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Abstract: To better understand the impact of climate change at a given location, it is crucial to consider
a wide range of climate models that are representative of the area. In this study, we emphasize the
importance of the careful validation and selection of climate models most suitable for a particular
region. This step is critical to enhance the relevance of climate change impact studies and consequently
design appropriate and robust adaptation measures, particularly in agriculture, forestry and water
resources management. We propose validation and selection methods for regional climate models
that can help identify a smaller group of well-performing models using the Central European area
and Czech Republic as examples. In the validation process, 7 out of 19 regional climate models
performed poorly. Of the 12 well-performing models, a subset of 7 models was selected to represent
the uncertainty in the entire ensemble, which could be used in subsequent studies. The methodology
is sufficiently general and may be applied to other climate model ensembles.

Keywords: regional climate model; Euro-CORDEX; validation; representative subset

1. Introduction

Climate models play a crucial role in providing valuable insights into future climatic
conditions, among other benefits, for various impact studies and serve as the background
for climate change adaptation and mitigation strategies [1–3]. To ensure that climate
change impact studies and all other steps leading to the formulation of adaptation and
mitigation strategies are well grounded and reliable at the regional level, climate models
should accurately represent regional- to local-scale processes and phenomena. The current
generation of global climate models (GCMs) remains too coarse in terms of the spatial
resolution to provide a sufficient level of detail. Information retrieved from GCMs must
therefore be downscaled by various methods to meet the criteria for climate change impact
modeling on fine spatial scales. The downscaling of GCMs over a limited spatial area by
a regional climate model (RCM) is one of the most popular approaches, and Giorgi [3]
summarized its principles and achievements over the last three decades.

The spatial resolution of RCMs is usually a few tens of kilometers, rendering them
a highly preferred choice for the consequent modeling of climate change impacts. The
most popular set of RCM simulations currently used was created within the international
CORDEX initiative [4]. CORDEX simulations are based on downscaling GCMs of the

Atmosphere 2023, 14, 1442. https://doi.org/10.3390/atmos14091442 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14091442
https://doi.org/10.3390/atmos14091442
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0009-0008-5628-909X
https://orcid.org/0000-0001-8956-5590
https://orcid.org/0000-0002-2877-6447
https://orcid.org/0000-0001-6485-2809
https://orcid.org/0000-0001-5129-1272
https://orcid.org/0000-0003-0224-0596
https://orcid.org/0000-0003-3978-5653
https://orcid.org/0000-0003-0213-1584
https://orcid.org/0000-0003-4727-8379
https://doi.org/10.3390/atmos14091442
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14091442?type=check_update&version=1


Atmosphere 2023, 14, 1442 2 of 18

Coupled Model Intercomparison Project Phase 5 (CMIP5) [5], and their projected climate
changes in the future have been summarized, for instance, in the new Interactive Atlas
of Climate Change [6], a part of the most recent 6th Assessment Report of IPCC Working
Group 1 [7]. In addition, a new set of CORDEX simulations obtained by downscaling the
newer generation of CMIP6 GCMs is now being prepared and should become available
soon. In the European part of CORDEX (the so-called Euro-CORDEX), two ensembles of
RCM simulations were prepared: one at a 0.44◦ (∼50 km) spatial resolution and the other
at a 0.11◦ (∼12.5 km) spatial resolution.

There are more than twenty Euro-CORDEX simulations of future climate conditions
at a fine spatial resolution of 0.11◦ prepared by various groups using several RCMs. To
better understand future climate evolution, it is important to adopt a large ensemble of
model simulations rather than a single model projection. This strategy enables us to capture
the uncertainty associated with model selection, different forcings and various sources
of variability. At the same time, it can be complicated to utilize the full ensemble of all
available RCM or GCM simulations for impact studies, mainly due to processing and time
limitations. There is, thus, interest in narrowing the entire ensemble while retaining its
main statistical properties.

