free energy change at 298.15 K
and 1 atm), the high energy barrier would prevent this reaction at standard conditions.
Moreover, the formation of nitrous oxide (HONO) in the HONO•SO−

3 • MEAH+ product
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complex was observed to be a potential product in HOSO−
2 • MEAH+•NO2 decomposition

in the presence of an additional water molecule (reaction (R6)).
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Figure 3. Energy surface for the MEA—catalyzed SO2 hydrolysis with the presence of an additional
water molecule. Color coding is yellow for sulfur atoms, red for oxygen atoms, white for hydrogen
atoms, and blue for nitrogen atoms. Electronic energy values of all stationary states are indicated,
and corresponding Gibbs-free energy values are presented in Table 1.

The energy barrier in this decomposition is 26.97 kcal mol−1, being 19.11 kcal mol−1

lower than the barrier in HSO−
4 formation. Despite the somewhat more favorable formation

of HONO than HSO−
4 from HOSO−

2 • MEAH+ oxidation by NO2 in the presence of water,
the overall rate of HONO formation would be limited given the relatively high energy
barrier to its formation. A similar conclusion was observed by Wang et al. while studying
the SO2 hydrolysis assisted by methylamine and dimethylamine [50]. The fate of HOSO−

2 •
MEAH+ would then depends on other oxidants, such as O3.
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Figure 4. Potential energy profile for the oxidation reaction of HOSO−
2 •MEAH+ and NO2. Color

coding is yellow for sulfur atoms, red for oxygen atoms, white for hydrogen atoms, and blue for
nitrogen atoms. Electronic energy values of all stationary states are indicated, and corresponding
Gibbs-free energy values are presented in Table 1.

3.3. Further Reaction with O3

The reaction of HOSO−
2 • MEAH+ with O3 proceeds through the formation of the

O3•HOSO−
2 • MEAH+ intermediate complex (reaction (R7)). Thereafter, a double in-

tramolecular transfer occurs within the complex: O transfer from O3 to HOSO2 to form
HO2 − OSO−

3 • MEAH+ and H transfer from HO2 fragment to OSO3 fragment, resulting
in the formation of O2•HSO−

4 • MEAH+, as shown in Figure 6. These two processes were
separated by energy barriers of 20.05 and 8.63 kcal mol−1, respectively. Although the
H transfer is relatively easy, i.e., characterized by a relatively low barrier, the O transfer
constitutes the limiting step in O2•HSO−

4 • MEAH+ formation. Compared to the reaction
with NO2, the conversion of HOSO−

2 • MEAH+ by reaction with O3 is kinetically and
thermodynamically more favorable, especially given the relatively low energy barrier and
the substantial energy gain in the later process. It is well-known that molecular oxygen
can adopt singlet and triplet spin configurations. Our attempts to compute the HOSO−

2 •
MEAH+ reaction with O3 on the triplet surface did not converge to O2•HSO−

4 • MEAH+.
Hence, the calculations in this process were performed on the singlet surface, exclusively.
It is then obvious that although the O2 molecule in O2•HSO−

4 • MEAH+ would initially
form in the singlet state, collision with other atmospheric species will quickly convert it to
the triplet state, the most stable state of molecular oxygen in the atmosphere.
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Contrary to the effect of water in the HOSO−
2 • MEAH+ + NO2, the presence of

additional water molecules significantly promotes the conversion of HOSO−
2 • MEAH+ to

HSO−
4 • MEAH+ by reaction with O3, which becomes barrierless (see Figure 6). This effect

of additional water is contrary to that observed in the reaction with NO2. The effect of water
in promoting O3¯oxidation reactions was also observed in our previous studies [52]. It is
speculated that different reactive behaviors of MEA—assisted SO2 hydrolysis towards NO2
and O3 compared to methylamine-assisted and dimethylamine-assisted SO2 hydrolysis [51]
can be attributed to the electronic effect of the •OH group in MEA.

