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Abstract: Pilots commonly undergo training to effectively manage instances of wind shear (WS)
during both the landing and takeoff stages. Nevertheless, in exceptional circumstances, there may be
instances of severe wind shear (SWS) surpassing a magnitude of 30 knots, leading to adverse effects on
the operation of taking off and landing aircraft. This phenomenon can lead to the execution of aborted
landing maneuvers and deviations from the intended glide path. This study utilized the explainable
boosting machine (EBM), an advanced machine learning (ML) model known for its transparency, to
predict the severity of WS occurrences and analyze the underlying factors. The dataset consisted
of 21,392 data points from 2018 to 2022 acquired from two Doppler light detection and ranging
(LiDAR) systems installed at Hong Kong International Airport (HKIA). Initially, the Doppler LiDAR
data received data treatment in order to address the issue of data imbalance. Subsequently, utilizing
the processed data, the hyperparameters of EBM were optimized using the Bayesian optimization
technique. The EBM model underwent subsequent training and evaluation, wherein its performance
metrics were computed and compared with those of an alternative glass-box model including
decision tree (DT) and counterpart black-box models, namely, random forest (RF) and extreme
gradient boosting (XGBoost). The EBM model trained on synthetic minority oversampling technique
(SMOTE)-treated data demonstrated superior performance in comparison with the alternative models,
as indicated by its higher geometric mean (0.77), balanced accuracy (0.78), and Matthews’ correlation
coefficient (0.169). Furthermore, the EBM exhibited enhanced predictive performance and facilitated
a comprehensive analysis of individual and pairwise factor interactions in the prediction of WS
severity. This enabled the assessment of the factors that contributed to the instances of SWS in the
proximity of airport runways.

Keywords: aviation safety; airport runway; wind shear; explainable boosting machine

1. Introduction

Wind shear (WS) is defined by the International Civil Aviation Organization (ICAO)
as a minimum of 15 knots of consistent headwind or tailwind variation occurring within
1600 feet of the ground [1]. Typically, pilots acquire training on handling this phenomenon.
Nevertheless, rare instances exist in which severe wind shear (SWS) can manifest, sur-
passing 30 knots in magnitude [2]. The SWS phenomenon is of a critical safety nature
as it possesses a tendency to induce aircraft to stray from their established flight course,
thus putting incoming and departing aircraft in jeopardy as shown in Figure 1. Flight
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disruptions such as delays, cancellations, and catastrophes can transpire under particularly
extreme circumstances [3–6].
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Various airports across the globe have recorded numerous instances of SWS [7–9].
Prompt notifications of WS are of paramount significance due to the potential for SWS to
negatively impact aircraft as well as airport operations. Hong Kong International Airport
(HKIA) is widely recognized as one of the airports that exhibit a significant susceptibility to
weather-related disruptions, particularly WS and aviation turbulence [10,11]. The location
of HKIA is in the northern region of Lantau Island, known for its undulating landscape
that includes mountain peaks reaching heights exceeding 900 m and valleys descending
to around 300 m. Therefore, the requirement of a reliable approach for predicting WS and
turbulence is crucial in the context of achieving accurate and efficient alerts, in addition to
guaranteeing the safety of civil aviation.

Researchers have utilized various numerical modeling strategies, such as large-eddy
simulations (LESs) [12,13], computational fluid dynamics (CFD) [14,15], and numerical
weather prediction (NWP) [11], to forecast or simulate WS as well as turbulence phenomena.
However, the aforementioned studies primarily examined individual or isolated instances
of WS events. There has been a dearth of comprehensive and enduring assessments per-
taining to the efficacy of numerical models in accurately predicting WS severity. The study
of quantifying the WS severity in the closest vicinity of airport runways and analyzing the
factors that contribute to its happening is a highly intricate and challenging domain within
the realm of civil aviation safety. In recent times, machine learning (ML) algorithms have
witnessed substantial advancements [16–18]. They have gained significant popularity and
proven to be extremely useful in various areas of transportation [19,20] and meteorological
research [21,22]. This field of study falls at the junction of statistics and computer science.
The utilization of ML models is of paramount significance in tackling all of the challenges
that arise when building statistical models from large-scale datasets, necessitating the
implementation of computational techniques. However, a notable limitation of ML models
is their inherent “black-box” characteristic [23]. While they may offer superior performance,
they fall short in delivering a comprehensive interpretation.