To refine climate change projections for a specific region, several general approaches
can be used to narrow large model ensembles [8]. Among the most commonly used
approaches are weighting models based on their performance in reproducing observed
mean, variability, or trend fields for one or more variables [8–10]. These weights can
then be applied only to the outputs of impact models that use individual RCMs as inputs.
Other approaches include detection- and attribution-based methods, Bayesian methods and
single-model methods [8], but these methods may not be suitable for impact studies that
often require daily data since these data are not, unfortunately, outputs of such methods.
In regard to impact studies, it is insufficient to solely rely on the overall signal of climate
change in the future, as these three methods do. Moreover, a full range of uncertainty
may be needed, such as that in hydrological models [11,12] or agricultural crop growth
models [13].

The main aim of this study is to present an approach to reduce a large ensemble of
Euro-CORDEX 0.11◦ RCM simulations for the relatively small area of the Czech Republic
(Figure 1). The ensemble consists of validated models, and a new, smaller ensemble of
RCMs is then obtained that still preserves the spread of the original ensemble. In addition,
the reduced ensemble should decrease the effort associated with consequent impact studies
and, at the same time, ensure that the main statistical properties of the climate change
signal of the full ensemble are preserved in the reduced ensemble for important climate
variables. The reduction in the ensemble size should therefore not cause a significant loss
of information that may result in biased outcomes of impact studies. The selected subset is
referred to as the climate change envelope (CliChE).

In the Section 2, an overview of the input data is provided, along with detailed
definitions of the techniques employed in our study. In the Section 3, we (i) justify the
exclusion of certain models from the ensemble of RCMs for the Czech Republic and Central
Europe and (ii) describe the selection process for creating the CliChE for the Czech Republic.
In the Section 4, we analyze the benefits of our methodology and emphasize its distinctive
features, setting it apart from other approaches in the literature.
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Figure 1. The Czech Republic is located in the central part of Europe.

2. Materials and Methods
2.1. Climate Model Data

RCM simulations from the high-resolution version of Euro-CORDEX ensembles
(i.e., 0.11◦, which corresponds to an approximately 12.5 km grid spacing), were processed.
The selected models are summarized in Table 1, and their choice reflects the data availability
at Earth System Grid Federation data nodes at the initiation time of this study. In total,
there are 19 RCM simulations (or GCM-RCM pairs) driven by 8 GCMs. Furthermore, in the
text and figures, the GCM-RCM pairs are denoted by their abbreviations, which are also
provided in Table 1.

Table 1. Euro-CORDEX ensemble of 19 models with a resolution of 0.11◦, including the driving
global climate models (GCMs) for various regional climate models (RCMs). The abbreviations
of all GCM-RCM pairs are given, which are used in the following figures and text. In the last
column, information is provided on the validation process with assigned performance validation
characteristics: correlation of the annual cycle (AC), spatial correlation (SC) and spatial variability
(SV). Members of the CliChE are emphasized by ∗ (refer to the text for further details).

No. GCM RCM Abbreviation Passed Validation?

1 CNRM-CM5 ALADIN53 C-ALADIN �7 SC of the minimum temperature and SV of precipitation
2 CNRM-CM5 ALORO0 C-ALARO �7 missing meteorological elements (five)
3 CNRM-CM5 CLM4.8.17 C-CLM �7 AC and SC of precipitation; SC of the global radiation
∗ 4 CNRM-CM5 RCA4 C-RCA �3

5 EC-EARTH CLM4.8.17 E-CLM �3
6 EC-EARTH HIRHAM5 E-HIRHAM �3
∗ 7 EC-EARTH RACMO22E E-RACMO �3

8 EC-EARTH RCA4 E-RCA �3

9 GFDL-ESM2G REMO2015 G-REMO �7 SC of precipitation and global radiation

10 IPSL-CM5A-LR REMO2015 I-REMO �7 SC of precipitation and global radiation

∗ 11 IPSL-CM5A-MR RCA4 I-RCA �3

12 MOHC-HADGEM2-ES CLM4.8.17 H-CLM �7 AC of precipitation
13 MOHC-HADGEM2-ES HIRHAM5 H-HIRHAM �3
∗ 14 MOHC-HADGEM2-ES RACMO22E H-RACMO �3

15 MOHC-HADGEM2-ES RCA4 H-RCA �3
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Table 1. Cont.

No. GCM RCM Abbreviation Passed Validation?

