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Abstract: Rainfall, or more generally the precipitation process (flux), is a clear example of chaotic
variables resulting from a highly nonlinear dynamical system, the atmosphere, which is represented
by a set of physical equations such as the Navier–Stokes equations, energy balances, and the hydro-
logical cycle, among others. As a generalization of the Euclidean (ordinary) measurements, chaotic
solutions of these equations are characterized by fractal indices, that is, non-integer values that
represent the complexity of variables like the rainfall. However, observed precipitation is measured
as an aggregate variable over time; thus, a physical analysis of observed fluxes is very limited.
Consequently, this review aims to go through the different approaches used to identify and analyze
the complexity of observed precipitation, taking advantage of its geometry footprint. To address
the review, it ranges from classical perspectives of fractal-based techniques to new perspectives
at temporal and spatial scales as well as for the classification of climatic features, including the
monofractal dimension, multifractal approaches, Hurst exponent, Shannon entropy, and time-scaling
in intensity–duration–frequency curves.

Keywords: precipitation; fractal; monofractal; time-scaling; Hurst exponent

1. Introduction
1.1. Geometrical Motivation

Observed precipitation is a chaotic variable that usually is represented by aggregated
values in time series instead of physical fluxes as directly simulated by numerical weather
prediction models [1]. Climate variability of precipitation is defined to range from the
subseasonal and seasonal phases [2–4] to multi-decadal and centennial fluctuations [5–9].
A large number of its different variability modes presents self-similarity at most time scales,
which is a key in the climatic characterization of its chaotic-related complexity [10–12].
Considering this idea, climate change (signal) detection and a variability analysis can
consider other measurements beyond the commonly used techniques such as average
temporal statistics, spatial atmospheric patterns, and compound extreme events [13–16].
This review aims to identify both classical and emergent geometrical techniques used in the
analysis of climate complexity of precipitation. Therefore, a brief reminder of basic ideas of
geometry is required to understand the subjacent motivation and most of the approaches
reviewed here.

One of the most important concepts in geometry is the measurement or mathematical
measure, which is a set of techniques that depends on the discipline considered [17,18].
A measure is a function, µ : s → R , that assigns (scalar) values in R to a subset, s ⊂ S,
of elements of a system, S, or to some of its states (also known as properties, observables,
or magnitudes). According to the theory of physical measurement, it is usual to distinguish
between intensive (e.g., density, pressure, wind velocity, friction, temperature, viscosity) and
extensive (e.g., mass, energy, duration, snow depth, precipitation amount, additive entropy)
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measurements [19,20]. In measure theory of geometry, the ‘measure’ term is just reserved for
the extensive properties of sets, only assigning values on positive real numbers. The most
elementary measure of a set is that which relates to its ‘size’, that is, length, area, and volume,
as the dimension d ∈ N is increasing from d = 1 in lengths to d = 3 in volumes, passing
through d = 2 for surfaces, and the measure M is increasing as the power law M ∝ Ld of
the representative length L.

In the case of precipitation, one can enumerate a large set of different measurements:
the total amount or accumulation, precipitation event duration, wet/dry spell lengths, and
drop/hail size, among others [21,22]. Moreover, intensive measures of precipitation could
be, for instance, rainfall intensity and drought severity indicators [14,16,23].

Paradoxically, some natural features cannot be described using ‘natural dimensions’
(i.e., positive integer numbers) but require using new techniques such as the fractal
theory [1,14,24,25]. The word “fractal” was presented in [26,27] to bring together a kind of
objects that have played a historical role in mathematical development in the last third of
the past century. The regular geometric shapes and structures of Euclid and their natural
dimensions give way to new forms, complex, but underlying a scalar regularity with
fractional dimensions.

1.2. Fractal Measure Background

The concept of fractal is used to designate objects that are too irregular to be described
according to Euclidean geometry, but which are invariant via a change in scale. Fractal
geometry [28,29] is an extension of classical geometry and encompasses the description,
classification, and analysis of geometrically “complicated” subspaces. Generally, the struc-
ture and organization of a fractal set do not make it possible to specify where—in plain
language—each point that composes it is located. Therefore, some relationship must be
defined between the various structures observed in it for various levels of resolution. This
relationship is formulated quantitatively via the concept of the fractal dimension, which
describes the scalar behavior of fractal structures [24,25].

As with fractal objects, scale-invariant systems and processes do not have a particular
scale that is specific to them. Accordingly, a fractal process is one in which the same
elementary action occurs at different scales, i.e., in which a part reproduces the whole. For
the range of scales analyzed, the process statistics follow potential laws characterized by
their exponents. The relationship between the statistics for the different scales will simply
consist of scale ratios.

Unlike the Euclidean dimensions, which are always non-negative integers (0 for a
point, 1 for a line, 2 for a plane, 3 for a three-dimensional space, etc.), fractal dimensions
have a more general non-negative real value, which exceeds the topological dimension.
To obtain a clearer picture of this, let us suppose a point moving on a plane describing a
Brownian motion, i.e., a random motion tending to gradually complete or fill the plane [30].
At the beginning, its dimension will be 0, but at the same instant in which it begins to
describe this movement, its fractal dimension will become 1, and immediately after, it will
begin to increase decimals, but without reaching two, since it will not complete this plane.

The postulates of fractal geometry have been used in the geographic discipline for
more than three decades. It was introduced to measure the length of coastlines of the
British Isles [31], and subsequently its use has spread prolifically to a multitude of studies
in surveying. Some mathematical algorithms are now available to calculate the fractal
dimension for linear and area entities. Indeed, not all geographic patterns are fractal at
every scale. While the nature of some geographical multifractal phenomena has been well
explored, it remains to be determined why certain types of terrain align better with fractal
geometry than others.

Since the idea of fractal objects was introduced to measure shoreline length at certain
locations, this kind of analysis has been highly applied to several topographic studies. One
of the possible applications has been focused on measuring and characterizing irregular
linear features such as coastlines, to describe and characterize landforms, and to statistically
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regionalize spaces according to relief shape. However, not all these elements are fractal
at all the studied scales. A fractal analysis can also be used to produce terrain simula-
tions with a known dimension. Other applications focus on understanding the different
geomorphological processes involved [32].

Thus, the problems of estimating area, length, and point features are increasingly
promoted largely by the growing interest in digital capture, processing, and storage of
geographically referenced data. Therefore, numerous drawbacks appear when obtaining
composites of satellite images or aerial photographs that have been taken at different
altitudes or with different resolution, and for which it becomes necessary to implement
mathematical models around a Geographic Information System (GIS) in which fractals
actively intervene [33].