On the contrary, a recent development in the field is the explainable boosting machine
(EBM) [24], a contemporary “glass-box” model designed with inherent interpretability
as an important attribute. This implies that the generated explanations possess a dual
characteristic of precision and comprehensibility for human comprehension [25,26]. This
strategy takes advantage of a tree-based, cyclic gradient-boosting mechanism. It is a general
additive model that incorporates automatic interaction detection. In regard to reliability,
EBM has exhibited similar performance to advanced ML models [27–29].

In an effort to transition from black-box models to glass-box models, this study aimed
to provide an EBM technique for WS severity prediction and interpretation of the contribut-
ing factors. WS data were compiled from Doppler light detection and ranging (LiDAR)
systems located at HKIA in order to retrieve a number of factors. Our intent was to for-
mulate a binary classification problem in which SWS events were rare instances that were
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designated as the minority class, while non-severe WS (NSWS) were designated as the
majority class. Consequently, prior to training the model, the imbalanced WS data were ad-
dressed using the synthetic minority oversampling technique (SMOTE) [30], support vector
machine—synthetic minority oversampling technique (SVM-SMOTE) [31], and adaptive
synthetic oversampling (ADASYN) [32]. Similarly, during the training–validation stage,
the hyperparameters of the EBM model were also required to be optimized to achieve
better performance. In this study, we employed the Bayesian optimization technique [33]
to fine-tune the hyperparameters of the EBM model.

This study is, to the best of our knowledge, the first practical application of a glass-
box approach for the purpose of predicting and interpreting the WS severity in close
proximity to airport runways. The outcomes of our study would provide pilots, air traffic
controllers, and other policymakers in the realm of civil aviation with a better understanding
of the factors that contribute to the occurrence of SWS. Through the implementation of
aviation safety standards, the provision of comprehensive pilot training, and the acquisition
of appropriate equipment, it becomes feasible to develop preventive strategies aimed at
efficiently handling SWS events. Figure 2 depicts the comprehensive research framework.
The subsequent sections of the article are organized in the following form: Section 2 provides
a comprehensive account of various aspects, including the study location, the intricate
specifications of the Doppler LiDAR system employed for acquiring WS data, a theoretical
description of the EBM framework, an overview of Bayesian optimization, and a discussion
of the performance measures employed in the study. Section 3 presents the outcomes
derived from the EBM model and its subsequent comparison with other advanced ML
models. Furthermore, an interpretation of the EBM model is also provided. Section 4 of the
paper is specifically allocated to the presentation of the conclusions and recommendations.
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2. Materials and Methods
2.1. Study Location and Data Retrieval from HKIA-Based Doppler LiDAR

HKIA is located on Lantau Island of Hong Kong. This island is bordered by water
on all three of its sides. In the southern region of the HKIA lies a mountainous terrain
characterized by elevated plateaus that exceed an altitude of 900 m relative to sea level,
as shown in Figure 3. As HKIA is highly susceptible to the WS occurrences, therefore,
this study utilized WS data collected from two long-range Doppler LiDAR systems [34]
at HKIA. The Doppler LiDAR system had the capability to estimate the magnitude of
WS events and provide information on their specific occurrence locations. The Doppler
LiDAR’s radial resolution, referred to as the physical range gate, was 100 m, while its opera-
tional wavelength was approximately 1.5 microns in the infrared spectrum. The maximum
achievable radial velocity was around 40 m/s [35]. Under ideal weather conditions and
without any impediments like low clouds, it was possible to observe objects within a radius
that ranged from 10 to 15 km. Doppler LiDAR systems have the capability to be tailored
to conduct glide path scans with regard to landing and takeoff paths, alongside regular
fixed-elevation scans known as plan position indicators. In order to achieve the intended
objective, it was crucial to align the vertical (elevation) and horizontal (azimuth) shifts of
the laser scanner’s head. The estimation of WS over each runway could be conducted by
utilizing radial velocity data obtained from glide path scans. The typical time required to
scan each runway was approximately 1 min. The northern Doppler LiDAR system handled
various configurations of the northern runway, namely, 07LA, 25RA, 07LD, and 25RD.
Similarly, the southern Doppler LiDAR system examined the configurations of the southern
runway, namely, 25LA, 07LA, 07RD, and 25LD, as depicted in Figure 4.
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Figure 4. Location of Doppler LiDAR systems at HKIA.

