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Abstract: This study simulated the wind energy density distribution in the Jiaodong Peninsula
region using the Weather Research and Forecasting (WRF) Model. The impacts of different boundary-
layer and near-surface parameterization schemes on the simulated wind speed and direction were
investigated. The results indicate that the Yonsei University (YSU) scheme and the Quasi-Normal
Scale Elimination (QNSE) scheme performed optimally for wind speed and wind direction. We
also conducted a sensitivity test of the simulation results for atmospheric pressure, air temperature,
and relative humidity. The statistical analysis showed that the YSU scheme performed optimally,
while the MRF and BL schemes performed poorly. Following this, the wind energy distribution
in the coastal hilly areas of the Jiaodong Peninsula was simulated using the YSU boundary-layer
parameterization scheme. The modeled wind energy density in the mountainous and hilly areas of
the Jiaodong Peninsula were higher than that in other regions. The wind energy density exhibits a
seasonal variation, with the highest values in spring and early summer and the lowest in summer.
In spring, the wind energy density over the Bohai Sea is higher than over the Yellow Sea, while the
opposite trend is modeled in summer.

Keywords: Weather Research and Forecasting Model; wind energy density distribution; near-surface
wind field; the most recent land-use types

1. Introduction

The Jiaodong Peninsula region is an economically developed area in China, charac-
terized by a large population and a high level of industrialization and urbanization. The
near-surface wind field in this region is greatly influenced by factors such as the coastal-
land breeze circulation, urban heat island effect, and topography, and it is also frequently
impacted by typhoons and ocean cyclones. These factors significantly influence the local
meteorological variations and wind energy resources. Therefore, an in-depth study of
the characteristics of the near-surface wind field in the Jiaodong Peninsula region can
provide references for atmospheric boundary-layer and near-surface simulations, offering
reliable foundational data support for meteorological forecasts and climate simulations in
the Jiaodong Peninsula region.

With the continuous advancement of computer technology, many meteorologists
are utilizing numerical models to simulate wind energy density [1–4]. Among these
models, the Weather Research and Forecasting Model (WRF), recognized as one of the
most advanced and widely used numerical models for weather forecasting and climate
simulation internationally, has found extensive application in meteorological research and
forecasting worldwide, emerging as one of the commonly employed physics models for
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wind speed prediction. Wang et al. [5] investigated the short-term forecast performance
of the WRF model for summer and winter wind speeds in the Rucheng area of Jiangsu,
located at the intersection of the East Asian monsoon region and the coastal zone. The
study revealed that the WRF model can provide relatively accurate wind speed forecasts
for the Rucheng station during winter. A further analysis at larger scales also indicated
varying levels of accuracy in predictions for different regions, with higher precision in
coastal areas, particularly in the coastal zone and the sea–land interface. Forecasts in flat
inland regions were also relatively reliable, but the model’s performance could have been
more favorable in mountainous areas.

In the context of WRF modeling, the simultaneous utilization of diverse numerical
and physical options is permissible to depict the atmospheric evolution behaviors of
various meteorological phenomena and physical processes occurring across varying spatial
and temporal scales. The identification of parameterization schemes suitable for the
specific location and simulation time is of paramount importance. A significant body of
research underscores the substantial impact of different parameterization schemes for the
planetary boundary layer (PBL) and land surface model (LSM) on wind speed forecasts
within the boundary layer [6–12]. The performance of PBL schemes in WRF is contingent
upon the simulated region and time, thus precluding the establishment of a universally
optimal model configuration [13]. The most prevalent approach to address this problem
involves conducting a statistical inquiry into a range of reasonable model configurations
and ultimately selecting the PBL scheme that manifests a superior average agreement with
observed results. In a case study by Liu et al. [14], focusing on a wind farm in Ningxia, they
harnessed the WRF mesoscale atmospheric model to advance hourly wind speed forecasts
by 72 h while employing various parameterization schemes for physical processes. A
comparison of the forecasted outcomes with actual wind speed data facilitated an analysis of
the impact of different physical process parameterization schemes in the WRF model on the
accuracy of wind speed forecasts, leading to the optimization of parameterization scheme
settings. The results indicate that the parameterization scheme settings for the planetary
boundary layer (PBL) significantly impact the accuracy of wind speed forecasts. In contrast,
the settings for microphysical processes and cumulus convection parameterization schemes
have a relatively minor influence on wind speed forecast accuracy. Li et al. [15], using
two wind farms in Guangdong Province as examples, established wind speed simulation
models suitable for different terrains by studying grid divisions and nesting schemes of
the WRF model under plain and mountainous landscapes. Their analysis of wind speed
simulations for an entire year at the two wind farms showed that the wind speed simulation
models based on the WRF model achieved high accuracy under different terrain conditions,
with better performance in plains compared to mountainous regions. Compared to the
planetary boundary layer (PBL) over land, research on the marine planetary boundary
layer has been relatively limited due to the higher cost and the incredible difficulty of
observations over the ocean. Nevertheless, some scholars have adopted similar methods
to select parameterization schemes suitable for marine and coastal areas, aiming to better
simulate the wind fields over the ocean and nearshore regions [16,17].