In hydrological basins, as an applied example, the most important principles of fractal
objects (such as self-similarity and self-affinity) are reliably reproduced. Thus, numerous
elements such as the length of the river network, the number of branches, the bifurcation
coefficient, the density of branches per drainage unit, and the perimeter and area of the
basin itself, among others, can be treated as applications in fractal mathematical studies. The
results obtained provide information on the knowledge of the hydrological characteristics
of the area in question [34]. The works that deal with the precise measurement of the length
of coasts are the most abundant studies, yielding interesting results such as that the length
of a particular coast will vary depending on the fractal dimension of the same, considering
the measurement of the same in terms of mapping at different scales [35,36].

As can be deduced, the conceptual environment surrounding fractals is closely related
to the spatial concept of scale, fundamental in geography, since it is often a matter of both
data and information integration in a multiscalar way. The high access to GIS has enabled
an adequate environment that allows re-scaling data prior to the consequent integration
of the data into the system. However, the challenges to understand patterns of the spatial
variation of the information itself are surpassed by the scarcity of suitable tools because the
nature of the spatial variation of the information of interest is not always well analyzed and
understood. Spatial patterns are modeled using geostatistical approaches that provide the
possibility of re-scaling the data (such as spatial interpolation multiple regression models).
These types of regularizations provide information that can often describe the data better
than the data itself [37], as is the case in many climate models and climate and weather
reanalysis grids.

Climate studies have also applied the fractal analysis methodology, since some of its
variables (e.g., pressure, precipitation, temperature, and wind) show a fractal behavior [38].
From the data series of the previously mentioned variables and their monthly and seasonal
variability, it is possible to detect how regional climate models are not able to predict the
local climate on a seasonal scale, since they only work with averaged quantities. Thus,
interesting facts appear such as that, in regions like India, rainfall during the southwest
monsoon is affected by the variability of temperature and pressure of the previous winter.
Other fractal-based prediction indices are more reliable since they consider more climatic
dynamics [39,40].

The analysis of rescaled ranges of annual mean temperatures at different meteorolog-
ical stations in Hungary has shown that this variable follows a fractal behavior, both on
time scales ranging from a few years to approaching the millennium [41]. These analyses
could indicate that the existence of this fractal behavior is a characteristic of climate change
during the study period. Variations of the fractal dimension values linked to the used time
scale would show different behaviors at different scales.

In the same vein is that purely mathematical fractal theories playing an important
role in climate modeling has become evident not only on a regional scale, as explained
above, but also on a global scale [42]. The factors that most obviously affect planetary
temperatures (response to solar cycles, large volcanic eruptions, increasing concentrations
of greenhouse gasses and aerosols in the atmosphere) fit appropriately with those predicted
using models created from introducing fractal theories.
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However, other findings have appeared that propose new analysis processes to dis-
criminate between climate temporal behavior data generated using climate models and
observations from instrumental weather stations. These approaches combine monitoring
of actual and model-generated data streams and a fractal data analysis to identify differ-
ences in the correlation between observed and model-predicted series. Thus, from this
comparison, it is concluded that the fractal approach allows us to correctly discriminate the
data, from which it follows that there is still the chance to improve climate change models
supported by fractal theories [43,44].

In paleoclimatology, the study of soundings or “cores” extracted from glaciers has
a key role in determining past climate conditions [45,46]. The analysis of the air bubbles
confined in the ice reveals the chemical composition of the atmosphere at the time when
the bubble was imprisoned, as well as the conditions under which the ice was formed,
based on its level of compaction. The latter is determined by studying the conductivity
of the ice at a known electrical impulse, and it has been found to be scale-invariant over
three different orders of magnitude in the depth of the ice core. This experiment carried
out in Antarctica, from an ice core 3190 m thick, makes it possible to establish climatic
connections between the past 740,000 years and the fractal analysis, to provide information
on the occurrence of glacial ages [47]. Previous studies have linked Antarctic ice core
information with historical climate data obtained from sediments in the deep ocean [48,49].
Like a geometrical footprint of complex dynamical systems, the fractal approach provides
evidence that relates climate data from geographically distant locations, such as in Central
Europe [41] and the Kamchatka Peninsula, over the last 10,000 years [50], or, on a shorter
time scale, from sediment records in alluvial plains in the Mediterranean basin [51].

1.3. Geometry in Dynamical Systems

The atmosphere is a highly nonlinear dynamical system, governed by physical equa-
tions such as the Navier–Stokes equations, energy balances, and the hydrological cycle,
among others. These well-known physical concepts are deeply studied in differential and
computational geometry. A brief review of some basic definitions is presented here.

Dynamical system. As a starting point, most complex systems are easily addressable
under discrete geometry. Let a system, S = (X, f ), be defined as a set, X, of elements
with characteristics or states and some law f that describes a (natural or not) behavior.
Then, a dynamical system is that whose behavior depends on a variable assimilable to the
time [52–54]. In the case of a discrete time (i.e., a natural number), the law is a continuous
function, f : N → R , that determines the temporal evolution of the values of a state variable
of the system [52,54]. For example, in the study on populations of biological species, the
abundance of individuals x in the time n ∈ N can be simplified using the logistic map

xn = r·xn−1·(1 − xn−1),

where r is a parameter that indicates the relative reproduction rate compared to the compe-
tition rate [55]. Similarly, continuous variables like the wind components (u(t), v(t)) of a
frontal system (e.g., cold front) are also governed by an evolution law but with a real time,
t ∈ R. From Newton’s second law, the (differential) equations of the simplest or geostrophic
wind are as follows [56,57]:

du(t)
dt

= Fu(t) = − fx + fC·v(t),

dv(t)
dt

= Fv(t) = − fx − fC·u(t)

where fC is the Coriolis parameter and fx:=
(

fx, fy
)
≡ 1

ρ

(
∂P
∂x , ∂P

∂y

)
is the acceleration caused

by the gradient of the pressure P at the position (x, y) ∈ R2 for a fluid with density ρ.
Under a computational perspective, differential equations can be expressed in terms of finite
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differences according to a discretization of the time t ≈ nδ for some small-time lapse δ > 0 and
n ∈ N [58]. For example, as the u-component of wind is now u(t) ≡ u(nδ) ≡ un, then

du(n)
dt

≈ un − un−1

δ
= Fu(n) ⇒ un = δFu(n) + un−1

Therefore, differential geometry applied to atmospheric sciences can be computation-
ally discretized and most of the properties are then inferred.

Nonlinearity and chaos. A dynamical system is nonlinear if the governance law
is not simply linear with respect to the temporal variable [52,59]. For example, in the
case of the logistic map and geostrophic wind, they have quadratic terms that provide
a high complexity in their behavior. Solutions of the dynamical equations are known
as orbits or paths, which are grouped in a phase space of positions (u(n)) and momenta
(du(n)/dt) according to the symplectic geometry [60]. After a sufficient transitory time,
stable solutions are attractors or attractive regions of the phase space, because the evolution
of a given variable tends to approach these regions. In some cases, highly nonlinear systems
present unpredictable solutions for a certain transitory time, due to a high transitivity and
sensitivity to initial conditions. The scientific community defines these cases as chaotic
solutions or simply chaos [61]. A remarkable consequence of the chaotic systems is that
phase space presents strange attractors, characterized by fractal measures [59,62]. The Lorenz
fractal is a very popular example derived from simplified Navier–Stokes equations [63].