3.4. Kinetics of MEA—Assisted SO2 Hydrolysis and Implications for Atmospheric
Sulfate Formation

As introduced in Section 2.2, the rate constant of MEA—assisted SO2 hydrolysis is
determined by considering the formation of the pre-reactive complex from MEA•H2O
+ SO2 and SO2•H2O + MEA interactions, given the high atmospheric concentration of
water relative to those of other reactants. This is further justified by the values of equilib-
rium constants and equilibrium concentrations (presented in Table 1) of the three possi-
ble binary complexes susceptible to form from the interactions between MEA, SO2 and
H2O. Assuming [SO2] ~1012 molecule cm−3, [MEA] ~2.43 × 1015 molecule cm−3 and
[H2O] ~7.77 × 1017 molecule cm−3 corresponding to highly polluted conditions [29,55–57],
MEA•H2O has the highest equilibrium concentration among all the binary complexes.
Hence, we determined the bimolecular rate constant of the MEA—assisted SO2 hydrolysis
based on the MEA•H2O + SO2 interaction to be 1.90 × 10−14 cm3 molecule−1 s−1 at 298.15 K.
All reaction rate constants at this temperature are presented in Table 2, while the positive
temperature-dependency of the rate constant is plotted in Figure 7. Taking into account the
equilibrium concentration of MEA•H2O, which is equal to 3.63 × 109 cm3 molecule−1 as
provided in Table 1, and the SO2 concentration given above, we obtain a reaction rate (cal-
culated according to Equation (1) of 6.89 × 107 molecule cm−3 s−1 for the SO2 hydrolysis
assisted by MEA at 300 K. This rate is one order of magnitude higher than the estimated
rate of SO2 oxidation by •OH determined to be 1.50 × 106 molecule cm−3 s−1 at the same
temperature [57], considering an average •OH concentration of ~106 molecule cm−3 during
daytime and 1.30 × 10−12 cm3 molecule −1 s−1 rate constant of SO2 oxidation by •OH.

Table 2. Unimolecular (kuni, s−1) and bimolecular (kbimol, cm3 molecule−1s−1) rate constants in the
MEA—assisted SO2 oxidation, all calculated at 298.15 K and 1 atm.

Reaction kuni kbimol

MEA•H2O + SO2 → HOSO−
2 •MEAH+ (R2) 8.33 × 107 1.90 × 10−14

MEA•(H2O)2 + SO2 → HOSO−
2 •MEAH+•H2O (R3) 7.64 × 109 1.93 × 10−14

NO2 + HOSO−
2 •MEAH+ → HSO−

4 •MEAH+•NO (R4) 1.29 × 10−6

NO2 + HOSO−
2 •MEAH+ + H2O → HSO−

4 •MEAH+•NO•H2O (R5) 1.70 × 10−21

NO2 + HOSO−
2 •MEAH+ + H2O → SO−

3 •MEAH+•HONO•H2O (R6) 2.41 × 10−7

O3 + HOSO−
2 •MEAH+ → HO2 •OSO−

3 •MEAH+ (R7) 1.35 × 10−2

HO2•OSO−
3 •MEAH+ → O2•HSO−

4 •MEAH+ (R8) 4.74 × 106

Although the presence of additional water molecules increases the unimolecular rate
constant of hydrated HOSO−

2 •MEAH+ formation by two orders of magnitude relative
to the reaction with one water molecule less, the overall effect on the bimolecular rate
constant is reduced by the weaker binding between MEA•(H2O)2 and SO2 to form the
reactant complex, MEA•(H2O)2•SO2. For this reaction, we obtain a rate constant of
1.93 × 10−14 cm3 molecule −1 s−1 at 298.15 K. Similar to the reaction without additional
water, the rate constant of the reaction in the presence of additional water exhibits a positive
temperature-dependent variation in the range 200–400 K, though the effect is significantly
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weak. Considering [(H2O)2] ~4.35 × 1012 molecule cm−3 according to our calculations, the
reaction rate of SO2 hydrolysis assisted by MEA with additional water was estimated to be
3.88 × 103 molecule cm−3 s−1, three order of magnitude lower than the estimated rate of
SO2 oxidation by •OH reported previously [57].
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Given the high rate of MEA—assisted SO2 hydrolysis, it is evident that under ex-
tremely polluted conditions such as during haze events where there is insufficient •OH
production due to low ultraviolet solar radiation, the investigated pathway might be a
highly competitive process in atmospheric SO2 oxidation.

