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Abstract: Precipitation forecasting is an immensely significant aspect of meteorological prediction.
Accurate weather predictions facilitate services in sectors such as transportation, agriculture, and
tourism. In recent years, deep learning-based radar echo extrapolation techniques have found
effective applications in precipitation forecasting. However, the ability of existing methods to extract
and characterize complex spatiotemporal features from radar echo images remains insufficient,
resulting in suboptimal forecasting accuracy. This paper proposes a novel extrapolation algorithm
based on a dual-branch encoder–decoder and spatiotemporal Gated Recurrent Unit. In this model, the
dual-branch encoder–decoder structure independently encodes radar echo images in the temporal and
spatial domains, thereby avoiding interference between spatiotemporal information. Additionally,
we introduce a Multi-Scale Channel Attention Module (MSCAM) to learn global and local feature
information from each encoder layer, thereby enhancing focus on radar image details. Furthermore,
we propose a Spatiotemporal Attention Gated Recurrent Unit (STAGRU) that integrates attention
mechanisms to handle temporal evolution and spatial relationships within radar data, enabling
the extraction of spatiotemporal information from a broader receptive field. Experimental results
demonstrate the model’s ability to accurately predict morphological changes and motion trajectories
of radar images on real radar datasets, exhibiting superior performance compared to existing models
in terms of various evaluation metrics. This study effectively improves the accuracy of precipitation
forecasting in radar echo images, provides technical support for the short-range forecasting of
precipitation, and has good application prospects.

Keywords: radar echo extrapolation; precipitation forecast; encoder–decoder; GRU

1. Introduction

Severe convective weather refers to intense convective movements occurring in the
atmosphere, such as thunderstorms, tornadoes, and heavy rainfall. These weather phe-
nomena can cause significant short-term, localized heavy rainfall, resulting in substantial
economic and property losses. Precipitation nowcasting is a meteorological forecasting
method that primarily focuses on providing timely and accurate predictions of rainfall
intensity and extents for specific local areas within a short time frame, typically ranging
from a few hours [1]. Accurate forecasting is crucial in various domains, including flood
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prevention, agriculture, aviation, and travel planning. Consequently, the acquisition of
precise and rapid nowcasting has become a prominent research issue in meteorology [2,3].

Traditional precipitation forecasting primarily relies on the NWP approach [4,5], which
utilizes physical equations and numerical methods to simulate atmospheric motion and
predict weather conditions over a future time period. It considers factors such as at-
mospheric dynamics, thermodynamics, radiation transfer, and turbulence. However,
NWP methods suffer from uncertainties, parameter errors, and significant computational
costs associated with solving mathematical equations. In recent years, the radar echo
extrapolation technique has been mainly used for precipitation forecasting tasks. The
method is based on the extrapolation of radar echo data from historical observations, after
which the rainfall in the forecast area is obtained through the Z-R relationship [6]. Cur-
rently, traditional radar echo extrapolation methods mainly include centroid tracking [7],
cross-correlation [8], and optical flow [9]. Among them, the centroid tracking method is
primarily suitable for tracking strong echoes and making short-term predictions. When
radar echoes are scattered or exhibit merging and splitting phenomena, the accuracy of ex-
trapolation forecasts is significantly affected [10–12]. The cross-correlation method assumes
that the evolution of echoes is linear and tracks the echo regions based on the optimal
correlation coefficients between neighboring temporal regions. However, it is challenging
to accurately estimate the nonlinear evolution of radar echoes using this method. The
optical flow method is a two-step calculation approach that first computes the optical flow
field from consecutive radar images and then extrapolates the nearest precipitation field
based on the optical flow field. However, the two-stage extrapolation approach employed
by the optical flow method can lead to cumulative errors. Radar echo data, as a type of
sequential image data, possess high spatiotemporal dimensions, lack obvious periodicity,
and exhibit variable motion speed and shape changes. Therefore, the aforementioned three
traditional methods have limitations in fully utilizing abundant historical observation data
and are insufficient in obtaining satisfactory forecasting results.