Self-similarity. Among others, fractals have a remarkable feature of being similar to
themselves when two or more different scales are compared, like a homothety symmetry
(e.g., similar triangles). This surprising character allows the use of stochastic cascading,
spatial or temporal scaling methods, and the disaggregation of time series or spatial
distributions [1,64].

Quasi-oscillations. In a chaotic dynamical system such as the atmosphere, most
variables (precipitation, temperature, humidity, and pressure, among others) present a
large number of different modes in both spatial and temporal variability. This is a set of
diverse amplitudes of anomalies, with more regular or periodic (predictable) components
and other unpredictable phases. These modes of variability are known as quasi-periodic
oscillations or simply quasi-oscillations [2,12]. There exists a large number of techniques
that aim to determine the periodicity level of quasi-oscillations, like the fast Fourier trans-
formation and the wavelet analysis, which decompose temporal variability in a set of
period oscillations [65]. Assuming some appropriate technique to model orbits without
overfitting, residual unexplained variance would be a ‘pure chaotic’ component of the
particular time series analyzed. In this case, other approaches (e.g., based on random
probability distributions) are commonly used.

1.4. Structure of the Review

After this introductory section, the review is structured in two main parts: Section 2 is
focused on classical perspectives of fractal measures used in an analysis of time series of
precipitation, including monofractal and multifractal approaches, temporal concentration
indices, and other measures such as the Shannon entropy, Hurst exponent, and IDF curves.
On the other hand, Section 3 explores new perspectives of precipitation fractality at tempo-
ral and spatial scales as well as for the classification of climatic features. Finally, Section 4
summarizes the main conclusions of the review.

2. Classical Perspectives of Precipitation Fractality
2.1. Monofractal Dimension

As mentioned above, non-integer or fractional dimensions are naturally found for
nonsmooth geometries with self-similarity at different scales, which is usually assumed
as a unique behavior (so-called “monofractal”). For objects constructed using iterative
processes (e.g., Cantor set, Sierpinski triangle, and Koch curve), it is possible to define the
Hausdorff–Besicovitch dimension DH by using the numbed N of self-similar fragments,
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which are rescaled copies (homothety) of the original object by applying a scaling factor of
1/S. Thus, it is

DH =
log N
log S

(1)

This value always ranges between the topological dimension of the object (i.e., of a
fragment) and the dimension of the support space, in which the object is contained. For
the case of rainfall, self-similarity is found when expected values of maximum average
intensity I(t) are compared to the time scale t = 1/S, with relative units of intensity I(1)
defined for t = 1. Particularly, a related dimension n between 0 and 1 is the following [1,23]:

nH =
log N(t)

log S
=

log I(t)/I(1)
log 1/t

(2)

Formally, the Hausdorff dimension is defined by the Hausdorff measure HD, which is
the sum of all HD

δ -volumes given by the infimum set U = {Ui} of countable delta-covers
(i.e., covers with diameter delta) of the object when the delta approaches zero. If D is too
high (i.e., D approaches the support-space dimension), HD is zero. On the other hand, if
D is too small (close to the topological dimension), the value of HD is infinite.

Therefore, the Hausdorff dimension is uniquely defined by the lowest finite D that
leads HD to be zero and the highest positive d that leads HD to infinity, so both values
coincide. A simplified estimation of this monofractal dimension is the box-counting dimen-
sion, which uses a simple set of covers based on regular boxes. The box-counting approach
is commonly used in the analysis of fractality in geometry, and has been then applied to
rainfall [66].

The box-counting method considers variable fields such as rainfall, which involves
multiple scales and dimensions that characterize intense regions [67]. The box-counting
method is based on the idea of separating data into boxes and counting the resulting
number of boxes [68,69]. When applied for the analysis of time series, the box-counting
method aggregates neighboring data points by placing adjacent individuals into boxes. It
explores how the results are influenced by the variation of the box size (i.e., resolution)
(Figure 1).

The box-counting algorithm is straightforward and applicable to sets in any dimension.
A fractal curve, characterized by infinite detail due to its self-similarity, exhibits an indefinite
length that grows with the increasing resolution of the measuring instrument. The fractal
dimension quantifies the augmentation in detail and, consequently, length with each
change in resolution. For a fractal, the length (L) as a function of the measurement device’s
resolution δ is determined using

L(δ) = V0δ−D (3)

Here, D represents the exponent known as the fractal dimension and V0 is a con-
stant. In the case of regular curves, the length L(δ) converges toward a constant value as
δ decreases.

Box-counting algorithms gauge L(δ) for different δ by tallying the number of non-
overlapping boxes of size δ needed to encompass the curve. These measurements are
then fitted to Equation (3) to obtain an estimate of the fractal dimension, known as the
box dimension [70]. A set of time series data can be attributed with a fractal dimension
by plotting it as a function of time and determining the box dimension. Equation (3)
remains valid within a finite range of box sizes, with the smallest boxes having a width
of T (representing the resolution in time) and a height of a (representing the resolution of
the data).

When monofractal techniques are not enough to adequately describe the behavior of a
variable, a multifractal approach can be considered to represent the variability of the fractal
dimensions as a function of the time scale considered (see Section 2.2.2).
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2.2. Temporal Concentration
2.2.1. Classical Indices

Other (intensive) measures of the precipitation are its temporal concentration and
irregularity. Since clouds are dynamical systems with spatial coordinates that change in
time, both concentration and irregularity are also reflected in the spatial distribution of the
precipitation recorded.

The temporal concentration of precipitation can be measured at a climate scale or
for individual precipitation events. Climatically, the whole time series provides all the
statistics to estimate the well-known empirical Gini index (GI) or its theoretical version
adapted for precipitation, the concentration index (CI) of [71], usually calculated at a daily
resolution [72]. This indicator shows how concentrated the daily rainfall is in a typical year,
comparing the total amount and the percentage of days needed to accumulate that amount,
according to the Lorenz curve. For individual rainfall events, the most appropriate metric is
the n-index [1,73], which is linked to the box-counting and the monofractal dimension [1,23]
since it is a scaling exponent of averaged magnitudes (in this case, maximum averaged
intensity). This index summarizes the behavior of a rainfall (or snowfall) event according to
the subdaily or supradaily time structure of the intensities (hyetographs), that is, n → 0 for
very regular precipitation (e.g., constant stratiform rainfall) and n → 1 for very irregular
events (e.g., a punctual downburst from a thunderstorm). The most effective rainfall is
logically found for n ≈ 0.5, since it combines both stratiform (advective flux) and deep
convection in the same extreme event [74] (Figure 2).