Figure 5 displays an example of a visual representation of a radial velocity plot that
was obtained through the utilization of a plan position indicator (PPI) scan of the southern
runway Doppler LiDAR. The scan was performed with an azimuth angle of 3◦ in relation
to the horizon. A significant expanse of winds was observed to be flowing in a direction
opposite to the prevailing east-southeast airflow, situated in the western and southern
regions relative to the specified coordinates. This area was located at a distance of three
nautical miles (equivalent to 5.6 km) in the west-southwest direction from the westernmost
point of the southern runway. The depicted region is visually characterized by its green hue.
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It is imperative to comprehend that the precise horizontal encounter location of the
WS was also of paramount importance. As depicted in Figure 6, the areas where WS events
took place were denoted by the aviation terminology of RWY, MD, or MF. The encounter
locations of WS events at specific horizontal distances from the runway threshold, such as
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1 nautical mile (1MF) and 2 nautical miles (2MF) from the approaching and departing end
of the runway, are depicted in Figure 6. Table 1 illustrates the sample WS data obtained
from HKIA-based Doppler LiDAR.

Atmosphere 2024, 15, x FOR PEER REVIEW 6 of 20 
 

 

 

Figure 5. WS at the south runway detected by the HKIA-based Doppler LiDAR system. 

It is imperative to comprehend that the precise horizontal encounter location of the 

WS was also of paramount importance. As depicted in Figure 6, the areas where WS events 

took place were denoted by the aviation terminology of RWY, MD, or MF. The encounter 

locations of WS events at specific horizontal distances from the runway threshold, such as 

1 nautical mile (1MF) and 2 nautical miles (2MF) from the approaching and departing end 

of the runway, are depicted in Figure 6. Table 1 illustrates the sample WS data obtained 

from HKIA-based Doppler LiDAR. 

1-MF 2-MF 3-MFRWY END1-MF2-MF3-MF RWY END

RUNWAY

Arrival Arrival

 
(a) 

1-MD 2-MD 3-MDRWY END1-MD2-MD3-MD RWY END

RUNWAY

Departure Departure

 
(b) 

Figure 6. WS encounter locations. (a) WS occurrence distances at the arrival. (b) WS occurrences 

distance at the departure. 
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Table 1. Sample of HKIA-based Doppler LiDAR WS data points.

WS Occurrence Date WS Occurrence Time
(Hours) Assigned Runway WS Horizontal

Encounter Location
WS Magnitude (+/−)

(Knots)

12 April 2018 1424 07RA RWY −20
21 March 2019 1736 25RD 1MD +15

--- --- --- --- ---
--- --- --- --- ---

18 June 2021 2314 25LA 1MF −35
15 August 2022 0747 07CA 2MF +20

--- --- --- --- ---
--- --- --- --- ---

16 November 2022 2126 25CD RWY −17
21 May 2023 0823 07RA 1MD −25

2.2. Developing a Binary Classification Problem

To develop a WS severity model, a substantial quantity of WS data was necessary. In
light of the provided context, the initial step involved acquiring the WS data from HKIA-
based Doppler LiDAR systems. Subsequently, a filtering procedure was implemented to
classify the WS events into two distinct categories: severe wind speed (SWS) and non-severe
wind speed (NSWS). More specifically, as shown in Table 1, a WS event that had an absolute
magnitude equal to or greater than 30 knots was classified as SWS, whereas all other WS
events were designated as NSWS. The binary classification problem entailed assigning
a value of 1 to the occurrence of the “SWS” event and a value of 0 to the occurrence of
“NSWS,” as demonstrated in Equation (1).