∗ 16 MPI-ESM-LR CLM4.8.17 M-CLM �3
∗ 17 MPI-ESM-LR RCA4 M-RCA �3

18 MPI-ESM-LR REMO2009 M-REMO �7 SC of precipitation and global radiation

∗ 19 NCC-NORESM1-M HIRHAM5 N-HIRHAM �3

The RCM simulations were analyzed in two parts. The first entailed a historical run,
when the RCMs are driven by GCMs during the period beginning in the second half of the
20th century until 2005. Within the context of this study, the historical run is a validation
subject to reveal any potential errors due to the combination of GCMs and RCMs in
reproducing the main climate features over the observational period. Second, a scenario
was simulated, in which the RCMs are driven by GCMs following the future evolution
trend in greenhouse gas concentrations as described by the representative concentration
pathway scenario RCP8.5. Under this scenario, continuous growth in greenhouse gas
concentrations is expected throughout the entire 21st century, which is thus considered the
upper limit of the projected changes in climate variables. The following variables needed
for impact studies (with a focus on agriculture) were processed: air temperature (daily
mean, maximum and minimum values), precipitation, global radiation, 10 m wind speed
and relative humidity.

2.2. Validation Data

To evaluate the performance of the RCM simulations for the Czech Republic in the
recent past (1971–2005), station observations from the Czech Hydrometeorological Insti-
tute (CHMI), the national weather service of the Czech Republic, were applied. The station
data were processed in several steps before the validation process. At first, daily and
subdaily station data were quality controlled and homogenized according to the method
described by Štěpánek et al. [14,15]. Consequently, any missing station time-series data
were replaced with recalculated data from nearby stations, considering elevation and other
spatial parameters [14]. The final product of station data processing is referred to as the
station technical series (TS). The TS offers a daily time step and provides a significantly
improved version of the data relative to the original data or regional and global datasets
(e.g., from the Copernicus Climate Change Services). These regional or global datasets may
contain high biases in certain areas depending on how many station records are available for
their construction, and the data analysis remains superficial, e.g., during homogenization
with less metadata information available. In total, there are 268 TSs for the air temperature
(daily mean, maximum and minimum values), sunshine duration (recalculated into the
global radiation), 10 m wind speed and relative humidity. There are also 787 TSs for
precipitation since the Czech Republic hosts a dense network of precipitation stations.

The historical runs of the RCMs end in 2005, making it the designated end of the
validation period. There are variations in the historical runs of the RCMs, with some
models starting in the 1960s and others even as far back as the 1950s, but all of them
are ultimately available only since the 1970s. As a result, a validation period of 35 years
from 1971 to 2005 was utilized for the RCMs using TSs of the Czech Republic. This period
is still five years longer than the climatological normal period, and the main climatological
normal periods (1961–1990 or 1991–2020) cannot be applied in this case.

The stations of the TSs are part of an irregular network, while the RCMs are provided
at grid points at regular locations (a grid with a mesh size of 0.11◦). To validate the RCMs
against observations (TSs), i.e., to correlate the model grid points with relevant station
positions, there are two options: (i) fitting the RCM data at TS locations, or (ii) recalculating
the TSs at new positions to match the RCM grid. Different regridding methods can be
applied for this purpose. Several tests using either the nearest neighbor value method
or more complex spatial interpolation methods (e.g., regression kriging) were conducted
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considering both options mentioned. No significant differences were found between the
results of the interpolation methods and the nearest target locations (TSs and RCM grid
points) in the Czech Republic. Consequently, it was proceeded with option (i): the nearest
neighbor method was adopted as the main approach. It should be noted that the number
of RCM grid points in the Czech Republic is practically the same as the number of TSs for
precipitation measurements (approximately 800).

2.3. Methods for Validation

The aim of the validation process was to identify RCM simulations (or better, GCM-
RCM pairs) that show major discrepancies in the description of historical climate conditions.
In the model validation process, it is generally accepted that models with a low-quality
historical run may also perform poorly in estimations of future climate change, and vice
versa. Moreover, models that suitably capture current climate conditions will also suitably
capture future climate conditions. Four validation criteria were used: (i) reproduction of
circulation patterns; (ii) temporal correlation of the annual cycle; (iii) spatial correlation
of long-term summer and winter means and spatial variability of long-term annual and
seasonal means; and (iv) availability of the set of all meteorological elements needed for
the subsequent activities of impact studies, e.g., calculation of evapotranspiration based on
the FAO-56 Penman–Monteith approach [16].