Under a climatic perspective, the subdaily time structure of precipitation events can be
averaged to build synthetic hyetographs. Most classical techniques are based on observed
cumulative curves, such as the alternating block technique, Huff’s quantiles [75], Pilgrim–
Cordery curves [76], and Soil Conservation Service/Natural Resource Conservation Service
(SCS/NRCS) Type I, II, and III curves [77]. Alternatively, semi-empirical methods adjust
smooth functions such as Gamma or Gaussian distribution or use simple triangles as in
the Yen–Chow method or piecewise functions such as the Sifalda storm and Keifer–Chu
curves, also known as the Chicago method, among others [78,79].
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Figure 2. Monthly averages of subdaily n-index (red lines) and rainfall normalized using the wettest
month (bars) for 18 observatories: (a) Hihifo (Wallis Island), (b) Princeton Aerodrome (Canada),
(c) Colonia Juan Carras (Mexico), (d) Columbus Metropolitan Airport (Georgia, USA), (e) Salta
airport (Argentina), (f) Belem airport (Brazil), (g) London/Heathrow airport (UK), (h) Ústí nad
Orlicí (the Czech Republic), (i) Milos (Greece), (j) Tamanrasset (Algeria), (k) Cape Columbine (South
Africa), (l) Saint-Denis/Gillot (La Reunion), (m) Malye Karmakuly (Russia), (n) Vavuniya (Sri Lanka),
(o) Chara Airport (Russia), (p) Toyooka (Japan), (q) Territory Grape Farm (Australia), (r) Auckland
Aero Aws (New Zealand) (6). (PDF) Measure of rainfall time structure using the dimensionless
n-index. Figure based on [23].

Under a theoretical framework, the temporal structure of precipitation can also be
simulated from stochastic processes of time-scaling or disaggregation. For instance, the
method of fragments is a daily-to-subdaily scaling that employs a nonparametric resam-
pling technique and conditional probability distribution functions to relate daily precipi-
tation sequences and the corresponding subdaily fragments from at-site records or other
stations such as neighboring or more correlated ones [80,81].

Random techniques used in weather generators (e.g., those based on multi-state
Markov chains) produce concatenated wet/dry values of precipitation to build a syn-
thetic time series [82,83]. Stochastic approaches can also simulate convective features
of rainfall, considering power law spectrums in filtered autoregressive models such as
the RainFARM method [84] or using cumulative functions for extreme events like the
Stochastorm method [85].
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2.2.2. Multifractal Approach

Beyond the classical techniques, multifractal approaches better represent the behavior
of rainfall in time-scaling modeling and its disaggregating process. Stochastic cascade
models, used in these cases, were originally developed in turbulence studies [86]. Specifi-
cally, to understand temporal behavior of precipitation, universal multifractal parameters
are commonly employed according to the range of variability given by the Levy index,
which reports on the deviation from the monofractal case [87]. Other examples are multi-
plicative cascade models, micro-canonical cascade processes, and log-ratio transformations
based on standard normal spaces, which can be used to produce time-scaling of rainfall
intensities [86,88,89]. Log-ratio relationships of the temporal variability can also be char-
acterized by using the spectrum obtained from the multifractal analysis and the wavelet
analysis [12,65].

Time-scaling processes of precipitation disaggregation can be modeled under the
framework of probability distribution functions [1]. Particularly, averages of (statistical)
q-moments are proportional to the power function given by the ratio or quotient of the
scales involved [90,91]. Therefore, for a synthetic rainfall event that is scaled from t0 to the
t duration, the expectation value or average ⟨ ⟩ is estimated as follows:

⟨Iq(t)⟩ ∼ ⟨Iq(t0)⟩
(

t0

t

)ζ(q)
(4)

where Iq(t0) and Iq(t0) are the q-moments of the variable (precipitation) for the timescales
t < t0, and ζ(q) is the scaling moment function (multifractal spectrum), which is obtained
from the Legendre transformation of the codimension function applied to the same vari-
able [87,92]. According to [1], when a monofractal hypothesis is assumed for intensity or
velocity fields, an asymptotic power law is found with

ζ(q) ∼ n̆ q (5)

where the parameter ň summarizes the monofractal behavior, as a simple-scale cascading
dimension that ranges between 0 and 1 [1]. For averaged rainfall intensities (i.e., q = 1), it is
approximately equivalent to the Lipschitz–Hölder exponent and the monofractal Rényi
dimension. Under a geometric perspective, it is the Minkowski–Bouligand box-counting
dimension, which bounds the upper limit for the Hausdorff dimension [93,94].

2.3. Other Measures
2.3.1. Entropy

Let there be a random variable τ of N possible states, with distribution P(τ) = {pi}N
i=1,

and the Shannon Entropy measure is defined as follows [11,18,23]:

S(X) = −K∑N
i=1 pi ln(pi) (6)

The concept of entropy was introduced by Shannon [95,96] to refer to the degree of dis-
order implicit in a series, or to know the level of noise existing in this series, apart from the
variability itself. In thermodynamics, entropy (S) quantifies the variety of specific arrange-
ments possible within a thermodynamic system, often interpreted either as a measure of
disorder or as an indicator of the system’s progression toward thermodynamic equilibrium.
The entropy of an isolated system invariably increases, aligning with its tendency toward
thermodynamic equilibrium, characterized by maximum entropy. However, systems that
are not isolated may experience a decrease in entropy. As entropy is a function of a specific
state, the alteration in entropy remains constant for any process transitioning from an initial
state to a given final state. In communication theory, the information Ii associated with an
event, i, is defined as follows [11,18,23]:

Ii = −K ln(pi) (7)
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where pi is the probability of event i and K is a constant that can be taken as K = 1 for
numerical computation.

After a sufficiently long-time t, the total information of the i events in that time
produced is

I = t E[Ii] = −K t∑N
i=1 pi ln(pi) (8)

where E[Ii] is the expected value of Ii.
In turn, the entropy of a system from which, after a time, t, has elapsed, we have

extracted information I is defined as follows:

S(X) =
I
t
= −K∑N

i=1 pi ln(pi) (9)

Thus, the defined entropy becomes a characteristic parameter of the distribution of
the variable. The entropy associated with a variable exhibiting a unimodal and Gaussian
distribution will be lower than that of a bimodal distribution or a constant (random)
distribution. Therefore, it serves as an indicator of the amplitude of the non-periodic
components within the signal.