WS Severity =

{
1 : “SWS”, WS magnitude ≥ 30 knots
0 : “NSWS”, WS magitude = 15–29.9 knots

(1)

The other factors, including the season of the year, the time of the day, the assigned
runway for operation, and the WS occurring distance from the runway threshold, were
coded by means of the label encoding technique [36]. It is a commonly employed method
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in ML modeling to transform categorical factors into numerical representations, enabling
their utilization in models that exclusively accept numerical data. Table 2 illustrates the
label encoding of different factors that were considered in the EBM modeling.

Table 2. Label encoding of data extracted from HKIA-based Doppler LiDAR system.

Factor Codes and Description

Season of the year 0: winter (December to February); 1: spring (March to May); 2: summer
(June to August); 3: autumn (September to November)

Time of the day 1: daytime (0700 to 1859 h); 2: night (1900 to 0659 h)

WS encounter
location

0: RWY (occurrence of WS at runway threshold), 1: 1MF (occurrence of WS
at 1 nautical miles from runway threshold at final approach); 2: 1MD

(occurrence of WS at 1 nautical miles from runway threshold at departure);
3: 2MF (occurrence of WS at 2 nautical miles from runway threshold at

final approach); 4: 2MD (occurrence of WS at 2 nautical miles from runway
threshold at departure); 5: 3MF (occurrence of WS at 3 nautical miles from

runway threshold at final approach); 6: 3MD (occurrence of WS at 3
nautical miles from runway threshold at departure)

Assigned runway 0: runway 07CA; 1: runway 07CD; 2: runway 07RA; 3: runway 07RD; 4:
runway 25CA; 5: runway 25CD; 6: runway 25LA; 7: runway 07LD

2.3. Explainable Boosting Machine: An ML-Based Glass-Box Model

EBM is a contemporary glass-box model that is inherently interpretable and is based
upon the general additive model (GAM), incorporating supplementary pairwise interac-
tions. The functional form of the EBM is denoted as Equation (2) for each jth data point
within the Doppler LiDAR dataset

(
xj, yj

)
.

Λ(E[y]) = ϕ0 + Σϕj
(
xj
)

(2)

where

Λ(.): Link function, representing identity function for regression and logit function for
classification
ϕ0 : Intercept term
ϕj : Shape or smooth function

During the training of an explainable boosting machine (EBM) model, a “round-robin
loop” is used where each factor is addressed sequentially. This loop ensures that the order
in which the factors are considered does not affect the final outcome. A smaller learning rate
is employed to gradually update the model as each factor is incorporated. The iterations
continue until all the factors have been taken into account. Therefore, in the initial iteration,
the response factor is provided as

y = ϕ
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Similarly, the second iteration is given as follows:
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The process persists until the zth iteration is attained. By summing all of the other
functions associated with a particular factor, one can ascertain its overall objective, that is,

ϕ(x1) = ϕ
(
x1

1
)
+ ϕ

(
x2

1
)
+ · · ·+ ϕ

(
xz

1
)

ϕ(x2) = ϕ
(
x1

2
)
+ ϕ

(
x2

2
)
+ · · ·+ ϕ(xz

2)

EBM generates a table of ϕ
(
xj
)

versus xj for each factor, which is then used to generate
the plot of score versus xj. This narrative aids in comprehending the correlation between
factor xj and factor yj, as well as the individual impact of each factor on the predictive
ability of factor yj.

However, EBM does not conclude at this point. Furthermore, this approach consid-
ers the interactions among the factors within a two-dimensional scheme. A model that
incorporates two-dimensional interaction can be effectively interpreted by representing
the outcomes of these interactions as heat maps on a two-dimensional plane. Hence, the
ultimate manifestation of EBM, which encompasses the intercept, individual effects, and
interaction effect, can be mathematically expressed as Equation (3).

Λ(E[y]) = β0 + Σϕj
(

xj
)
+ Σϕij

(
xi, xj

)
(3)

Typically, the detection of interaction terms necessitates a substantial computational
capacity, especially when dealing with huge datasets. The challenge is addressed by EBM
through the implementation of a two-stage construction strategy and the utilization of
FAST [37] to effectively rank the pairwise interactions. The strategy is divided into two
discrete phases. The initial stage entails the development of an ideal additive model by
employing solely one-dimensional elements. In the next phase, the one-dimensional func-
tions are stabilized, and models are developed to account for pairwise interactions in the
remaining variation. Specifically, the highest-T interaction pairs are selected using the FAST
algorithm, and a model is fitted using these pairs on the residual (ε). The value of the T is
computed based on the available computing power.