Because of the uncertainty in the model results (future is not known), the statistics
for model evaluation must be assessed relative to other models. This suggests that if
all models attain similar low correlations, this does not affect the removal of any of the
models. However, when a given model attains a much lower correlation than other models,
it could then be concluded that the model achieves a limited performance (among the
processed models).

When any model exhibits a very poor performance in terms of one of the four criteria
for any meteorological element relative to the other models, this model should thus be
removed from further processing. If a model achieves poor performance for any meteo-
rological element (suggesting slightly poorer performance in this case vs. the very poor
performance in the former case) in terms of more than one of the four criteria or for more
than one meteorological element, this model should also be removed from the ensemble.
Notably, model performance assessment is prone to the subjective judgment of researchers
and requires experience, and this process should reflect the use of the model outputs in
subsequent impact studies.

2.3.1. Circulation Patterns

The capability of regional climate models for reproducing circulation patterns asso-
ciated with temperature extremes was assessed. With the use of daily mean sea level
pressure fields obtained from the National Centers for Environmental Prediction and the
National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset [17], three
circulation indices—flow strength, direction and vorticity—were calculated for a region
centered at 50◦ north latitude and 15◦ east longitude (representing the Czech Republic).
The daily values of the above circulation indices were classified into 11 circulation types:
eight directional (e.g., northwesterly), one strongly cyclonic, one strongly anticyclonic and
one unclassified. The full methodology and related equations were provided by Jenkinson
and Collison [18] and Plavcová and Kyselý (2011) [19].

In the next step, the promotion effect of each circulation type on the occurrence of
hot days (the summertime maximum temperature exceeds the 95th percentile value) was
analyzed using efficiency coefficients, which were calculated as ratios between the relative
abundance of the circulation type on hot days and the relative abundance in summer. This
procedure was applied to both the observed data and regional climate model simulations,
and the results were then compared. Moreover, summed differences across all circulation
types were calculated.
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2.3.2. Temporal Correlation of the Annual Cycle (AC)

For the TSs and all RCMs, monthly aggregate values for all years of the validation
period were calculated for each meteorological element. Specifically, for each month
(1 ≤ m ≤ 12; over all TSs and all years), the TSm value was calculated as the average over
all days within a given month m. Similarly, for a given RCM (over all grids and all years),
the RCMm value is the average over all days within a certain month. Thus, 12 monthly
values were obtained. Then, the AC was calculated as the Pearson correlation coefficient,
as follows:

r
(
(TSm)

12
m=1, (RCMm)

12
m=1

)
. (1)

2.3.3. Spatial Correlation (SC)

At each grid point (1 ≤ i ≤ n; in our case, n = 787 for the precipitation network and
n = 286 for the network of other meteorological elements), the average value of a given
meteorological element over the whole validation period for the TS data (TSi) and for
RCM data (RCMi) was calculated. Then, the SC was calculated as the Pearson correlation
coefficient, as follows:

r((TSi)
n
i=1, (RCMi)

n
i=1). (2)

Similarly, spatial correlations were calculated over seasons in which averages were
calculated only from values for a given season over the whole validation period. In the
validation process, average summer and winter SC values were also used since the models
exhibited different performance levels during different periods of the year. Summer and
winter seasons are sufficient for evaluation purposes. During the transition seasons, no
other different features were found.

2.3.4. Spatial Variability

The spatial variability was not calculated separately but investigated in conjunction
with the spatial correlation in the form of a Taylor diagram [20], which combines the root
mean square difference (RMSD) with the standard deviation (SD) and the Pearson correla-
tion coefficient in a single plot. To visualize all RCMs in a single Taylor diagram for a given
meteorological element, it is necessary to normalize the statistics, i.e., to calculate the nor-
malized SD and centered RMSD. The resulting Taylor diagram for the long-term seasonal
and annual climatology was analyzed, and potentially outlying RCMs were identified.