2.3.2. Hurst Exponent

There are several methods for estimating the fractal dimension of a time series of
data such as the box-counting method and the correlation method [97,98]. The utilization
of these methods often poses challenges in terms of computational time and necessitates
expertise for interpreting the computed fractal dimension. For instance, the Hurst exponent
method offers a metric for assessing long-term memory and fractality in a time series [99].
To calculate the Hurst exponent, one needs to gauge the dependence of the rescaled range
on the observation time span δ. Several techniques exist for computing the Hurst exponent,
with the R/S analysis being the oldest and most widely recognized method. A rescaled
analysis or R/S analysis is favored for its straightforward implementation. It was proposed
in [100], based on the previous work of Hurst [99].

The R/S analysis is used merely because it has been the conventional technique used
for geophysical time records [39]. A time series with a total length of L is segmented into
multiple shorter time series, each with lengths of δ = L, L/2, L/4, and so on.

The average rescaled range is then calculated for each value of δ.
For a time series of length δ, the rescaled range is calculated as follows [101]:

1. calculate the mean;
2. create a mean-adjusted series;
3. calculate the cumulative deviate series Z;
4. compute the range R;
5. compute the standard deviation S;
6. calculate the rescaled range R(δ)/S(δ) and average over all the partial time series of

length δ.

Hurst found (R/S) scales via the power law as time increases, which indicates

R(δ)
S(δ)

= C0δH (10)

Here, C0 is a constant and H is called the Hurst exponent. To determine the Hurst
exponent, we create a log–log plot of (R/S) against δ. The slope of the resulting regression
line serves as an approximation of the Hurst exponent.

The values of the Hurst exponent range between 0 and 1. Based on the Hurst exponent
value H, the following classifications of time series can be realized [102]:

✓ A value of H = 0.5 suggests that a series is random;
✓ If 0 < H < 0.5, it suggests an anti-persistent series where an upward value is more

likely followed by a downward value, and vice versa;
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✓ If 0.5 < H < 1, it indicates a persistent series where the direction of the next value is
more likely to be the same as the current value.

The Hurst exponent is connected to the fractal dimension D of the time series curve
through the following equation:

D = 2 − H (11)

The Hurst exponent, denoted as H and ranging from 0 to 1, reflects the nature of time
series. When the fractal dimension D of a time series is 1.5, indicative of typical random
motion, there is no correlation between amplitude changes in successive time intervals,
making the process unpredictable. Conversely, as the fractal dimension decreases toward 1,
the process shows more predictability, demonstrating persistent behavior. This suggests
that future trends are increasingly likely to follow established patterns. In contrast, when
the fractal dimension increases from 1.5 to 2, the process exhibits anti-persistence. That
is, a decrease in the amplitude of the process is more likely to lead to an increase in the
future [40]. Notice that, for time series of precipitation P, an average intensity can be
defined as follows:

I(δ) :=
P(δ)

δ
(12)

With this, the fractal dimension of the intensity (nI) is reduced using a unity,

nI := D − 1 = 1 − H (13)

and, therefore, the value of nI ranges between 0 and 1 like the Hurst exponent but with
opposite behavior.

2.3.3. IDF Curves

Precipitation intensity is a significant variable that defines physical–environmental
processes such as water erosion, soil infiltration rates, and the design of hydraulic works
and water and soil conservation, among others. Regarding this last point, the design of
works, the maximum annual intensity for a given duration and return period is used as the
design rainfall and can be determined using Intensity Duration Frequency (IDF) curves.
IDF curves are developed from the analysis of the records of traditional rainfall stations,
which record the rate of precipitation over time, on a band of millimeter paper [103]. From
the analysis of these bands, precipitation intensities are analyzed in different periods, which
may range from 15 min to 24 h. But meteorological stations can be affected by instrumental
changes or failures, resulting in a reduction in the temporal resolution of precipitation
intensities and limiting the construction of IDF curves.

In this context, uncertainty arises about how the annual maximum intensity has varied
for durations of less than 1 h and whether this variability has an impact on the construction
of IDF curves, which, if so, would affect the design of works, since the dimensions of these
works are defined according to a family of IDF curves [104] or the mathematical model of
these curves. Additionally, the period of a change in seasons coincided with the decade of
the megadrought in Chile, adding two factors that contribute to the uncertainty of the data
collected, on one hand, with a lower temporal resolution of the infra-hourly data, and on
the other hand, the presence of an observable drop in annual precipitation.

The construction of IDF curves requires the maximum annual intensities, at subdaily
(ideally sub-hourly) resolution and a record length greater than 15 years. Based on the
above, several authors [105–108] have developed and implemented techniques for the tem-
poral downscaling of rainfall intensities. Some of these methodologies are explained below:

(i) Storm index or K-method

Ref. [105] estimated the precipitation intensities of pluviometric stations with the
storm index. This technique transforms the precipitation intensity in 24 h, Iknown(24h, T),
to a desired duration, Isim(t, T), using a K factor for each return period T. This factor is
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estimated from nearby rainfall observatories with subdaily data according to the following
equation [109]:

Kt,T =
Iobs(t, T)

Iobs(24h, T)
=⇒ Isim(t, T) = Iknown(24h, T)Kt,T (14)

where Iobs(t, T) is the intensity for a duration, t, and return period T, while I(24h, T) is
the precipitation intensity of the pluviometric station for a return period T and duration
of 24 h.

On the other hand, it is not always possible to have rainfall stations in the area and
therefore statistical methodologies have been designed to increase the temporal resolution
of precipitation [106–108], such as the following ones:

(ii) Scale invariance

This technique assumes the existence of a relationship in the behavior of intensities
for different durations and that they possess the same distribution [1,107,110]. Thus, the
model is as follows:

I(t, T) = I(t0, T)
(

t0

t

)n
(15)

where I is the precipitation intensity; t is the desired duration; t0 is the observed duration
(e.g., 24 h); T is the return period; and n is the scaling exponent (so-called n-index), which
is assumed to be approximately constant (scale invariance), but it can depend on the return
period and duration or resolution of the precipitation. Notice that it is an explicit example
of a K-factor such as

Kt,T ≈
(

24h
t

)n(t,T)
(16)

(iii) Bartlett–Lewis rectangular pulse model

It is a Cluster–Poisson-type model, whose main advantage is simulating precipitation
events, using rectangular pulses [106], allowing the estimation of precipitation intensities
associated with durations shorter than those observed. The procedure for its adjustment is
detailed in [106,111].

In addition to the aforementioned methods, it is possible to obtain intensities in areas
without data through the extrapolation or spatial interpolation of intensities [112,113];
however, this methodology requires having a wide network of stations with intensity data
for its results to be reliable.

3. New Perspectives of Precipitation Fractality
3.1. Temporal and Spatial Relationships

Due to the nature of a fractal object, it is intuitive to think that the application of
Mandelbrot’s postulates has been based on the spatial behavior of the same patterns that
would apply to fractal objects; even the query of whether it is indeed possible to make a
fractal approximation to it has been directly posed [114].