With the rapid development in the field of computers, deep learning techniques are
experiencing rapid development and have been successfully applied in various fields, in-
cluding video prediction [13–15] and traffic forecasting [16–18], demonstrating outstanding
performance. Deep learning methods can handle complex spatiotemporal relationships in
order to adaptively learn the patterns of rainfall variability from a large number of previ-
ous radar echo sequences. As a result, more and more deep learning methods are being
combined with radar echo extrapolation tasks [19,20], aiming to achieve more accurate
predictions. First, some radar echo extrapolation algorithms based on recurrent neural net-
works (RNNs) have been employed for precipitation forecasting [21,22]. Shi et al. [23] first
proposed the combination of Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) networks, known as ConvLSTM, for precipitation prediction in the Hong
Kong region. This network enables the better learning and modeling of spatiotemporal
information. Subsequently, Shi et al. [24] introduced the TrajGRU model to address the
local invariance issue within the convolutional structure of ConvLSTM. By incorporating
the concept of optical flow into ConvGRU, this model learned non-rigid transformation
patterns such as the rotation, scaling, appearance, and disappearance of radar images,
enabling the tracking of rapidly changing radar evolution processes. Considering that
ConvLSTM only focuses on temporal information while neglecting spatial information
from different layers, Wang et al. [25] proposed PredRNN. They introduced a new paral-
lel spatial memory unit in ConvLSTM to preserve spatial features from each layer. This
enhancement allows for the better modeling of both temporal and spatial information in
the prediction process. Furthermore, Wang et al. [26] continued their research and intro-
duced PredRNN++, where the gradient highway unit was combined with causal LSTM
to address the gradient vanishing problem. Additionally, several variant structures based
on ConvLSTM and PredRNN have emerged, such as MIM [27], PredRANN [28], SAST-
LSTM [29], and PrecipLSTM [30], among others. MIM [27] can model the non-smooth and
nearly smooth characteristics of the spatiotemporal dynamics in the radar echo sequences,
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effectively improving the prediction accuracy. The PredRANN [28] model incorporates
the Time Attention Module (TAM) and Layer Attention Module (LAM) into the prediction
unit to retain representations of both temporal and spatial dimensions. TAM focuses on
preserving more temporal information, while LAM focuses on preserving more spatial in-
formation. SAST-LSTM [29] captures the spatial and temporal global features of radar echo
motion by introducing a self-attention mechanism and an additional memory mechanism to
save the global spatiotemporal features into the original spatiotemporal LSTM (ST-LSTM).
PrecipLSTM [30] combines the Spatial Localized Attention Memory (SLAM) module, which
captures meteorological spatial relationships using a combination of local attention and
memory mechanisms, and the Time Difference Memory (TDM) module, which captures
meteorological temporal variables using differential techniques and memory mechanisms.
These two modules are integrated with PredRNN to fully capture the spatiotemporal depen-
dencies of radar data. These models have sought to improve the performance of radar echo
extrapolation by incorporating different architectural modifications and enhancements.
Meanwhile, some faster-trained fully convolutional networks [31] have been applied to
weather forecasting [32,33]. Among them, the representative UNet [34] utilizes convolu-
tional modules to learn the spatiotemporal variations in data. Kevin Trebing et al. [35]
proposed the SmaAt-Unet model, which has a smaller number of parameters and better
prediction performance by using depth-separable convolution and CBAM. Fernandez
et al. [36] introduced a Broad-UNet that incorporates asymmetric parallel convolutions
and an atrous spatial pyramid pooling (ASPP) component, enabling the model to extract
multi-scale features for near-term forecasting. The aforementioned fully convolutional
approaches aim to extract spatial features but overlook information at different temporal
scales, thus limiting their ability to represent complex spatiotemporal nonlinear changes.

Although the aforementioned extrapolation methods for radar echoes have achieved
some notable improvements, there is still significant room for improvement in predict-
ing high-resolution radar echo images, far from reaching satisfactory levels. There are
two main reasons for this: First, there is the issue of information loss during the feature
extraction stage. Typically, to conserve resources, prediction models encode the images
into low-dimensional features using an encoder and then input them into prediction units,
which further extract temporal and spatial features. However, this process often leads to
interference between temporal and spatial information, resulting in information loss. Sec-
ond, most current improvement methods still rely on the complex and parameter-intensive
LSTM structure, which leads to longer training cycles and gradient problems. Additionally,
as the prediction time increases, the prediction model suffers from information forgetting,
causing rapid decay in areas with high echo values during the prediction process.