2.4. Bias Correction

The RCMs produce biased results, necessitating bias correction before using the model
outputs in other analyses, e.g., in impact models. Therefore, before the analysis of future
climate change signals, the RCMs were bias corrected using the distribution adjusting
by percentiles (DAP) method, which was described by Štěpánek et al. [21] and is based
on the quantile mapping approach of Déqué [22]. This correction method, based on
the adjustment in the individual percentiles of the empirical distribution, was compared
to other bias correction approaches, e.g., Gutiérrez et al. [23], and indicated to perform
very well. In contrast to other quantile-mapping methods, the selected bias correction
method focuses on a proper transfer function for the tails of distributions (representation
of extremes). The reference period was again set from 1971 to 2005.

The bias correction process was applied on a daily basis and for each TS location
separately. To ensure suitability for impact studies in which models are usually trained
on station data (because such data are available for the current climate), bias correction
was performed by determining the nearest grid points for a given location (station). Such
bias correction also entails the localization of the nearest grid point for the location of the
station used in a given pair. To better address the uncertainty resulting from the correction
process, bias correction was applied 5 times in the case of precipitation to 10 times in the
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case of other meteorological elements (i.e., applied to several neighboring stations), even if
in practice, only the first (nearest) neighbor is applied as the final correction step.

2.5. Center and Distance from the Center

At each grid point, the center of a given meteorological element over all models was
calculated as the seasonal average. The distance of a grid point from the center was then
calculated as the sum of the squares of the differences over all seasons. The distance of an
RCM from the center can then be obtained as the average distance over all grid points and
over all seasons.

Specifically, let M(S, G, Y) be the value of Model M for season S at grid point G in
year Y. Then, for the period from year Y1 to year Y2, the following can be obtained:

M(S, G, Y1, Y2) = AVGY2
Y=Y1

M(S, G, Y). (3)

Moreover, the center and standard deviation of the ensemble are

Center(S, G, Y1, Y2) = AVGM∈Models M(S, G, Y1, Y2), (4)

EnsembleSD(S, G, Y1, Y2) = SDM∈Models M(S, G, Y1, Y2). (5)

Then, the distance Dist(M) of Model M from the center can be calculated as follows:

Dist(M, Y1, Y2, G, S) =
M(S, G, Y1, Y2)− Center(S, G, Y1, Y2)

EnsembleSD(S, G, Y1, Y2)
, (6)

Dist(M, Y1, Y2) = AVGG∈Gridpoints

(
ΣS∈SeasonsDist(M, Y1, Y2, S, G)2

)
, (7)

Dist(M) =
Dist(M, 2021, 2040) + Dist(M, 2041, 2060)

2
. (8)

2.6. Methods for the Selection of Representative Models–CliChE

There may be relatively simple water balance or agroclimate models that can process
dozens of RCMs. In contrast, fully distributed hydrological models with high spatial
resolution would require excessive computational time, and thus, the use of a limited
number of input RCMs is preferable here. In such cases, the final selection must represent
the spread of all the original models.

From an ensemble of well-performing models, a subgroup that represents the entire
model ensemble (climate change envelope—CliChE) comprising only a few members can
be selected. For various purposes, various numbers of models in the CliChE were selected.
This approach follows the requirements of impact studies and depends on the complexity
of a given impact model. For these various purposes, several model selection options were
prepared, starting with one (central) model and continuing with ensembles of three, five
and up to seven models. The selection process was based on the RCP8.5 scenario runs and
bias-corrected data (with the TSs as the reference dataset) for the 2021–2060 period (aimed
at the middle of the 21st century).

The central model should represent centrality through several meteorological elements:
mean air temperature, precipitation and global radiation. Then, one of the warmest models
(i.e., the largest distance from the center with a mean air temperature higher than that of
the center) and one of the coldest models (i.e., the largest distance from the center with
a mean air temperature lower than that of the center) can be added, and if possible, the
conditions that one of the models is wetter than the central model (i.e., a precipitation
amount larger than that of the central model) and one of them is drier than the central
model (i.e., a precipitation amount smaller than that of the central model) can be fulfilled
at the same time. These models jointly create an ensemble of three models. Next, one of
the wettest models (i.e., the largest distance from the center with a precipitation amount
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larger than that of the center) and one of the driest models (i.e., the largest distance from
the center with a precipitation amount smaller than that of the center) can be added, and if
possible, one of these models can again be warmer than the central model (i.e., a mean air
temperature higher than that of the central model) and one of these models can again be
colder than the central model (i.e., a mean air temperature lower than that of the central
model). All of these models jointly comprise an ensemble of five models.