The Jiaodong Peninsula and nearby waters are rich in wind energy resources [18].
This study aims to evaluate the applicability of various boundary-layer and near-surface
parameterization schemes in the WRF model for the Jiaodong Peninsula. The objective is to
determine the optimal scheme to enhance the accuracy of wind field simulations, forming
the basis for wind energy assessments. This research can provide theoretical support
for site selection in constructing wind farms in the Jiaodong Peninsula. Additionally, it
serves as a reference for accurate meteorological forecasts, with fine-scale meteorological
forecasts playing a crucial role in daily life, production, and environmental protection.
Improving simulation accuracy and providing precise meteorological forecasts can meet
diverse societal needs.
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2. Materials and Methods
2.1. Dataset
2.1.1. GFS and GDAS Reanalysis Dataset

The Global Forecast System (GFS) (http://rda.ucar.edu/datasets/ds083.2/, accessed
on 23 June 2023) [19] and the Global Data Assimilation System (GDAS) (http://rda.ucar.
edu/datasets/ds083.3/, accessed on 23 July 2023) [20] represent two meteorological re-
analysis datasets developed and maintained by the National Oceanic and Atmospheric
Administration (NOAA) of the United States. These datasets encompass variables such as
temperature, wind speed, humidity, precipitation, and cloud cover, among others. The GFS
and GDAS datasets utilized in the present study span the years 2017 and 2022, featuring a
temporal resolution of 6 h and a spatial resolution of 0.25◦ × 0.25◦.

2.1.2. ERA5 Reanalysis Dataset

ERA5, the fifth-generation atmospheric reanalysis dataset of global climate starting
from January 1950, was developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF, Reading, UK). In the present study, we employed hourly ERA5 data on
single levels retrieved from the dataset (accessible at https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview, accessed on 23 July 2023).
Specifically, we focused on extracting data for 10 m wind speed, 100 m wind speed, 2 m
temperature, and mean sea-level pressure within the geographic coordinates of 119◦ E to
127◦ E and 30.5◦ N to 37.5◦ N for the years 2017 and 2022. The dataset undergoes updates
on an hourly basis, and its spatial resolution is set at 0.25◦ × 0.25◦ [21].

2.1.3. The Terra and Aqua Combined Moderate Resolution Imaging Spectroradiometer
(MODIS) Land Cover Type

The combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover
Type (MCD12Q1) Version 6.1 data product (Land Processes Distributed Active Archive
Center (LP DAAC), Sioux Falls, SD, United States), generated by the Terra and Aqua
satellites, offers a comprehensive depiction of global land cover types at yearly intervals
spanning from 2001 to 2022. The MCD12Q1 Version 6.1 data product is derived through
supervised classifications of MODIS Terra and Aqua reflectance data. The land cover types
are established based on classification schemes from the International Geosphere-Biosphere
Program (IGBP), the University of Maryland (UMD), the Leaf Area Index (LAI), BIOME-
Biogeochemical Cycles (BGC), and plant functional types (PFTs). Following the supervised
classifications, additional post-processing is implemented, incorporating prior knowledge
and ancillary information to enhance the precision of specific classes. Furthermore, the Food
and Agriculture Organization (FAO) Land Cover Classification System (LCCS) contributes
additional layers for assessing land cover properties, encompassing land use and surface
hydrology [22].

2.1.4. Measured Wind Speed

The observational data employed in this study were obtained from a location at
coordinates 37.1◦ N, 120.4◦ E. The observed parameters encompass wind speeds at 50 m,
70 m, and 80 m above the surface; wind direction at 80 m above the surface; and temperature,
relative humidity, and atmospheric pressure at 50 m above the surface.