To address the aforementioned issues, we propose a radar echo extrapolation model
that combines dual-branch encoder–decoder and spatiotemporal gate recurrent units. First,
we employ a dual-branch encoding–decoding structure to independently encode the input
image in the temporal and spatial domains, avoiding unnecessary interactions between
time and space. This significantly enhances the efficiency of the prediction unit in han-
dling spatiotemporal features. Additionally, we introduce a Multi-Scale Channel Attention
Module (MSCAM) embedded within the encoding–decoding structure to learn local and
global contextual features of the encoded information, thereby enhancing the focus on
image details. Furthermore, we devise a novel Spatiotemporal Attention Gate Recurrent
Unit (STAGRU), comprising the spatiotemporal gate recurrent unit (STGRU) and the time
attention module (TAM). The STGRU is an extension of the standard GRU, which is able to
adaptively learn spatiotemporal features in sequence data using a gating mechanism. Com-
pared to the ST-LSTM structure, STGRU is simpler and has fewer parameters. The TAM
effectively expands the temporal receptive field of the prediction unit, thereby mitigating
issues related to information loss during information propagation.

The contribution of our method can be summarized as follows:
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1. We propose a two-branch coding and decoding structure that incorporates a multi-
scale channel attention module for efficient multi-granularity feature extraction. The
blurring problem of predicted images is effectively improved, and the detail is enhanced.

2. We propose a spatiotemporally gated recursive unit that combines the attention
mechanism, which effectively improves the forgetting problem of the prediction unit during
information transmission, better establishes long-term temporal dependence, and improves
the prediction ability for high-echo regions.

3. By combining the above two methods, DE-STAGRU was constructed. Experiments
showed that DE-STAGRU achieved state-of-the-art results on the CIKM 2017 dataset.

2. Data

This study utilized a publicly available dataset from CIKM 2017, consisting of Doppler
weather radar echo maps observed in Shenzhen City for two consecutive years. The
dataset was acquired using a Doppler meteorological radar, the horizontal resolution of the
dataset is 0.01◦ (about 1 km), and the temporal resolution is 6 min. The dataset comprised
8000 sample sequences for training and 4000 sample sequences for testing. In addition,
2000 sample sequences were used as the validation set. We take into account that high
echo values usually signify the occurrence of strong convective weather, while smaller echo
values are rain-free weather or stray waves; we specifically chose 2473 sample sequences
from the test set that contained strong echo values.

Each sample sequence in the dataset consisted of 15 consecutive CAPPI radar echo
images. The original size of each echo image was 101 × 101, with each grid point represent-
ing a 1 km × 1 km area. For the ease of inputting the model during training, zero-padding
was applied to the bottom right corner of the map, resulting in a new image size of
128 × 128. In this experiment, all models utilized the first five images as the input and
predicted the subsequent 10 images. Therefore, our task involved predicting the next hour
based on the historical observation data from the past half hour.

3. Methods

In this section, we will discuss the proposed DE-STAGRU model in detail. First, we
will present the overall architecture of the proposed DE-STAGRU model. Subsequently,
we will elaborate on the dual-branch encoder–decoder structure and the Spatiotemporal
Attention Gated Recurrent Unit (STAGRU), explaining how the Multi-Scale Channel Atten-
tion Module is incorporated into our model. Figure 1 presents the proposed extrapolation
architecture based on a dual-branch encoder–decoder and spatiotemporal GRU.

3.1. Overall Network

The proposed model comprises a Temporal Encoder (TE), a Spatial Encoder (SE), a
Spatial Decoder (SD), a Temporal Decoder (TD), a Multi-Scale Channel Attention Module
(MSCAM), and a Spatiotemporal Attention-Gated Recurrent Unit (STAGRU). The TE and
SE are employed to extract intricate features from the radar images. MSCAM is positioned
within skip connections to extract local and global contextual features from the encoded
information. The Spatiotemporal Attention-Gated Recurrent Unit (STAGRU) is utilized to
capture spatiotemporal relationships and long-term dependencies. TD and SD are used to
output the image after reduction.

3.2. The Dual-Branch Encoder–Decoder Structure

The process of convective weather evolution is influenced by a variety of factors, such
as dynamical factors such as wind fields and topography that affect the development of
convection, as well as thermodynamic factors such as temperature, humidity, and pressure
in the atmosphere. Therefore, the development process of convective weather is non-
linear and irregular, and it is difficult to accurately predict the changes in weather radar
echoes. This study adopts a spatiotemporal dual-branch encoder–decoder structure to
separately encode temporal and spatial information. The advantage of this design lies in its
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ability to extract rich features from both encoders, thereby avoiding interference between
spatiotemporal information within the prediction units. Information on the intensity, spatial
distribution, and range of radar echoes is effectively extracted to better understand the
evolution of convective processes from massive radar data.
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Figure 1. Overall framework of the model.