The final outcome in EBM is determined by aggregating the individual contributions
of each factor. This approach allows for a clear and intuitive understanding of the contribu-
tions made by distinct factors and interaction terms. The additional training cost incurred
by EBM due to the modularity of the prediction results in a slower performance compared
with similar ML strategies. Nevertheless, the prediction process remains unaffected by
this as it only requires basic arithmetic operations within the factor functions. Indeed, this
characteristic renders the EBM strategy one of the most expeditious predictive models to
deploy. The learning mechanism of EBM models is visualized in Figure 7.
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2.4. Bayesian Optimization

The process of hyperparameter tuning through trial and error is laborious and fre-
quently yields sub-optimal outcomes. Therefore, it is imperative to employ robust tuning
approaches, particularly when the objective of optimization is to locate the highest value at
the point of sampling for an unfamiliar function as shown by Equation (4).

Ψ+ = argmax
Ψ∈∆

Υ(}) (4)

In the present context, the symbol Ψ is employed to denote the sampling point, whereas
it signifies the search space of said sampling point Ψ. The function Υ represents an unspecified
objective function, and Ψ+ denotes the location at which this objective function is to be
optimized for maximum value. The Bayesian optimization consists of two primary steps.

1. First, the Bayesian optimization attempts to construct a surrogate function for Υ by
randomly selecting a subset of data points. In this study, the surrogate function was up-
dated using a Gaussian process (GP) to create the posterior distribution over Υ. The use
of GP was justified by its high flexibility, robustness, accuracy, and analytical traceability.

2. Initially, the Bayesian optimization procedure endeavors to create a surrogate function
for the target function, denoted as Υ, by employing a random selection process to
choose a subset of data points. The surrogate function in this study was enhanced
through the utilization of GP in order to generate the posterior distribution over Υ.
The utilization of GP was justified due to its notable attributes such as high flexibility,
robustness, accuracy, and analytical traceability. Subsequently, the posterior distribu-
tion obtained from the initial step is employed to derive an acquisition function that
serves the dual purpose of exploring unexplored regions within the search space and
exploiting regions that have already been identified as yielding optimal outcomes.
The processes of exploration and exploitation are ongoing, and the surrogate model
continues to be updated with new findings until an established until the termination
criterion is met. The primary aim is to enhance the performance of the acquisition
function, particularly the expected improvement metric, for the purpose of identifying
the subsequent sampling point.

2.5. Performance Measures

The performance of the EBM model in terms of its predictive and classifying abilities
can be assessed by confusion matrix as shown in Figure 8. The four indicators including
true position

(
αp
)
, false positive

(
βp
)
, true negative (αn), and false negative (βn) were

obtained from the confusion matrix and were then used to obtain various performance
measures including precision, recall, geometric mean (G-mean), balanced accuracy (BA),
and Matthews’ correlation coefficient (MCC). In addition, the area under the receiver
operating characteristic (AU-ROC) curve was also obtained. The mathematical expressions
for these performance measure are shown in Equations (5)–(9).

Precision =
αp

αp+βp
(5)

Recall =
αp

αp+βn
(6)

G-Mean =

√(
αp

αp+βn

)(
αn

βp+αn

)
(7)

BA =
1
2

(
αp

αp+βn
+

αn

αn+βp

)
(8)
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MCC =
αp×αn − βp×βn√(

αp+βp

)(
αp+βn

)(
αn+βp

)
(αn+βn)

(9)
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3. Results and Discussion

The WS data obtained from two Doppler LiDAR systems stationed at HKIA were
originally subjected to a data cleaning process and examined for the existence of any
missing values. Following this, we partitioned the data into distinct training–validation
(70%) and testing datasets (30%). In the course of the present research, both the positive and
negative classes were denoted as “SWS” and “NSWS,” respectively. Nevertheless, a class
imbalance existed between the “SWS” and “NSWS” classes. A total of 21,392 data points
of WS have been acquired from Doppler LiDAR. Examining these data points revealed
that 2956 data points corresponded to SWS incidents, while the remaining data points
represented NSWS events. To address the issue of data imbalance, various treatment
procedures, such as SMOTE, SVM-SMOTE, and ADASYN, were applied to the training
dataset prior to model training. Figure 9 illustrates the distribution of each class (SWS and
NSWS) both with and without data treatments.
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3.1. Optimal Hyperparameters via Bayesian Optimization