In the end, two other models that represent extremes can be added. One is given by
the largest number of tropical days (a daily maximum temperature equal to or greater than
30 ◦C), which is at the same time drier than the central model, and the other is given by the
largest number of days with a daily precipitation amount equal to or greater than 50 mm,
which is at the same time colder than the central model. This step creates an ensemble of
seven models.

Any new pair of models (selection of 3, 5 or 7 models) can be added to preserve the
balance of the models around the central model (i.e., having one model above and another
below the central model) for the mean air temperature and precipitation.

When there is no central model (the behavior of the models may change over a
century), or there are no other models with the above-mentioned properties, then the only
goal that may be achieved is the selection of a subset of models representing the entire
ensemble, i.e., reducing the ensemble size. However, in the case of the Euro-CORDEX
RCMs, it was possible to select models based on the proposed criteria.

In the end, a comparison of the entire ensemble of well-performing models to the
CliChE is provided for the mean air temperature, precipitation and global radiation via
the following statistics: mean, standard deviation and range. Specifically, let M(G, Y) be
the annual value of model M at grid point G in year Y. Then, for a period from year Y1 to
year Y2, the following can be obtained:

M(Y1, Y2) = AVGG∈Gridpoints

(
AVGY2

Y=Y1
M(G, Y)

)
. (9)

Over the given period, the mean of the ensemble can be calculated as

Mean(Y1, Y2) = AVGM∈Models M(Y1, Y2). (10)

The standard deviation can be obtained as

SD(Y1, Y2) = SDM∈Models M(Y1, Y2). (11)

The range can be calculated as

Range(Y1, Y2) = RangeM∈Models M(Y1, Y2). (12)

3. Results

In the following section, the RCM processing results are presented. First, models with
low skill scores were removed, and second, from the models suitable for the study area,
a subset of models (CliChE) was selected that preserved the statistical properties of the
original entire ensemble.

3.1. Removal of Models with Poor Performance from the Ensemble
3.1.1. Circulation Patterns

The first criterion considered in model performance evaluation was the representation
of circulation patterns in regard to hot days. The whole model ensemble could capture the
circulation mechanisms leading to high temperature extremes in summer, and no significant
differences in model performance were found.
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3.1.2. Correlation of the Annual Cycle

Furthermore, the AC was evaluated for all meteorological elements (Figure 2). Model
H-CLM yielded a negative AC for precipitation (−0.5), which suggests a very poor model
performance. Model C-CLM achieved a very low AC for precipitation (0.2) relative to
the other models, which again indicates poor model performance. In regard to the other
meteorological elements, no problems were found in terms of the AC.
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Figure 2. Temporal correlation of the annual cycle (AC) and spatial correlation (SC) as validation
characteristics of the global and regional climate model (GCM-RCM) pairs compared to the station
measurements (technical series) for the global radiation, air temperature (mean, minimum and
maximum values), precipitation, relative humidity and 10 m wind speed. The abbreviations of the
GCM-RCM pairs are given in Table 1.

3.1.3. Spatial Correlation and Variability

Then, the SC was evaluated (Figure 2). Models G-REMO, I-REMO and M-REMO
attained very low spatial correlations for the global radiation and precipitation (0.1–0.25),
which indicates poor performance for both meteorological elements. Upon detailed ex-
amination of the SV during the various seasons (Figure 3), precipitation has a low spatial
correlation in both summer and winter. Regarding radiation, low spatial correlations are
found mainly in summer. Moreover, I-REMO is an outlier model in terms of the SD for the
winter minimum temperature. Model C-ALADIN yields a very low SC for the minimum
temperature (0.45), which suggests poor model performance. Upon examination of the SV,
a problem mainly occurs in summer, including the spatial correlation and centered RMSD,
suggesting an outlier (Figure 3). The relative humidity shows the lowest spatial correla-
tion and the lowest SD (Figure 3), while in terms of summer precipitation, a low spatial
correlation is observed (0.4), which also indicates poor performance. The C-CLM model
exhibits low spatial correlations for precipitation (0.4) and global radiation in summer (0.3;
Figure 3). In regard to the other meteorological elements, there were no problems in terms
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of the SC based on the comparison of the different models. Model comparison is important
since there are very low SC values relative to the other meteorological elements, e.g., the
10 m wind speed, which was observed for all the analyzed RCMs.
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Figure 3. Taylor diagrams of the spatial variability of the global and regional climate model (GCM-
RCM) pairs: Pearson correlation coefficient, normalized standard deviation and centered root mean
square difference (cRMSD) for the precipitation and minimum air temperature in summer and winter,
the global radiation in summer and the annual relative humidity, in which problematic validation
characteristics are observed. The same symbols are used for the same RCMs, and the same color is
used for the same driving GCM. The abbreviations of the GCM-RCM pairs are given in Table 1.