2.2. Methodology
2.2.1. WRF Model

In this work, the WRF model (version 4.5 utilized) is pivotal in assessing wind speed.
As a state-of-the-art mesoscale forecasting model and assimilation system, it performs
a vital function by simulating and predicting atmospheric circulation patterns and the
distribution of wind fields. WRF achieves this by incorporating various data inputs,
including topographical information, land-use characteristics, and sea-surface temperature,
to simulate changes in wind patterns within specific geographic regions and timeframes.

http://rda.ucar.edu/datasets/ds083.2/
http://rda.ucar.edu/datasets/ds083.3/
http://rda.ucar.edu/datasets/ds083.3/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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2.2.2. Sensitivity Experimental setups

As shown in Figure 1, the selected simulation domain in this study is situated at
the Qingdao Woer Wind Farm in Laixi City, Shandong Province, China, with a central
coordinate of 37.1◦ N, 120.4◦ E. To conduct the simulations, a three-level nesting scheme
was employed with horizontal grid resolutions of 150 × 150 (9 km), 136 × 136 (3 km), and
124 × 124 (1 km). The sensitivity experiments in this paper utilize the innermost simulated
region, with the outer two layers providing initial conditions for the inner layer. The
simulation period starts at UTC 00:00 on 22 September 2017, and concludes at UTC 18:00 on
29 September 2017, with a temporal interval of 15 min. The initial fields are updated every
six hours using GDAS data, with a forecast lead time of six hours and a spatial resolution of
0.25◦ × 0.25◦. The WRF model employs the Lin microphysics scheme, the RRTM longwave
radiation scheme, the Dudhia shortwave radiation scheme, the Noah land surface model,
and the K-F cumulus parameterization scheme (cumulus parameterization schemes are
turned off for the second and third nesting layers). As shown in Table 1, six experiments
were conducted to investigate the influence of boundary-layer and near-surface schemes.
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Table 1. Experimental protocol for WRF sensitivity.

Number Boundary-Layer Scheme Near-Surface Scheme

exp1 YSU MM5
exp2 MRF MM5
exp3 MYJ MO
exp4 BL MM5
exp5 MYNN3 MYNN
exp6 QNSE QNSE
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To guarantee the accuracy and reliability of the simulation outcomes, a 16 h spin-up
is undertaken before the commencement of WRF simulations. This pre-warming phase
encompasses the initial 16 h of the WRF simulation and aims to attain model stability. This
procedure ensures that the initial conditions for the simulation are physically consistent
and mitigates abrupt transitions, thereby minimizing errors and instability throughout
the simulation process. Consequently, the time interval considered for the comparative
sensitivity experiments in this study spans from 00:00 on 23 September 2017 to 02:00 on
30 September 2017 in Beijing time.

2.2.3. Assessment of Model Performance

This paper assesses the accuracy of wind speed simulation through the utilization of
metrics such as the correlation coefficient, bias, root mean square error (RMSE), and mean
absolute percentage error (MAPE). The RMSE serves as a robust indicator of the precision
of the predicted data sequence. Simultaneously, the MAPE is employed to characterize the
extent of error dispersion and mitigate the concern of offsetting biases in sequential data.

Correlation coefficient = r(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

(1)

The covariance between variables X and Y is denoted as Cov(X, Y), whereas Var[X]
and Var[Y] represent the variances of variables X and Y, respectively. In probability theory
and statistics, covariance is utilized to quantify the overall deviation between the two
variables. Variance, being a specific case of covariance, characterizes situations where the
two variables are identical. The formulas for their calculations are as follows:

Cov(X, Y) = E[(X − E(X))(Y − E(Y))] (2)

Var[X] = ∑(X − X1)
2

n − 1
(3)

X is the variable, X1 is the sample mean, n is the sample size, and E represents
the expectation.

Bias =
n

∑
i=1

∣∣P′
i − Pi

∣∣
n

(4)

RMSE =

√
1
n

n

∑
i=1

(
P′

i − Pi)2 (5)

MAPE =
1
n

n

∑
i=1

∣∣P′
i − Pi

∣∣
Pi

(6)

The sample size is denoted by n, the predicted value of the ith sample by the model is
represented by Pi’, and the measured value of the ith sample is indicated by Pi.