The Encoders: As shown in the left half of Figure 1, the encoders consist of a temporal
encoder and a spatial encoder. Each encoder consists of three consecutive modules, with
each module primarily comprising a 3 × 3 convolutional layer, a LeakyReLU activation
layer, and downsampling through convolution. With the progression of network layers, as
the input passes through each encoding module, the spatial dimension of the original input
is halved, allowing the feature maps to capture feature information at different scales.

The Decoders: As shown in the right half of Figure 1, the decoders consist of a
temporal decoder and a spatial decoder. Starting from the output of the STGRU unit, the
decoders comprise three consecutive modules, with each module primarily consisting of a
3 × 3 transpose convolutional layer and a LeakyReLU activation layer. Upsampling is
performed through transpose convolution to gradually restore the output to its original
size. Finally, the temporal decoder and spatial decoder information are fused to output
the image.

Skip-Connection: The MSCAM is employed to further extract detailed features of each
layer’s encoded information.

In order to extract fine-grained features from the encoded information and improve
the model’s long-range dependency capability, we propose a multi-scale channel attention
block. This block incorporates channel attention mechanisms to learn the importance
weights for each channel. This enables the model to automatically focus on channels that
contribute more significantly to important features. By enhancing the weights assigned
to these important channels, MSCAM is able to better capture detailed information, as
illustrated in Figure 2.
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The Multi-Scale Channel Attention Module takes the encoded information as the
input and extracts both local and global contextual features. The channel attention for
local features, denoted as L(x), is obtained through point-wise convolution. On the other
hand, the channel attention for global features, denoted as G(x), involves performing global
average pooling (GAP) on the input, followed by point-wise convolution.

By performing element-wise addition to fuse the local and global features and then
obtaining the attention weights by the Sigmoid function, the entire Multi-Scale Channel
Attention Module can be represented as follows:

X′ = X ⊙ σ(L(X) + G(X)) (1)

3.3. STAGRU Module

Prediction models based on ConvRNNs suffer from the problem of forgetting during
the information transfer process, i.e., it is difficult to effectively recall information about the
convective evolution process learned at historical moments. Therefore, this information-
forgetting problem can lead to the unsatisfactory accuracy of the prediction results. To
further enhance the efficiency of the prediction unit in transforming spatiotemporal in-
formation and improve the issue of information loss during information propagation, we
propose a spatial-temporal attention gated recurrent unit (STAGRU). In this section, we
will elaborate on the functioning principles of the temporal attention module and the
spatial-temporal gated attention recurrent unit (STAGRU).

3.3.1. Temporal Attention Module

The proposed temporal attention module, as illustrated in Figure 3, is described in this
paper. First, the input Sl−1

t is element-wise multiplied with the spatial states Sl−1
t−τ:t−1 from

multiple previous time steps. The resulting correlations are computed using the softmax
function, yielding the relevance scores αj. By αj assigning attention weights to the historical
temporal states and performing an additive fusion, the candidate temporal attention
information T̃att is obtained, as shown in Equation (2).

αj = Softmax(Sl−1
t−τ:t−1 · Sl−1

t )

T̃att =
τ

∑
j=1

αj · Tl
t−j

(2)

In particular, when l = 1, Sl−1
t = SEnc and Tl

t−1 = TEnc, where τ = 5 and “·” denotes
the dot product of the matrix. T̃att denotes long-term movement trend information.

To effectively integrate the long-term motion trend information T̃att and the short-term
motion information Tl

t−1, a fusion gate Gt is introduced to control the fusion rate between
them, as shown in Equation (3).

Gt = σ(Wg ∗ Tl
t−1)

Tatt = Gt ⊙ Tl
t−1 + (1 − Gt)⊙ T̃att

(3)
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Here, Wg denotes the convolution operation, “⊙” represents the Hadamard product
of matrices, and “σ” denotes the sigmoid activation function. Consequently, the attention
information Tatt encompasses multiple historical temporal states, thereby possessing a
broader temporal receptive field.
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3.3.2. STAGRU

The STAGRU consists of the Time Attention Block and the STGRU, as depicted in
Figure 4. The STAGRU prediction module can effectively predict the strength, morphology,
and movement trend of the precipitation system through an efficient temporal and spatial
state transformation mechanism. Among them, the time-attention module fuses multi-step
time information to effectively improve the information-forgetting problem.
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Each STAGRU encompasses two gating mechanisms, namely, the update gate Zt and
reset gate Rt, as described in Equation (4).