Following the data treatment process, the subsequent stage involved the hyperparam-
eter adjusting of the EBM model, as well as other competitor models such as XGBoost and
RF. These models were trained on distinct treated datasets. This stage held significance
because of its potential impact on the performance of generalization, its ability to mitigate
over-fitting, and its capacity to reduce the complexity of the model. In order to acquire
the optimal hyperparameters, a Bayesian optimization technique was utilized, with the
objective of maximizing the “G-mean” value. Bayesian optimization was implemented in
conjunction with a 10-fold cross-validation strategy in the present study. The approach
entailed the random division of the training set into ten subsets, wherein nine subsets
were utilized for training and one subset was designated for testing in each iteration. The
hyperparameters’ optimal values are shown in Table 3.

Table 3. Hyperparameters optimized using Bayesian optimization.

Data
Treatment Models

Optimal Hyperparameters

n_estimators max_depth learning_rate max_leaves

SMOTE

EBM 0.15 4
DT 3
RF 670 4

XGBoost 1080 0.11 6

SVM-
SMOTE

EBM 0.14 5
DT 3
RF 730 5

XGBoost 950 0.07 6

ADASYN

EBM 0.16 5
DT 3
RF 550 5

XGBoost 890 0.09 4

It is essential to emphasize that to assure consistency in the tuning of hyperparameters
for various data treatments, the search space for all hyperparameters remained unchanged.
As an example, the search space for the learning_rate parameter ranged from 0.01 to 0.2, the
max_depth parameter ranged from 3 to 10, the n_estimators parameter ranged from 100 to
1500, and the max_leaves parameter ranged from 3 to 10. It is important to note that the
remaining hyperparameters were disregarded in the process of Bayesian optimization due
to their lack of substantial contribution toward enhancing the performance.
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3.2. Predictive Performance of EBM and Comparative Analysis

The confusion matrix values for various treated data were utilized to derive the
classification outcomes, including true positive, true negative, false positive, and false
negative (refer to Table 4). These results were utilized in the computation of the evaluation
measures with the purpose of enabling the comparison of different models. Measures such
as precision, recall, G-mean, BA, and MCC have been commonly employed in the field
of imbalanced classification problems [38,39]. Table 5 presents the indicators computed
for different data treatments. The findings revealed that the utilization of the EBM model,
trained on data that had undergone SMOTE treatment, resulted in better performance
compared with alternative models. This was evidenced by higher values of G-mean (0.77),
BA (0.78), and MCC (0.169). The values given above demonstrated the highest scores
among all evaluated competing models.

Table 4. Comparison of confusion matrix outcomes of EBM and other competitive models.

Data Treatment Models True Negative
(TN)

False Positive
(FP)

False Negative
(FN)

True Positive
(TP)

SMOTE

EBM 4410 22 1873 110
DT 3405 13 2882 119
RF 3843 16 2444 116

XGBoost 3952 9 2335 123

SVM-SMOTE

EBM 4850 38 1437 94
DT 3405 13 2882 119
RF 5159 59 1092 73

XGBoost 4860 40 1427 92

ADASYN

EBM 4401 21 1886 111
DT 3405 13 2882 119
RF 3312 45 2975 87

XGBoost 3915 11 2372 121

Table 5. Performance measures of EBM and other competitors with different data treatment strategies.