The wind direction agreement rate (WDAR) is a widely used metric for assessing the
accuracy of wind direction predictions, serving as a meteorological indicator that quantifies
the similarity between two wind direction datasets. The calculation involves tallying
matching wind direction values in both datasets and dividing that count by the total
number of instances to derive the agreement rate. For instance, if both datasets represent
wind direction values within the 0 to 360-degree range, agreements are considered for
differences less than or equal to 22.5 degrees. The wind direction agreement rate is typically
expressed as a percentage and aids in evaluating the similarity between the two wind
direction datasets.
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2.2.4. WRF Simulation for the Jiaodong Peninsula in 2022

The WRF simulation for the Jiaodong Peninsula region in 2022 was conducted in this
study due to the lower sensitivity to temporal and spatial resolutions compared to the
sensitivity experiments in the previous section, and a larger simulation domain, a two-layer
nesting approach, was employed. The simulation center was located at 36.5◦ N, 120.4◦ E,
with horizontal grid numbers (resolutions) of 200 × 200 (9 km) and 190 × 190 (3 km) for
the outer and inner nests, respectively. Similarly, when simulating the wind energy density
distribution in the Jiaodong Peninsula, only the innermost nesting layer (d02) is utilized.
Figure 2 displays the land-use types for the second nested layer (d02), with the left image
representing the default land-use types in the WRF model and the right image illustrating
the land-use types after replacement. Urban areas are highlighted in red. The second
nesting layer covered the entire Jiaodong Peninsula and its adjacent waters. The simulation
period started from UTC 1 January 2022, 00:00, and ended at UTC 31 December 2022, 18:00,
with a 60 min output interval. The initial fields were updated every six hours using GDAS
data, with a forecast lead time of six hours and a spatial resolution of 0.25◦ × 0.25◦. The
parameterization scheme selected for WRF was the optimal scheme for simulating wind
speed chosen in this study. Twelve simulations were conducted to mitigate the impact
of accumulated errors on the simulation accuracy, each lasting for one month. Over the
past two decades, rapid urbanization has occurred in the Jiaodong Peninsula. The land-
use type data for 2022 were utilized in this study. Using the latest land-use type data in
WRF simulations is crucial for improving the accuracy of model surface parameterization,
thus enhancing the accuracy of simulating meteorological processes and improving the
reliability of weather and climate predictions.
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representing the default land-use types in the WRF model, and the right image illustrating the
land-use types after replacement. In the modified land-use types, urban areas are highlighted in red.
Marine areas in blue, non-urbanized areas on land in green.

As a fundamental component of the climate system, the ocean dynamically updates its
sea surface temperature (SST) to ensure the model’s alignment with real-world conditions.
Throughout the simulation, the SST experiences temporal fluctuations, impacting atmo-
spheric dynamics and thermodynamics, thereby improving the precision and dependability
of the simulation outcomes. Therefore, a dynamic SST was employed in this simulation,
with SST data sourced from the Global Data Assimilation System (GDAS) reanalysis serving
as one of the inputs for establishing the initial conditions in the Weather Research and
Forecasting (WRF) model.
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2.2.5. Wind Energy Calculation

Wind power density serves as a comprehensive index for assessing the state of wind
energy resources in a specific area. It is precisely defined as the wind energy vertically
passing through a unit area of airflow within a unit of time. Wind energy is influenced by
factors such as the magnitude of wind speed, the frequency distribution of wind speeds,
and air density. The following expression represents wind power density:

DWP =
1

2n

n

∑
i=1

ρvi
3 (7)

where n represents the number of records within the designated period, ρ denotes air
density, and vi

3 represents the cube of the wind speeds recorded for the ith observation.
DWP is the wind power density expressed in units of W/m2. The air density (ρ) is measured
in units of kg/m3, and its calculation method is as follows:

ρ =
P

RT
(8)

In the equation, P represents atmospheric pressure, R denotes the gas constant, and T
represents the temperature in Kelvin. The value of R used in this paper is 287 J/kg·K.

3. Results
3.1. Atmospheric Circulation Background

Figures 3 and 4 depict images derived from ERA5 reanalysis data. The following
weather analysis can be conducted based on the weather patterns and surface wind field
changes depicted in Figure 3. From 23 to 30 September 2017, an examination of the 500 hPa
geopotential height field reveals fluctuations in the westerly jet stream. Specifically, be-
tween the 23rd and 26th, and from the 27th to the 28th, there are two troughs passing
through the 500 hPa geopotential height field, while a high-pressure ridge dominates the
rest of the time. This variation indicates significant dynamic activity in the atmosphere.
Furthermore, by observing the 850 hPa wind field, it is evident that westerly winds prevail
during this period. This wind pattern suggests the presence of sustained southwest winds
in the lower atmosphere, potentially with significant wind speeds. Such wind field struc-
tures are often associated with warm and moist air masses, which could lead to localized
precipitation events.

Figure 4 presents the temporal variations in meridional and zonal wind speeds. The
deepening of the color-coded markers reflects the passage of time. Based on Figure 4,
we can discern the changing trends in wind speed. Over the observation period, wind
speeds gradually increase from initially lower levels, followed by a gradual decrease. These
fluctuations in wind speed may be influenced by atmospheric circulation, such as variations
in pressure gradients and interactions between high-pressure and low-pressure systems.