Thus, there are several studies that have been based on the fractal geometry of rainfall
fields derived from the analysis of radar images, capable of showing, in great detail, the
location and intensity of instantaneous precipitation, as well as elaborate simulations. These
simulations show that these processes follow a scalar hierarchy that fits fractal models. The
rich morphology of rainfall fields and their consequent statistical relationship exemplify
the power of simple fractal models to generate complex fractal structures [115].

Many physical systems in which structures span large areas often consider scale-
invariant intervals. In these cases, different size scales are related using an analysis in-
volving the scale relation and in which the system has no particular size. Gravity causes
differential stratification in the atmosphere, so the change in scale implies new dimensions.
Processes that are very variable, such as rainfall, involve multiple scales and dimensions
that characterize zones of varying intensities. Both functional box-counting and elliptic
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dimensional sampling have been used to analyze radar rainfall data to obtain the multiple
dimensions of the rainfall distribution [67,116,117].

In the same vein, there are weather radar databases that provide rainfall intensity
maps over areas with a sampling period ranging from 120 s to 15 min. Time series of
two-dimensional rainfall rate maps have wide application in simulating rainfall dispersion
and the attenuation of radio signals if the sampling period is considerably shorter (10 s or
less). But scanning large radar products at this rate is physically inoperable. A numerical
procedure has been developed to interpolate the time series rain rate in shorter sampling
periods. The proposed method is applicable to temporal radar interpolation derived from
rainfall intensity maps and is based on scalar fractality properties measured experimentally
from the rainfall intensity record in various time series, but when one wants to determine
rainfall fields beyond 20 min, the model behaves erratically [118].

Because of this enormous complexity, derived from the extreme variability of precipi-
tation over large ranges of spatiotemporal scales, it is necessary to consider surrogates for
rainfall in order to interpolate, such as radar reflectivities. Since precipitation and clouds
are strongly coupled in a nonlinear fashion, scale invariance is not always satisfied [119].

Along the same lines, the study of rainfall at a detailed scale, the so-called downscaling,
is of paramount importance in modern hydrology, especially because of the need to develop
practical tools for the possible generation of rainfall scenarios in urban hydrology. The
development of radar technology together with the implementation of mesoscale models
has constituted a great advance in this field, but with the problem that these models do not
allow the knowledge of rainfall behavior at a scale of interest for rainfall–runoff studies at
a more local level. The possibility of improving the models has been based on the isotropic
and statistical homogeneity properties of self-similarity [120,121]. Certain episodes of
intense precipitation, summer convective rains, have been successfully modeled following
these principles, which has led to great advances, reaching the point of calculating in this
type of phenomena the advection velocity, for which it is necessary to use fractal models,
which has made up for the intrinsic technical deficiencies of the tracking models [122].

However, the reality is that the spatial behavior of precipitation better approaches a
multifractal function than approaching a fractal object itself. This means that one admits
the passage from a fractal object (as it has already been mentioned above) that remains
invariant via a change in scale. This object is characterized mainly by a number, to a type
of objects that are characterized by a function, which is a limit probability distribution that
has been plotted in an appropriate way, with double logarithmic scales [123].

These new advances have allowed progress in precipitation models [124], even simu-
lating rainfall fields following multifractal properties, certifying this phenomenon scale
invariance. Thus, it has been verified that the spatial distribution of precipitation and its
accumulated amounts follow fractal properties. Therefore, it is key to determine whether
its temporal distribution follows these same principles.

As mentioned above, the ideas derived from the fractal theoretical framework have
a more intuitive application referred to as spatial rather than in a temporal distribution,
where the visualization of the concept is complicated due to its abstract nature. When
talking about spatial distribution and fractals, one can easily think that a rainfall field can
have a fractal shape, and if one looks at the detail, it is possible to verify that a part of
the whole is represented, respecting self-similarity, or invariance via a change in scale.
Concerning the temporal aspect, the idea is harder to apply. First of all, it is necessary to
start from the assumption that the change in scale happens at this point to detect whether
precipitation has occurred in different time periods of a given duration, and then evaluate
if this behavior is repeated in other intervals of longer and shorter lengths. Rainfall, being
a nonlinear hydrological process, exhibits wide variability over a wide range of temporal
and spatial scales. The strong variability of rainfall makes it difficult to work with at the
instrumental and statistical level.

The progress made through the application of the fractal properties of precipitation
to prediction models, together with the already known hourly behavior of precipitation,
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has implemented new models that allow us to determine quite accurately the amount of
accumulated rainfall at the hourly level. A study was developed to analyze the multifractal
properties on precipitation data in Tokyo, measured to an accuracy of 1 mm. Through a
multifractal model based on the scaling properties of the temporal distribution of rainfall,
the intensity distribution relationships in the available scale regime were analyzed. Dif-
ferent properties of precipitation time series that are relevant to the use of rainfall data in
hydrologic studies were used to statistically determine the agreement level between the
modeled and observed hourly series [125,126].

Following the same line of model implementation, a multitude of models have been
developed in hydrology from the fractal properties of the temporal and spatial distribution
of precipitation [127,128]. The utility of these models of watershed hydrologic processes is
greatly increased when they can be extrapolated across spatial and temporal scales. How-
ever, current research in hydrology and related disciplines is focused on describing and
predicting processes at a different scale from that at which observations and measurements
are made. The quantitative description of the fractal scale behavior of runoff and morphom-
etry of the microstream network in agricultural watersheds has not yet been realized. On
the other hand, when the watersheds are already of a notable entity, the same Horton’s
laws, empirical, are already fractal in nature, and contribute to the better understanding of
what is observed and relate the parts of a fluvial system to a growth process.

The analysis of the precipitation temporal fractality is often used to study the cli-
matic dynamics that have affected the planet. Thus, some studies have found the fractal
dimension of the curves representing sea level changes together with a modern fractal
dimension from annual precipitation records, obtaining that sea level changes during the
past 150,000 to 250,000 years present fractal dimensions comparable to those obtained for
precipitation. However, for earlier periods, the values of the fractal dimension of precipita-
tion calculated are quite different from those deduced from sea level changes, so it could be
deduced that these changes would be less related to climatic variability and more to plate
tectonics [129].

Indeed, this type of dynamics has been identified in studies in peninsular Spain from
long series (ninety years) of annual accumulated precipitation, and their analysis reveals
that the distribution of this variable conforms to a fractal distribution [130]. The results are
similar to other paleoclimatic and meteorological records, showing the same magnitude
order. The comparison of both timescales shows that these values are characteristic of a
theoretical climate change over the entire spectral range of 10 to 1,000,000 years. These
results contribute to the creation of a valid hypothesis for the interpolation of climate
changes from one scale to another and also in applications such as the design of models for
hydrological applications.