Zt = σ(Wsz ∗ Sl−1
t + Wtz ∗ Tatt)

Rt = σ(Wsr ∗ Sl−1
t + Wtr ∗ Tatt)

(4)
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Among them, the update gate is responsible for updating the current state, while
the reset gate is used to combine the current spatial and temporal states. The specific
transformation is given by Equation (5).

T̃l
t = tanh(Wst ∗ Tatt + Rt ⊙ (Wtt ∗ Sl−1

t ))

S̃l
t = tanh(Wts ∗ Sl−1

t + Rt ⊙ (Wss ∗ Tatt))

Tl
t = (1 − Zt)⊙ Tatt + Zt ⊙ T̃l

t
Sl

t = (1 − Zt)⊙ Sl−1
t + Zt ⊙ S̃l

t

(5)

Here, T̃l
t represents the candidate temporal state, S̃l

t represents the candidate spatial state,
W denotes the parameters of the convolution operation, and “⊙” is the Hadamard product.

To further extract more effective deep spatiotemporal features, it is common to stack
four STAGRU units together to form an integrated extrapolation architecture, as illustrated
in Figure 5. The horizontal direction carries temporal information, while the vertical
direction carries spatial information. After passing through the fourth unit, both the
temporal and spatial information are outputted and then decoded using the temporal
decoder and spatial decoder, respectively.

Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 15 
 

 

1

1

1

tanh( ( ))
tanh( ( ))
(1 )
(1 )

l l
t st att t tt t

l l
t ts t t ss att
l l
t t att t t

l l l
t t t t t

T W T R W S

S W S R W T
T Z T Z T

S Z S Z S

−

−

−

= ∗ + ∗

= ∗ + ∗

= − +

= − +

 
 

 
 

 (5)

Here, l
tT  represents the candidate temporal state, l

tS  represents the candidate spa-
tial state, W denotes the parameters of the convolution operation, and “⊙” is the Hada-
mard product. 

 
Figure 4. Structure of the proposed STAGRU. 

To further extract more effective deep spatiotemporal features, it is common to stack 
four STAGRU units together to form an integrated extrapolation architecture, as illus-
trated in Figure 5. The horizontal direction carries temporal information, while the vertical 
direction carries spatial information. After passing through the fourth unit, both the tem-
poral and spatial information are outputted and then decoded using the temporal decoder 
and spatial decoder, respectively. 

 
Figure 5. Stacked STAGRU structure. 

4. Experiment 

Figure 5. Stacked STAGRU structure.

4. Experiment

We conducted experiments based on extrapolated 0–1 h short-term forecasts. We
evaluated the proposed DE-STAGRU algorithm on the CIKM 2017 dataset and compared it
with several state-of-the-art models, namely, ConvLSTM, PredRNN, PredRNN++, MIM,
and IDA-LATM, to validate its advancement in performance.

4.1. Implementation Details

In this section, all models were carried out on an NVIDIA A10 GPU. During the
training process, all comparative models employed a common single encoding–decoding
structure to encode radar images into low-dimensional features before feeding them into
the prediction model. To ensure a fair comparison, all models utilized four prediction units
with a channel size of 64 and a convolutional kernel size of 5 × 5. The Adam optimizer
was employed for optimization with a learning rate of 0.0001. The batch size was set to
four, and the models were trained for 80,000 iterations.
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4.2. Evaluation Metrics

In order to validate the effectiveness of each model in precipitation forecasting, we
conducted experiments to analyze and evaluate the results using both image quality
assessment metrics and prediction accuracy indicators.

Image Quality Assessment Metrics: To validate the performance of our model in pre-
dicting image details, we employed the widely used Structural Similarity (SSIM) index [37]
as an image quality assessment metric. SSIM is utilized to measure the degree of structural
similarity between images, with a focus on brightness, contrast, and structure. A higher
SSIM value indicates greater similarity between the two images. The formula for SSIM is
provided in the following Equation (6):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

In the equation, x denotes the predicted image, and y denotes the real image. µ denotes
the mean value of the image, σ represents the covariance of the image, and C1 and C2 are
constants introduced to prevent computational errors caused by the division by zero.