Data Treatment Model Precision Recall G-Mean BA MCC

SMOTE

EBM 0.98 0.70 0.77 0.78 0.169
DT 0.98 0.55 0.70 0.72 0.140
RF 0.98 0.62 0.73 0.74 0.142

XGBoost 0.98 0.63 0.77 0.77 0.162

SVM-SMOTE

EBM 0.97 0.78 0.74 0.74 0.156
DT 0.98 0.55 0.70 0.72 0.140
RF 0.97 0.80 0.68 0.69 0.139

XGBoost 0.97 0.77 0.72 0.73 0.152

ADASYN

EBM 0.98 0.80 0.77 0.77 0.163
DT 0.98 0.55 0.70 0.72 0.140
RF 0.97 0.53 0.59 0.59 0.105

XGBoost 0.98 0.63 0.75 0.76 0.157

Furthermore, ROC curves were generated to ascertain the AU-ROC values for each
model, as depicted in Figure 10. Both SMOTE+EBM and SVM-SMOTE+EBM attained the
higher AU-ROC value (0.854). The strategy with the lowest AU-ROC (0.72) was demon-
strated by ADASYN + RF. The SMOTE+EBM model may be interpreted in light of the
aforementioned observation with the aim to examine a number of factors that lead to the
occurrence of SWS.
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3.3. Uncertainty Analysis of EBM Model

In addition to performance measures, it is important to conduct uncertainty analysis
of EBM model. A bar graph as well as computed statistical indicators for uncertainty
analysis of EBM model is shown in Figure 11. The results obtained from the bar graph of
uncertainty analysis of an EBM provide insights into the level of uncertainty associated with
the EBM model’s predictions for each instance in the testing dataset. The uncertainties were
calculated using the entropy measure. Entropy is basically a measure of the impurity or
unpredictability of a probability distribution. Higher entropy indicates higher uncertainty.
The resulting uncertainties represent a numerical value for each instance, indicating the
level of uncertainty associated with the EBM model’s prediction for that instance. A
higher uncertainty value suggests that the model is less confident in its prediction for that
particular instance. By plotting the uncertainties as a bar graph, we can visually analyze
the distribution of uncertainty across the instances in the dataset. The x-axis represents the
instances, and the y-axis represents the uncertainty values. The bar chart allowed us to
compare and identify instances with higher or lower uncertainty.

In addition to the visual analysis by using the bar graph, we obtained statistical indica-
tors including the mean and standard deviation. We obtained the mean uncertainty value of
0.354, which suggested that on average, the EBM model’s predictions had a moderate level
of uncertainty. The bars in red indicate the uncertainty values of each instance that is lower
than the mean uncertainty. This indicates that the proposed model was reasonably confident
in its predictions for most instances, but there was still some degree of uncertainty present.
Similarly, the standard deviation of 0.267 indicates a slight variability of the uncertainty
values around the mean. Overall, it was demonstrated that the EBM model’s predictions
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had a moderate level of uncertainty, with some instances having higher or lower uncertainty
compared with the average.
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3.4. EBM Interpretation

The comprehensive interpretation of EBM allows for an assessment of the impact
of various combinations of factors on the predicted severity of WS outcomes. Figure 12
presents the contribution of each individual factor in predicting WS severity as well as
individual and pairwise interaction of important factors (Global Interpretation). Figure 12a
revealed that when considering individual factor, it is evident that the season of the
year played the most contributing role. In the context of pairwise interaction, it can be
observed that the season of the year and the assigned runway factor contributed the most
to predicting WS severity.

Similarly, Figure 12b is the shape function of the season of the year factor generated from
the outputs of the SMOTE+EBM model. The higher score is indicated by the summer month
(coded as 2). This implied that SWS events were more likely to occur during the summer.
The potential cause may be attributed to the summer monsoon, which originates from the
south or southwest but undergoes deflection due to the upstream terrain at HKIA [40].
Likewise, the months of winter and autumn exhibited a notable decrease in SWS events,
rendering them comparatively tranquil periods [41].

The heat map (Figure 12c) illustrates the relationship between the season of the year
and the assigned runway. Distinct zones were assigned to several significant sections of the
heat map. Zone A depicts the period of summer (coded as 2) and all the assigned runways
of HKIA. The transition from the hue yellow to orange signified an increase in the score,
indicating that during the summer months, all runways were susceptible to SWS events.
The occurrence of strong winds and subsequent heavy sea breezes and terrain-induced
wind shear occurrences in Hong Kong during the summer season may be attributed to the
influence of the monsoon. Zone B demonstrated a significant susceptibility of runway 07RA
(coded as 2) to occurrences of SWS events during the winter and spring seasons. Likewise,
zone C and zone D indicated that runways 07RA (coded as 2), 07RD (coded as 3), and 25LA
(coded as 6) were susceptible to SWS events during the autumn season. These results are
also consistent with previous studies [42,43].