Based on the ERA5 reanalysis data summarized above, we can infer that, during this
period, there was significant dynamic activity in the atmosphere, as evidenced by fluctua-
tions in the 500 hPa geopotential height field and the presence of the westerly jet stream.
Additionally, the 850 hPa wind field exhibited sustained southwest winds, indicating the
presence of warm and moist air masses that could lead to localized precipitation. The
changes in surface wind patterns, transitioning from southeast to northerly winds and then
back to southeast winds, suggest an evolution in atmospheric circulation. The temporal
variations in wind speed showed increasing and decreasing trends, likely influenced by
atmospheric circulation and pressure system changes.
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3.2. Sensitivity Analysis
3.2.1. Experimental Results of Near-Ground Wind Sensitivity

The observations from Figure 5 reveal that all six boundary-layer parameterization
schemes can effectively represent the trends in wind speed variations. Across the entire
simulation period, the characteristic pattern of higher daytime wind speeds and lower
nighttime wind speeds is evident in all parameterization schemes, and the trends in
wind speed changes are consistent across different height levels. Figure 6 illustrates the
changes in the cosine of the wind direction at 80 m, revealing a transition from southerly
to northerly winds during the simulation period. At the 80 m height level, the wind
direction simulated in all parameterization schemes consistently matches the observed
wind direction. However, a significant change in wind direction occurs from the afternoon
of the 27th to the night of the 28th, which is not well reproduced by most schemes, except
for the MRF and BL parameterization schemes. Vertically, the trends in wind speed
variations remain consistent across all height levels, indicating that, regardless of the
chosen parameterization scheme, vertical wind speed changes exhibit uniformity during
the simulation period.
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Based on the analysis results of Figures 5 and 6, the six boundary-layer parameteriza-
tion schemes can effectively simulate the variation trends of wind speed. The differences in
wind speed between day and night are accurately represented, and the variation trends
of wind speed in the vertical direction are consistent. However, there are certain areas for
improvement in simulating wind direction during specific periods, and some parameteri-
zation schemes fail to accurately capture the fluctuations in wind direction.

Table 2 presents the sensitivity experiment results at a height of 50 m, comparing the
performance of various parameterization schemes using indicators such as the correlation
coefficient, root mean square error, bias, and mean error rate. The research results demon-
strate that optimal performance is achieved by the YSU parameterization scheme, with root
mean square error and bias values recorded at 1.68 and 1.28, respectively. Conversely, the
BL parameterization scheme performs the worst, with correlation coefficient, root mean
square error, and bias values of 0.55, 1.89, and 1.46, respectively. Although the correla-
tion coefficient of the YSU parameterization scheme is slightly inferior to that of the MRF
scheme, its exceptional performance on various other statistical metrics leads us to consider
the YSU parameterization scheme as the optimal choice, while the BL needs improvement
to enhance its predictive accuracy.

Table 2. Results of wind field sensitivity experiments at 50 m height. The best results are shown in
bold. The same is true for the table below.

Correlation
Coefficient RMSE (m/s) Bias (m/s) MAPE

BL 0.55 1.89 1.46 0.50
MRF 0.66 1.75 1.37 0.36
MYJ 0.60 1.68 1.31 0.27

MYNN3 0.57 1.88 1.44 0.48
QNSE 0.56 1.80 1.37 0.33
YSU 0.61 1.68 1.28 0.27

Furthermore, the mean error rate is one of the most important indicators for assessing
the performance of different parameterization schemes. The mean error rate refers to the
mean error ratio to the observed wind speed. The research results demonstrate that the
YSU parameterization scheme performs the best in terms of the mean error rate, with a
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value of 0.27, indicating that YSU can predict wind speed more accurately. In contrast, the
BL parameterization scheme performs the worst in terms of the mean error rate, with a
value of 0.50, indicating the need for improvement in the BL parameterization scheme to
enhance its wind speed prediction accuracy.

Considering all indicators, we recommend using the YSU parameterization scheme
when predicting wind speed and wind direction at a height of 50 m, as it exhibits the
best performance.