Metrics for Forecast Accuracy: This study evaluates the results using two commonly
employed indicators of predictive accuracy, namely, the Critical Success Index (CSI) and
the Heidke Skill Score (HSS), which are widely utilized for assessing the precision of
forecasting models.

To compute evaluation scores, the pixels in the image with a radar echo intensity
greater than a specified threshold are set to 1, while those below the threshold are set to 0.
For each corresponding position, if both the predicted value and the ground truth are 1, the
total number of pixels of the same type is denoted as true positives (TP). If the predicted
value is 1 and the ground truth is 0, the total number of pixels of the same type is denoted
as false positives (FP). If both the predicted value and the ground truth are 0, the total
number of pixels of the same type is denoted as true negatives (TN). If the predicted value
is 0 and the ground truth is 1, the total number of pixels of the same type is denoted as false
negatives (FN). Then, the following formulas are used to calculate the CSI and HSS scores
for each model:

CSI (Critical Success Index) and HSS (Heidke Skill Score) scores are calculated based
on the aforementioned definitions and the following formulas:

CSI = TP
TP+FN+FP

HSS = 2×(TP×TN−FN×FP)
(TP+FN)(FN+TN)+(TP+FP)(FP+TN)

(7)

4.3. Results and Analysis

We comprehensively assessed the predictive power of the algorithms by setting mul-
tiple thresholds and evaluating the performance of the algorithms using CSI, HSS, and
SSIM metrics. The results in Table 1 provide an in-depth analysis of the relative per-
formance of the algorithms and identify the best-performing algorithms based on the
highlighted values.

Table 1. Comparison results on CIKM 2017 in terms of CSI, HSS, and SSIM. Bold denotes the best
evaluated index among all models. ‘↑’ indicates that the larger the value, the better the effect.

Methods
CSI ↑ HSS ↑

SSIM ↑
10 20 40 Avg 10 20 40 Avg

ConvLSTM 0.6678 0.4205 0.0401 0.3761 0.7103 0.5099 0.0605 0.4269 0.7488
PredRNN 0.6734 0.4295 0.0442 0.3824 0.7169 0.5209 0.0670 0.4349 0.7552
PredRNN++ 0.6669 0.4292 0.0526 0.3829 0.7105 0.5192 0.0738 0.4345 0.7526
MIM 0.6706 0.4372 0.0454 0.3844 0.7157 0.5283 0.0701 0.4380 0.7534
IDA-LSTM 0.6780 0.4353 0.0521 0.3885 0.7201 0.5250 0.0785 0.4412 0.7557

DE-STAGRU 0.6806 0.4462 0.0577 0.3948 0.7238 0.5366 0.0882 0.4495 0.7578
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From the table, it can be observed that the proposed DE-STAGRU model demonstrates
improved CSI, HSS, and SSIM scores compared to previous models. The reason is that
ConvLSTM only focuses on the temporal information propagated horizontally and ignores
the spatial information propagated vertically between different cell layers. Compared with
ConvLSTM, models such as PredRNN and PredRNN++ can focus on both temporal and
spatial information, and PredRNN++ solves the problem of vanishing gradients. MIM sim-
ulates non-stationary and nearly stationary properties in spatiotemporal dynamics by using
two cascaded self-updating memory modules. IDA-LSTM improves this problem by utiliz-
ing self-attentive modules, but some of the self-attentive modules only focus on themselves
and cannot obtain historical information from more distant prediction units. Therefore,
the above methods still lack the effective feature extraction capability to effectively model
long-term spatiotemporal relationships. Considering the strong correlation between points
with relatively higher dBZ values and heavy precipitation, achieving accurate predictions at
higher thresholds (40 dBZ) is of significant importance. The proposed DE-STAGRU model
outperforms the IDA-LSTM [38] method by 10.7% and the PredRNN++ method by 9.7%
at the 40 dBZ threshold. Moreover, in terms of HSS scores, DE-STAGRU exhibits a 12.4%
improvement over IDA-LSTM and a 19.5% improvement over PredRNN++. These results
indicate an enhancement in the long-term dependency modeling capability of our proposed
DE-STAGRU model, thereby improving the forecasting ability for areas with intense echo
patterns. Additionally, the SSIM scores also demonstrate improvement compared to other
models. Overall, the experimental results highlight the significant advancements achieved
by the proposed DE-STAGRU model across all three accuracy metrics.