Further exploration of the chemistry of HOSO−
2 •MEAH+ shows that oxidation by

NO2 and O3 to form HSO−
4 •MEAH+ occurs with unimolecular rate constants of

1.29 × 10−6 s−1 and 1.35 × 10−2 s−1, respectively. With the presence of additional wa-
ter molecules, HOSO−

2 •MEAH+ decomposition by O3 to form HSO−
4 •MEAH+ is essen-

tially barrierless, whereas decomposition by NO2 is further prevented by a high energy
barrier. For the reaction with NO2 in the presence of water, instead, the decomposi-
tion of HOSO−

2 •MEAH+ to HONO•SO−
3 •MEAH+ is slightly preferred. The relevance

of HONO•SO−
3 •MEAH+ can be found both in •OH production through HONO and in

sulfate formation through SO−
3 . HONO•SO−

3 •MEAH+ is formed at a unimolecular rate
constant of 2.41 × 10−7 s−1; however, this is still much lower than the rate constant of the
reaction with O3. This indicates that the reaction with O3 is the most likely process for
HOSO−

2 •MEAH+ oxidation leading to sulfate formation in the gas phase.
Besides its fate in sulfate formation, the studied mechanism could also be an efficient

removal pathway for MEA, which is believed to potentially represent an environmental
risk [56,58]. So far, the reported sink processes for MEA include gas-phase oxidation by
•OH and •Cl, and reactive uptake by sulfuric acid molecules [22,59,60]. Rate constants
of 7.10 × 10−11 cm3 molecule −1 s−1 and ~10−10 cm3 molecule −1 s−1 were reported for
MEA oxidation by •OH and •Cl, respectively [59,60]. With average •OH concentrations
of ~106 molecule cm−3 during daytime and •Cl concentration of ~105 molecule cm−3,
the estimated rates of MEA+•OH (1.73 × 1011 molecule cm−3 s−1) and MEA + •Cl
(2.43 × 1010 molecule cm−3 s−1) are respectively 5 × 103 and 7 × 102 times higher than the
rate of MEA•H2O + SO2 reaction. Under highly polluted conditions with elevated concen-
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trations of MEA and low •OH concentration induced by low solar radiation, the mechanism
reported in this study may also be a competitive pathway in MEA removal processes.

4. Conclusions

Sulfate formation was investigated from MEA—assisted SO2 oxidation using first-
principles simulations. Results indicate that decomposition of the direct SO2 hydrolysis
product, HOSO−

2 •MEAH+, by O3 is more favored than by NO2. The presence of additional
water was found to play a varied role in the further oxidation process of HOSO−

2 •MEAH+,
significantly facilitating the decomposition by O3 while substantially preventing the re-
action with NO2. Besides sulfate formation mechanisms including ion-mediated and
acid-catalyzed mechanisms that have already been elucidated in some previous studies,
the current mechanism is an alternative pathway for sulfate formation and can be used
to explain elevated sulfate formation observed under severe haze events where there is
insufficient •OH production for SO2 oxidation. Moreover, the presence of water introduces
an additional feature, i.e., the HONO formation, in the reaction with NO2, though at a
relatively lower rate. This latter mechanism might be a potential source for •OH under low
ultraviolet solar radiation. We found that the title reaction can significantly outperform
SO2 + •OH reaction under low •OH conditions, providing new pathways for sulfate for-
mation that would prevail under conditions of heavy pollution, high humidity, and low
solar radiation, such as during haze events. The MEA—assisted SO2 oxidation would also
potentially compete with the •OH oxidation pathway in MEA removal processes under
such conditions. This study highlights the role of alkanolamines in SO2 oxidation, with
implication in sulfate aerosol formation.
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