According to Table 3, we can observe variations in the sensitivity performance of
different models at a height of 70 m. Firstly, the mean error rate is the most crucial indicator
for evaluating wind speed accuracy. We can see that the YSU parameterization scheme
performs the best, with a mean error rate of 0.27, while the BL parameterization scheme
performs the worst, with a mean error rate of 0.46. This indicates that the YSU parameteri-
zation scheme accurately predicts wind speed. Secondly, the correlation coefficient reflects
the degree of linear correlation between model predictions and actual observed values.
The experimental results show that the MRF parameterization scheme has the highest
correlation coefficient, reaching 0.67, whereas the MYNN3 parameterization scheme has the
lowest, with a coefficient of only 0.56. This suggests that the MRF parameterization scheme
fits actual observed values better and has a closer linear relationship between predictions
and observed values. The YSU parameterization scheme demonstrates the best overall
performance among all indicators. Therefore, when forecasting wind speed at a height of
70 m, considering using the YSU boundary-layer scheme is advisable.

Table 3. Results of wind field sensitivity experiments at 70 m height. The best results are shown
in bold.

Correlation Coefficient RMSE (m/s) Bias (m/s) MAPE

BL 0.59 1.87 1.43 0.46
MRF 0.67 1.80 1.40 0.37
MYJ 0.60 1.78 1.37 0.27

MYNN3 0.56 1.94 1.46 0.44
QNSE 0.58 1.87 1.42 0.32
YSU 0.61 1.76 1.36 0.27

According to the results presented in Table 4, it is evident that, at a height of 80 m,
the wind direction prediction accuracy relatively improved for all six parameterization
schemes, with all achieving accuracy rates exceeding 55%. Specifically, the QNSE param-
eterization scheme performs the best, earning a wind direction matching rate of 75.62%.
In contrast, the MRF parameterization scheme serves the poorest, with a wind direction
matching rate of only 56.97%. The MRF parameterization scheme also exhibits the highest
correlation coefficient, reaching 0.68. The YSU parameterization scheme boasts the lowest
mean error rate, at 0.27, showcasing the best performance among the six parameterization
schemes. Therefore, overall, the YSU parameterization scheme demonstrates relatively
favorable performance across all indicators. These results suggest that adopting the YSU
parameterization scheme for predicting wind speed and wind direction at an 80 m height.

Table 4. Results of wind field sensitivity experiments at 80 m height. The best results are shown
in bold.

Correlation Coefficient RMSE (m/s) Bias (m/s) MAPE WDAR (%)

BL 0.60 1.87 1.42 0.46 64.17
MRF 0.68 1.80 1.40 0.39 56.97
MYJ 0.60 1.82 1.40 0.28 74.15

MYNN3 0.56 1.98 1.49 0.41 65.05
QNSE 0.59 1.90 1.45 0.33 75.62
YSU 0.62 1.79 1.39 0.27 71.80



Atmosphere 2024, 15, 101 12 of 17

3.2.2. Experimental Results of Near-Formation Atmospheric Pressure Sensitivity

Table 5 displays the evaluation metrics for simulating atmospheric pressure using
different parameterization schemes. These evaluation metrics include the correlation
coefficient, root mean square error, bias, and mean error rate, which assess the disparities
between simulated results and observed values. From the table, it can be observed that
different parameterization schemes exhibit variations in the accuracy and reliability of
their simulation results. The YSU parameterization scheme performs the best among all
evaluation metrics, with the smallest root mean square error, minimal bias, and the lowest
mean error rate. In contrast, the BL parameterization scheme exhibits the most significant
root mean square error and the highest bias. This indicates that the YSU parameterization
scheme offers higher accuracy and reliability in simulating atmospheric pressure, while the
performance of the BL parameterization scheme is inferior.

Table 5. Results of atmospheric pressure sensitivity experiments at 50 m height. The best results are
shown in bold.

Correlation Coefficient RMSE (hPa) Bias (hPa) MAPE

BL 0.75 6.73 6.64 0.01
MRF 0.74 2.97 2.72 0.01
MYJ 0.80 4.35 4.22 0.01

MYNN3 0.81 5.49 5.40 0.01
QNSE 0.80 5.32 5.21 0.01
YSU 0.78 2.74 2.51 0.01

3.2.3. Experimental Results of Near-Formation Temperature Sensitivity

Table 6 presents the results of sensitivity experiments simulating atmospheric tem-
perature at a height of 50 m using different parameterization schemes. Firstly, across all
parameterization schemes, the correlation coefficients range from 0.84 to 0.88, indicating
that all schemes possess good predictive capabilities and are relatively stable. The root
mean square errors are also relatively small, suggesting that the differences between pre-
dicted results and observed values are minimal, with a slight variation in error among
different schemes. However, there are some differences among the schemes regarding bias
and the mean error rate. Specifically, the MRF parameterization scheme exhibits relatively
high bias and mean error rates, implying the potential presence of systematic biases in this
scheme. Conversely, the YSU parameterization scheme performs the best in these aspects,
indicating its relatively accurate performance in simulating atmospheric temperature at a
50 m height.