To better compare the quality of radar echo maps, we present an extrapolation example
of a 60 min forecast using different methods in Figure 6. The color bars on the right side
represent the echo intensities corresponding to the different colors. The red color in the
color bar corresponds to regions with echo intensities greater than 40 dBZ. When the radar
image contains red or darker-colored areas, it indicates that severe weather is occurring in
the area. All models are extrapolating the first row’s subsequent ten images based on the
first row’s initial five images.
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Figure 6. Visualization results of a sample sequence under different methods. Both the boundary and
intensity of the red striped echo area highlighted by the red box in DE-STAGRU’s extrapolated map
are most similar to the Ground Truth, while this area in other models’ maps suffers from the problem
of dissipation or inaccurate positioning.

In this example, the high-echo region in the lower left can be seen to be decaying and
moving to the right. At the same time, the center-left position is evolving to generate a
new high-echo region. During the prediction process, we observed minimal differences
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in the predicted results among the various models in the first three time steps, which
closely matched the actual observed results. However, as the prediction time increased,
from the figure, it can be seen that ConvLSTM can only roughly predict the contour of
the newly evolved high-echo region, which is quite different from the actual. There is an
underestimation of the high echo value in PredRNN, and the predicted location is also
biased. The PredRNN++ and MIM models were able to approximate the locations of high-
echo regions; the extrapolated images gradually became blurred, and the high-echo areas
diminished. Only the IDA-LSTM and DE-STAGRU models were able to preserve a larger
portion of the high-echo regions, with DE-STAGRU demonstrating the best performance.

Furthermore, from the ground truth sequence, it is evident that as time progresses, the
intensity and location of high-echo regions change. The DE-STAGRU model demonstrates
the ability to accurately predict these variations and maintains a higher level of detail in its
predictions. This can be attributed to the dual-branch encoder–decoder of the DE-STAGRU
model, which extracts multi-scale spatiotemporal features, reducing interference among the
temporal and spatial information. Additionally, the Multi-Scale Channel Attention Module
(MSCAM) employs global and local channel attention to aid in feature extraction, effectively
addressing the issue of information loss and preserving more details during the prediction
process. Moreover, in the Spatial-Temporal Attention Gated Recurrent Unit (STAGRU),
the temporal and spatial states are independently transferred between different memory
units, enabling the efficient modeling of temporal and spatial evolution between previous
and future frames. The inclusion of a temporal attention module in STAGRU effectively
expands the temporal receptive field of the prediction unit, significantly improving the
predictive capability for high-echo regions. In contrast, other deep learning models fail to
predict high-echo regions, and as the prediction time increases, their predictions gradually
become blurred or even disappear. In the future, the incorporation of a priori knowledge
into the short-range prediction of precipitation can be considered to further improve the
prediction accuracy [39].

4.4. Ablation Study

In order to further observe the impact of different modules on the prediction results,
we conducted an ablation study on the model proposed in this paper using the CIKM
2017 dataset. Based on the STGRU, we sequentially incorporated the Dual Encoding
(DE) structure, the Multi-Scale Channel Attention Module (MSCAM), and the Temporal
Attention Module (TAM) into the STGRU. We compared these variations with the STGRU
and the final DE-STAGRU. The experimental results are shown in Table 2.

Table 2. Comparison ablation study results on CIKM 2017 in terms of CSI, HSS, and SSIM. Bold
denotes the best evaluated index among all models. ‘↑’ indicates that the larger the value, the better
the effect.

Methods
CSI ↑ HSS ↑

SSIM ↑
10 20 40 Avg 10 20 40 Avg

STGRU 0.6696 0.4230 0.0425 0.3784 0.7136 0.5116 0.0653 0.4302 0.7485
DESTGRU 0.6755 0.4302 0.0468 0.3842 0.7191 0.5208 0.0716 0.4372 0.7494
DESTGRU-
MSCAM 0.6761 0.4379 0.0545 0.3895 0.7198 0.5278 0.0821 0.4432 0.7523

DESTGRU-TAM 0.6785 0.4345 0.0477 0.3869 0.7204 0.5227 0.0722 0.4384 0.7521

DE-STAGRU 0.6806 0.4462 0.0577 0.3948 0.7238 0.5366 0.0882 0.4495 0.7574

First, by incorporating the Dual Encoding (DE) structure into the STGRU, we formed
the DESTGRU model, and the scores obtained at various thresholds indicate an improve-
ment in performance. This demonstrates the effectiveness of the Dual Encoding structure.
Furthermore, the MSCAM and TAM modules were separately added to the DESTGRU.
From the data presented in the table, it can be observed that the performance of the DEST-
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GRU with MSCAM and that of the DESTGRU with TAM both outperformed the DESTGRU
and STGRU models. Thus, it can be seen that MSCAM and TAM play a positive role in
improving prediction accuracy. The proposed standard DE-STAGRU yielded the best re-
sults, which can be attributed to the combined effect of the aforementioned Dual Encoding
structure and the two new modules.