The calculation of the fractal dimension at the annual level can also be used to identify
trends. This then have to be confirmed with some other type of procedure (such as the
Mann Kendall test), in order to determine whether in the future (according to the different
climate change scenarios) the accumulated quantities will be greater or less than the current
ones. Such is the case that has been studied in the province of La Pampa (Argentina), where
it has been confirmed that the projections made by the IPCC for this region according to
the models are in line with the reality of the observed data [131]. A similar study has been
carried out in Venezuela [132] using data from ten meteorological stations with annual
precipitation values, which fit a fractal distribution. With these results, it is possible to
explain climatic changes at different time scales in this study area.

The fractal behavior of precipitation is observed in climatically different regions, as
demonstrated in [133]. This study highlights the importance of high-resolution precipitation
data for understanding the complexities of the dynamics of meteorological processes and
describing them in an accurate way. The study analyzes the suitability of fractal postulates
for understanding precipitation behavior and its transformation between time scales. The
study, which employs a multifractal approach, follows research carried out earlier by the
author of [134], employing a monofractal approach in which some preliminary indication
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was obtained about the possibility of the existence of multiple fractals. Rainfall data of
three different resolutions, every six hours, every day, and weekly, observed over a period
of 25 years in two different climatic regions, a subtropical climatic region (Leaf River Basin,
MS, USA) and an equatorial climate region (Singapore), have been analyzed. This study
carried out a different method investigation to determine the existence of multifractal
behavior in precipitation. The results showed the existence of multifractal behavior in
different locations, with further support for the results obtained with the monofractal
approximation, and confirm the suitability of a multifractal framework for characterizing
the observed precipitation behavior and suggest the general suitability of fractal theory for
the transformation of precipitation from one time scale to another.

In other world regions with the problem of water access and its increasingly scarce
availability, knowledge of precipitation trends is presented as a critical matter for future
development. During the past four decades, monthly and annual precipitation data from
six stations show, from a fractal and nonlinear analysis, that precipitation in this area was
decreasing, finding two precipitation regimes, with a change from 1980 onwards, coinciding
with climate change projections in the area [135,136].

In this very same line, applications have also been made in Europe. At the Cordoba
observatory (with a data series of twenty-four years and with time scales ranging from 1 h
to 6 months), studies of the temporal structure found good fits for fractal functions at an
interval of low temporal values. This demonstrated that the universal multifractal model is
adequate to statistically describe time series of rainfall, as it is recorded in Cordoba [137,138].
However, it has been shown that extreme rainfall fits even more complex models than the
multifractal ones, since it is affected by limiting periods, such as very short durations or
very long return periods [139–141].

In this type of studies, temporal resolution with which one works plays a determining
role, since working with hourly data, on the one hand, and with daily data, on the other
hand, already causes changes in the values of fractal dimensions, being partly also due
to the influence of the most characteristic precipitation of each place [142,143]. Moreover,
this method allows us to better discriminate analysis methods for precipitation frequencies,
agreeing with studies mentioned above [136], even being able to define the precipitation
regime of a particular region [144–146].

Likewise, the choice of a working time scale has meant, in all climatological studies in
general and in precipitation studies in particular, numerous problems that measurement
instruments have not always been allowed to solve, and therefore it has been necessary to
resort to time intervals of records derived from each other [147–151].

In different studies about scaling properties of precipitation mechanisms, the multi-
fractal approach has been applied without considering the different rainfall generation
mechanisms involved. In this context, rainfall processes are related to particular scales that
depend on climatological characteristics, and also on regional and local meteorological
mechanisms. It derives the chance that the multifractal behavior of rainfall may depend
on its dominant generation mechanism. The application of fractal analysis methods has
been carried out on rainfall data recorded again in Spain between 1994 and 2001, and
on a selection of precipitation events recorded in the period ranging from 1927 to 1992.
Multifractal parameters obtained have been significantly different in each case, which
shows the influence of the rainfall generation mechanisms involved. This influence has also
been highlighted in the analysis of the effects of seasonality on the multifractal behavior of
rainfall [152].

The choice of methods to estimate the fractal dimension of a precipitation time series
also seems to be determinant [70]. Three approaches to calculate the fractal dimension
are compared: box-counting and Hurst’s R/S analysis, these two methods being the most
widely accepted, and a third method that uses “overlays” from precipitation variation
intervals instead of the classical box-counting. The latter method shows better results than
the others for the calculation of fractal dimensions of monthly precipitation time series in
Queensland, Australia.
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In other areas of the Mediterranean region, works were carried out to determine
the value of the fractal dimension [153]. In these studies, the fractal dimension has been
calculated for various time series at two resolutions (5 min and daily) with different
durations between them (2.5 years for the former, 137 years for the latter). Three self-similar
structures were identified: micro-scale (from 5 min to 2 days) with a fractal dimension of
1.44, and meso-scale (from 2 days to 1 week) and synoptic (from 1 week to 8 months) with
a fractal dimension in both cases of 1.9. The interpretation of these results suggests that
only the microscale and the transition to saturation, understood as the length of the interval
that would encompass the total time series, are consistent, while the high fractal dimension
relative to the synoptic scale could be affected by the tendency to saturation. In this study,
a sensitivity analysis of the fractal dimension estimated from daily precipitation data was
performed by varying the length of the series as well as with the intensity threshold for
rainfall detection.

Ref. [154] proposed a comparative study of the fractal dimension not only of precipi-
tation, but also of other climatological variables, between a Mediterranean environment
(Veneto, Italy) and a completely different environment: the province of Pastaza, in the
Ecuadorian Amazon. In this case, the rates at which the self-similarity principle is re-
produced in each series have been determined, being much lower in the province of
Pastaza (4.4 years), modulated by ENSO, than in the Mediterranean environment of Veneto
(10.3 years), where the influence of the solar activity cycle remains to be confirmed.

Another area where similar work was carried out is the Tamil Nadu region, in the
extreme southeast of the Indian subcontinent [101]. In that study, the fractal dimension
was determined from data between 1902 and 2008 (temporal resolution not specified) by
using the Hurst method, and they determined that the dimension of the rainfall time series
is 1.7895.

The fractal nature of the temporal distribution of precipitation cannot be doubted.
However, there are few, if not practically nonexistent, studies that give a purely climatic
meaning to this phenomenon on a human scale (a few years), providing an explanation by
means of synoptic patterns that are at the origin of such behavior.