Table 6. Results of temperature sensitivity experiments at 50 m height. The best results are shown
in bold.

Correlation Coefficient RMSE (◦C) Bias (◦C) MAPE

BL 0.84 2.31 1.73 0.08
MRF 0.88 2.64 1.97 0.09
MYJ 0.84 2.28 1.61 0.08

MYNN3 0.83 2.34 1.74 0.08
QNSE 0.85 2.28 1.77 0.09
YSU 0.84 2.33 1.61 0.07

3.2.4. Experimental Results of Near-Ground Relative Humidity Sensitivity

Table 7 presents the data table of sensitivity experiment results for near-surface relative
humidity. From the data table, it can be observed that the MRF scheme achieves the highest
correlation coefficient, standing at 0.80. However, the MRF scheme lags behind other
models regarding the root mean square error and bias, with values of 20.49 and 17.30,
respectively. The QNSE scheme, on the other hand, outperforms all models, with the best
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root mean square error, bias, and mean error rate. This indicates that the QNSE scheme’s
predictions are closer to the actual observed values, with more minor errors. It also suggests
that this parameterization scheme accurately predicts near-surface relative humidity.

Table 7. Results of relative humidity sensitivity experiments at 50 m height. The best results are
shown in bold.

Correlation Coefficient RMSE Bias MAPE

BL 0.76 18.04 13.76 0.25
MRF 0.80 20.49 17.30 0.33
MYJ 0.73 18.98 12.45 0.28

MYNN3 0.74 19.71 14.09 0.29
QNSE 0.78 16.93 10.95 0.24
YSU 0.75 18.08 12.83 0.24

3.3. Wind Energy Density and Vertical Profile
3.3.1. Temporal Distribution of Wind Energy Density and Vertical Profile in Jiaodong
Peninsula in 2022

The temporal distribution and vertical profiles of wind energy density in the Jiaodong
Peninsula in 2022 can be observed based on the data illustrated in Figure 7. The highest
wind energy density in the Jiaodong Peninsula occurred from March to May, while the
lowest values were recorded from July to August during the same year. This indicates a
pronounced seasonal variation in wind energy resources in the Jiaodong Peninsula, with
higher densities observed in spring and early summer and relatively lower densities in
the summer. Notably, the variations in wind energy density at different heights exhibit a
consistent trend. With an increased measuring size, there is a distinct exponential increase
in wind energy density. This implies that, as the vertical ascent of the atmospheric layer
progresses, the wind speed gradually increases, leading to a corresponding increase in
wind energy density.
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3.3.2. Wind Energy Density Distribution in Jiaodong Peninsula in April and August 2022

Significant seasonal variations in wind energy density were observed in the Jiaodong
Peninsula from March to May of the specified year. During this period, the wind energy
density in the region reached its annual peak, while a notable decrease was observed from
July to August, reaching its annual minimum. Based on these observations, we selected
April as a representative month with high wind energy density and August as an expected
month with low wind energy density for detailed analysis, as depicted in Figure 8.
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Figure 8. (a) Distribution of wind energy density by height in the month representing low wind energy
density (August), and (b) distribution of wind energy density by height in the month representing
high wind energy density (April).

Regarding the distribution of wind energy density on land, it is evident that April is
significantly higher than August. Furthermore, the wind energy density across various
locations is almost similar in the distributions of other months. Notably, the mountainous
areas in central Shandong and the hilly areas south of Yantai and Weihai exhibit higher
wind energy density in April, making them regions with relatively abundant wind energy
resources on land. Overall, the wind energy density at sea is much higher than on land.
However, due to the influence of the monsoon, the wind energy density over the Bohai
Sea is significantly higher than that over the Yellow Sea in April, while this trend reverses
in August. This suggests that seasonal variations significantly impact the distribution of
offshore wind energy.

3.4. WRF-Modelled Wind Energy Density Distribution Compared to ERA5 Reanalysis Data

Figure 9 illustrates the wind energy density distribution calculated using ERA5 re-
analysis data at a height of 100 m, where (a) represents April and (b) represents August.
Compared to WRF simulations, the wind energy density calculated using ERA5 reanalysis
data shows a similar trend at a height of 90 m. However, due to resolution limitations, the
ERA5 reanalysis data fail to accurately reflect the finer wind energy density distribution at
the 100 m height, particularly evident in the Laizhou Bay and mountainous hilly areas.