To visually compare the experimental results, we performed visualizations on a sample
from the CIKM 2017 test dataset, as shown in Figure 7. From the figure, it can be observed
that the extrapolation results of STGRU exhibit a gradually smooth trend, with some regions
gradually disappearing. However, the DESTGRU model, which incorporates the dual-
branch encoder–decoder structure, is capable of extracting more spatiotemporal features,
leading to more accurate predictions of the locations of echo regions. The introduction of the
MSCAM module in DESTGRU enables the extraction of local and global contextual features
of the encoded representation, thus enhancing the level of detail in the predicted images.
Additionally, the TAM module in DESTGRU expands the receptive field of the prediction
units, resulting in more accurate predictions of high-echo regions. The standard DE-
STAGRU model achieves the best forecasting performance, highlighting the effectiveness
of incorporating MSCAM and TAM into the dual-branch encoder–decoder structure and
the overall improvement in prediction accuracy.
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5. Discussion

In this paper, we investigate a deep learning-based echo image extrapolation model
for weather radar-based 0–1 h short-term precipitation proximity forecasting. Aiming
at the current problem of the fuzzy distortion of radar echo extrapolation results over
time, especially the underestimation problem in the high-echo region, we propose a novel
DE-STAGRU model, which achieves a higher accuracy of radar echo extrapolation results
by combining a two-branch codec structure and a gated-attention recurrent network. We
conduct comparative experiments on the CIKM 2017 dataset with selected deep learning
networks such as ConvLSTM, PredRNN, PredRNN++, MIM, and IDA-LSTM. In addition,
we conducted ablation experiments to verify the effectiveness of the modules of the DE-
STAGRU model. The experiments show that our method is more advantageous in terms of
the clarity and detail of the extrapolated image, and the prediction ability of the high-echo
region is also improved.

To address the problem of ambiguous prediction results, we found that existing meth-
ods have the disadvantage of insufficient feature extraction capability, such as ConvLSTM,
which only focuses on temporal information and ignores the spatial information between
different cell layers. Models such as PredRNN and PredRNN++ have been improved and
upgraded in comparison to ConvLSTM, but they still have not obtained a good solution. In
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this paper, we propose a two-branch coding and decoding structure to extract features from
the temporal and spatial domains, respectively, while the multi-scale channel attention
module embedded in the structure helps the decoder better recall the encoder information.
To address the problem of underestimating the prediction results in the high-echo region,
there is information attenuation during the prediction process in existing methods, such as
MIM and IDA-LSTM. Although IDA-LSTM uses self-attention modules to ameliorate the
problem a bit, some self-attention modules focus only on themselves and cannot obtain
historical information from more distant prediction units. In this paper, we propose a gated
recurrent neural network incorporating a temporal attention mechanism that can obtain
historical information from multiple time steps in the past from a wider perceptual domain,
effectively improving the attenuation problem in information transfer and improving the
prediction ability for high-echo regions.

However, despite the excellent performance of our DE-STAGRU model in the experi-
ments, we also recognize that the training of DL models still requires a large amount of
data, which may limit their generalizability in practical applications. In addition, we will
explore how to incorporate other meteorologically related elements into our DE-STAGRU
model to further improve the richness of the model and its prediction performance.

6. Conclusions

In this paper, we propose a DE-STAGRU model for the radar echo extrapolation task.
In our approach, a two-branch encoder–decoder structure is used to extract spatial-temporal
multiscale features from radar images, which avoids interference between temporal and
spatial information and effectively improves the problem of ambiguity in prediction results.
A gated recurrent network (STAGRU) incorporating an attention mechanism is used to
capture the spatial-temporal evolutionary relationship, while the temporal attention module
broadens the sensory field and effectively solves the problem of underestimating the high-
echo region during the prediction process. By combining the two structures, it is possible
to model the evolution of weather convective processes. We validated the performance of
the model using the CIKM 2017 dataset. The results show that the model can effectively
predict the evolution of convective processes and improve prediction accuracy.
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