In addition, local interpretation of the SMOTE+EBM model was also conducted.
It allowed us to gain insights into how a specific instance was being predicted by the
SMOTE+EBM model. It also helped to understand which factors were driving the predic-
tion for that particular instance. For this purpose, we considered two randomly selected
instances that were correctly classified as SWS.
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Figure 13 displays bar graphs that represent the contribution of each feature to the
prediction and classification of the corresponding ith instance. The EBM’s local interpreta-
tion strategy is notable for its ability to accurately determine the influence of individual
factor on the outcome by presenting it as a probability. For example, in the case of instance
#23 (Figure 13a), there was a 95% chance that the event was an SWS event. In this instance,
the pairwise interaction of factors (distance from runway and season of the year) and the
individual factor (season of the year = 2, which indicates summer) resulted most in the
likelihood of SWS events. Similarly, for instance #137 (Figure 13b), the EBM showed that
there was an 86% chance that the event was an SWS event. In this instance, the individual
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factor (season of the year) was the most influential, followed by pairwise interaction of
factors (season of the year and time of the day).
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3.5. Limitation of the Research

The limitations of the current research were as follows:

• In this study, we employed different input factors extracted from the Doppler LiDAR
system of HKIA to estimate the WS severity. However, it is pertinent to note that
forthcoming studies may encompass additional factors, including the atmospheric
pressure and temperature, that will be derived from HKIA’s weather reports.

• The main focus of the study centered on the application of EBM and other advanced
ML models to forecast the severity of WS. Future research endeavors may explore the
integration of additional advanced deep learning (DL) algorithms, such as wide and
deep networks (WDNs) and deep and cross networks (DCNs), among others.

• The severity of WS was a notable factor of interest in this current study. The incorpora-
tion of aviation turbulence as a complementary wind attribute for future research also
merits serious consideration.
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4. Conclusions and Recommendation

This study introduced an EBM framework, primarily an ML-based glass-box model,
for the prediction of WS severity in close proximity to airport runways. The proposed model
exhibited a comparable level of precision to its black-box counterparts, such as XGBoost
and RF models, while also possessing the characteristics of explainability and inherent
comprehensibility. Various factors were extracted from the Doppler LiDAR systems based at
HKIA, including the magnitude of WS events, the season and time of day of WS occurrences,
the location of WS encounters, and the assigned runway. Furthermore, in order to address
the issue of data imbalance, the training data received treatment using the SMOTE, SVM-
SMOTE, and ADASYN strategies before the modeling process. Subsequently, the Bayesian
optimization technique was used to optimize the hyperparameters of the EBM model, as
well as its counterparts XGBoost and RF, using the augmented data. The evaluation of the
EBM, XGBoost, and RF models was conducted using a holdout approach with testing data.
Based on the findings of this study, it was possible to draw the following conclusions:

• The performance of the EBM model differed slightly but was comparable to the
XGBoost and RF models.

• The finely tuned EBM model trained on SMOTE-treated data performed better by
achieving higher precision (0.98), recall (0.70), G-mean (0.77), BA (0.78), MCC (0.169),
and AU-ROC values (0.854).

• The RF model trained on ADASYN-treated data demonstrated a poor performance as
indicated by the precision (0.97), recall (0.53), G-mean (0.59), BA (0.59), MCC (0.105),
and AU-ROC values (0.617).

• The EBM model also showed effectiveness in the interpretation of various factors. In
terms of the individual factor contribution, the season of the year contributed most to
predicting the WS severity. Similarly, in terms of pairwise interaction, the season of the
year and the assigned runway pair contributed most to the occurrence of SWS events.

• The interpretation via the SMOTE+EBM model revealed most of the SWS events
occurred in the summer months, and all runways were prone to the occurrence of SWS.
However, runway 07 RA was significantly susceptible to SWS in winter and spring,
and runways 07RA, 07RD, and 25LA were susceptible to SWS events in summer.

The EBM framework possesses the capability to be utilized for a comprehensive
assessment of WS severity at different airports worldwide. Undoubtedly, this tool holds
significant value for researchers engaged in the realm of civil aviation safety.
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