This limitation emphasizes the importance of choosing appropriate models and data
sources in wind energy research to obtain more accurate and reliable results, especially
when analyzing complex terrain regions. Future studies may consider further optimizing
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model parameters and enhancing data resolution to understand wind energy density
distribution in different geographical areas.
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4. Discussion

Several limitations exist in this study. Firstly, local meteorological features may in-
fluence the selection of model parameterization schemes. Hence, its applicability in other
regions requires cautious evaluation. Secondly, this study did not consider the potential
long-term impact of climate change on wind energy distribution, which is a direction
for future in-depth exploration. Additionally, comparing model results with actual mea-
surement data validates the simulation accuracy. However, this study only utilized one
site, and subsequent research could involve more observations to identify more accurate
parameterization schemes. Future research can further address these limitations to enhance
the reliability and applicability of the model. In future investigations, considering more
advanced models and data sources and incorporating additional meteorological and ge-
ological factors can provide a more comprehensive and accurate depiction of the wind
energy resource distribution in the Jiaodong Peninsula and its surrounding areas.

5. Conclusions

In this study, we have investigated the applicability of different boundary-layer and
near-surface-layer schemes in simulating the near-surface wind field in the Jiaodong Penin-
sula. The results indicate that the YSU parameterization scheme performs the best in
simulating wind speed at various heights, while the BL parameterization scheme exhibits
the poorest performance. The QNSE parameterization scheme performs best in simulat-
ing wind direction, whereas the MRF parameterization scheme performs the worst, and
YSU is slightly inferior to QNSE. Therefore, using the YSU parameterization scheme for
predicting near-surface wind speed and the QNSE parameterization scheme for predicting
near-surface wind direction is recommended. The YSU parameterization scheme performs
best in simulating atmospheric pressure and temperature at a 50 m height, while the MRF
and BL parameterization schemes perform poorly. The evaluation metrics for the MYJ,
QNSE, and YSU parameterization schemes are relatively close to YSU, but still slightly
worse. In the near-surface relative humidity sensitivity experiment, all parameterization
schemes exhibit significant errors, with the MRF parameterization scheme having the high-
est correlation coefficient. However, the QNSE parameterization scheme has the optimal
root mean square error, bias, and mean absolute error among all models, indicating its high
accuracy in predicting near-surface relative humidity.

Following this, we utilized the YSU boundary-layer scheme along with the land-
use type data for the year 2022 provided by the Terra and Aqua combined Moderate
Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6.1
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data product to simulate the wind energy density distribution in the coastal hilly areas of
the Jiaodong Peninsula in 2022. The results reveal a significant seasonal variation in wind
energy density in the Jiaodong Peninsula. March to May exhibit the highest wind energy
density, while July to August show the lowest, indicating a higher wind energy density in
spring and early summer and relatively lower density in summer. At different elevations,
wind energy density exhibits exponential growth with the increase in measurement height.
On land, the central mountainous region of Shandong, Yantai, and the southern hilly areas
of Weihai have greater wind energy density than other locations. Overall, offshore wind
energy density surpasses that on land but is significantly influenced by monsoons. In April,
the wind energy density over the Bohai Sea is higher than that over the Yellow Sea, with
this trend reversing in August.

Subsequently, we compared the wind speed predictions at an 80 m height from
GFS, GDAS reanalysis data, and WRF. The results indicate that WRF’s predictions are
significantly superior to GFS and GDAS. When using the optimal YSU parameterization
scheme to predict wind speed, WRF shows a notable improvement in various evaluation
metrics compared to GFS and GDAS. In terms of wind power prediction, WRF’s forecasts
perform better. Therefore, overall, the WRF model demonstrates greater accuracy and
reliability in predicting wind speed and power.

Following this, a comparison was made between the wind energy density distribution
simulated by WRF and the results from ERA5 reanalysis data. Although the two maintain
consistent trends, the WRF simulation exhibits finer features, mainly showcasing outstand-
ing performance in mountainous hilly areas. This difference may arise from WRF’s ability
to accurately capture terrain complexity and local meteorological features, providing more
detailed information on wind energy density distribution. This observation underscores
the crucial role of model selection and data sources in wind energy research, especially
in scenarios where a high spatial resolution is needed to reveal geographical complexi-
ties. Future research directions may consider further refining the parameter configuration
of WRF simulations to optimize its performance under different topographic conditions,
thereby gaining a more comprehensive understanding of the spatial distribution of wind
energy resources.
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