3.2. Classification of Climatic Features

Monofractal approaches can be used to classify precipitation systems according to
their time structure and averaged concentration. Ref. [73] analyzed IDF curves in Spain
and showed that the n-index for coastal areas is lower (n < 0.5) than for inner regions
(n > 0.5), probably due to the difference between the predominantly maritime advection of
the coastal areas and the typical convective cycle of the furthest zones. Later, ref. [74] found
that the most efficient rainfall in the world has an n-index very close to n = 0.5 at every time
scale. The interpretation of the results is that purely stratiform rainfall is almost constant in
intensity (n ~ 0), with a predominant wet advection, while classical simple thunderstorms
have an almost instantaneous microburst or even a downburst (n ~ 1), very bounded by a
short time period. Therefore, the perfectly organized combination (n ~ 0.5) is given by a
constant wet feeding flow and a deep convection, distributed through multicellular systems
with different maturity levels.

Considering the entire population of precipitation data, the n-index is statistically
independent of the duration and intensity of rainfall events [23]. Only when the wettest
events are considered (i.e., with a limited number of events that reduces the statistical
noise), the n-index seems to be sensitive to the time resolution, duration, and intensity.
Specifically, ref. [23] found a relationship between time resolutions (between 1 and 12 h)
given with

n(r) = n(r0) + a ln
(

r
r0

)
(17)

where n(r) and n(r0) are the n-index for the time resolutions of r and r0, respectively, while
a = 0.028 ± 0.003 is an empirical parameter.
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The sensitivity of the n-index with the type of rainfall (stratiform/convective) is also
used to calibrate remote sensing of precipitation. For instance, ref. [155] fitted a different
Marshall–Palmer ZR Relationship in a band-S weather radar, obtaining a clear distinction
between predominantly convective and stratiform rainfall.

Fractality is also present in other features of precipitation systems such as wet/dry
spells and the classification of meteorological droughts. Types of dry spells were defined
in [14] according to the Cantor-based exponent, Ce. Compared to the Cantor set lacunarity,
Ce = 1 indicates a perfect sequence of dry spells exactly equivalent to the distribution of
Cantor gaps, while Ce = 0 implies a sequence of very regular dry sequences, all of them
with the same length. That is, the higher values of Ce, the closer to the Cantor lacunarity.
Meteorological droughts can be classified by combining Ce and the expectation value of
wet spell lengths (Table 1).

Table 1. Climatic classification of meteorological droughts around the world according to the dry-
spell-spell (DSS) n-index and the averaged wet-spell length (WSL).

Name Description DSS
n-Index WSL (Days) Examples of Areas That Experience This

Climate

Hs Long droughts with short wet spells
>0.4

<3 Arid and semi-arid regions
Hℓ Long droughts with long wet spells ≥3 Tropical and monsoon regions
Ms Medium droughts with short wet spells

[0.3, 0.4]
<3 Transition areas

Mℓ Medium droughts with long wet spells ≥3 Oceanic areas
Ls Short droughts with short wet spells

<0.3
<3 Frequent extratropical–cyclonic areas

Lℓ Short droughts with long wet spells ≥3 Equatorial climate and regular polar jet
streams (e.g., southern annular mode)

3.3. Future Challenges

A modern analysis of climate change is usually supported by classical indicators
like extreme events with return periods [156] and drought indices such as the Standard-
ized Precipitation Index (SPI) or the Standardized Precipitation–Evapotranspiration Index
(SPEI) [157], as well as with threshold-based indices, for instance, to measure groundwater
availability [158]. However, the high nonlinearity of the hydrological cycle and the rapid
evolution of climate change are forcing us to introduce other notions of complexity in the
assessment of natural hazards related to precipitation processes. Geometrical tools allow
us to characterize hot spots such as the increase in the rainfall inequality/concentration
in Mediterranean countries or the increase in fractal meteorological droughts in northern
Europe. The measurement of fractality represented by the n-index [1,23,158], multifractal
dimensions [87,137–141], and Cantor-based exponent [14,16] make up some examples of
how researchers address these challenges.

Nevertheless, beyond the forensic assessment in the historical period, Shannon entropy,
the Hausdorff dimension, and the Hurst exponent should also be incorporated in the future
analysis of climate change, but not necessarily at the same time since most of these measures
are redundant [14,16,23,72]. The most adequate fractal indicator could depend on the
variable analyzed and the spatial–temporal scale considered. Thus, a geometry/statistical
challenge is how to determine, select, and summarize the most appropriate indicators to be
estimated and projected under climate change scenarios, and finally how to interpret the
related impacts and the adaptation to reduce their negative effects [157]. Therefore, this is a
huge challenge for combining inter- and trans-disciplinary frameworks among geometry,
statistics, physics, environmental disciplines, and social sciences.

4. Concluding Remarks

Geometric features of atmospheric patterns are reflected in the precipitation behavior
at all time scales, from the drop distribution to the longest sequences of dry spells. The
measurements of these behaviors are represented by complexity, inequality, or concen-
tration indices such as the Hurst exponent, Gini index, and Shannon entropy, as well as
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more geometric measures related to fractal volumes. For example, the fractional or fractal
dimension (Hausdorff) is usually approximated using the box-counting dimension, which
can be employed in time-cascading or -scaling (Figure 3). The disaggregation of daily
rainfall at a subdaily scale is increasingly demanded in the most recent climate change
studies to quantify the impacts of the rising atmospheric water content on the rainfall
concentration.
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Figure 3. Scheme of fractal-related concepts applied to precipitation. Relationship between nonlin-
earity, chaos, and fractal measures. The most general approach is the multifractal analysis, which
sometimes can be simplified with a monofractal dimension like the Hausdorff dimension, or its upper
bound represented by the box-counting dimension. Ramifications to the n-index, Shannon entropy,
and Hurst exponent are also shown. Bocks with orange and red colors indicated a higher uncertainty
in the analysis derived from the mentioned methodologies, in contrast to the classical techniques
displayed in green blocks.

This work reviewed how fractal measures support the analysis on climatic complex-
ity of precipitation, allowing us to identify possible changes in the natural variability of
regimes (e.g., wet–dry spells, meteorological droughts, and other extreme values). Sim-
plified indicators, such as the n-index, can also be used to represent chaotic behaviors
and summarize the variability of the rainfall concentration over time or its role in scaling
processes, which are required to build synthetic time series and IDF curves [1].

The representation of such complexity by smoother-variability indicators is adequate
to finally apply regression models or classical statistics (e.g., Gaussian metrics) to ag-
gregated values. For instance, ref. [24] estimated the fractal dimension of the temporal
distribution of precipitation for the Iberian Peninsula and modeled it with a linear regres-
sion of two predictors: the concentration index and the Shannon entropy. Another example
of a smooth value’s analysis is commonly used in spatial interpolations: at a global scale,
refs. [14,16] represented the mean value of a Cantor-based exponent.
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Fractal-based measures definitely allow us to expand the classical analysis to new
perspectives for addressing emergent challenges under the context of climate change.
Therefore, the analysis of the evolution of the climatic averages should be complemented
with this geometrical framework to identify possible changes in complexity of the natural
variability such as the time structure in precipitation concentration.
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