3.1.4. Completeness of the Meteorological Elements

Regarding the C-ALARO model, only temperature and precipitation data were avail-
able. Furthermore, relative humidity data were not available for C-CLM, G-REMO, I-REMO,
H-CLM and M-REMO. It should be noted that the original relative humidity data could
not be downloaded for other models. Later, when relative humidity data became available,
the data were downloaded for the validated models. Thus, in the end, the availability of
relative humidity data was not a deciding factor for model removal.

3.1.5. Validation Summary

The above-mentioned results reveal that Models C-ALADIN, C-ALARO, C-CLM,
G-REMO, I-REMO, H-CLM, and MPI-REMO were removed from further processing, and
the remaining 12 models of the original ensemble were retained since they performed well.
The results are provided in Table 1.

3.2. Clustering of Model Pairs Based on Their Affiliation to RCMs vs. GCMs

The SV (Figure 3) indicates that the points in the Taylor diagrams that represent
individual models can be clustered into groups, where similarity follows for a given (same)
RCM rather than for the driving GCM. Therefore, it could be concluded that in the Czech
Republic, the RCM-simulated climate dominates the driving GCM climate, which is not
surprising since the Czech Republic occurs at the center of the RCM spatial domain (in the
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middle of Europe). In contrast, the GCM climate is manifested mainly at the borders of
the domain.

3.3. Selection of Representative Models for the CliChE

In the case of the Czech Republic, there are 12 well-performing models out of the
19 original RCMs from which the CliChE can be established. First, one model that is central
based on the mean air temperature, precipitation and global radiation was identified. This
task was conducted in such a way that models with a larger distance from the center
(Figure 4) were successively removed. Based on the distance in terms of the temperature,
the H-RACMO, C-RCA and E-CLM models were removed since they exhibited relatively
large distances. Then, based on the distance in terms of precipitation, the H-HIRHAM,
H-RCA and E-HIRHAM models were removed, and subsequently, based on solar radiation,
the E-RACMO, E-RCA and N-HIRHAM models were removed. In the end, only three
models, i.e., I-RCA, M-CLM and M-RCA, were left. Note that the same three models would
also remain if the models were removed differently, namely, applying a different order of
meteorological elements: removing one model by the mean air temperature, one model by
precipitation and one model by the global radiation and repeating this process three times.
These results confirm that the applied process is correct and sufficiently robust. Of the
three models left, M-RCA was selected as the central model since it showed the minimum
distance in terms of the temperature and global radiation and a similar distance in terms
of precipitation relative to the other two models. As a control meteorological element,
the relative humidity was used, for which the distances were not large and similar for all
three models.
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Figure 4. Distances of the models from the center of the entire ensemble of 12 well-performing global
and regional climate model (GCM-RCM) pairs for the mean air temperature, precipitation, global
radiation and relative humidity. The abbreviations of the GCM-RCM pairs are given in Table 1.

Because it was found that the same RCMs of the GCM-RCM pairs produced similar
SV values, a requirement for the diversity of RCMs was included in the selection process.

The characteristics considered during warmest and coldest model selection included
the change in the future mean air temperature (Figure 5) and the distance from the center
of all models (Figure 4). Models very far from the center were chosen as much as possible,
such as H-RACMO (order 2), which is warm (and wetter than the central model), and
M-CLM (order 3), which is cold (and drier than the central model). At the same time,
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precipitation (Figure 5) was considered by confirming that one of the two distant models in
terms of the temperature was wetter than the central model and that the second model was
drier than the central model. Note: This is a very convenient situation since the selection of
only three models yields an envelope for the remaining meteorological elements (at the
same time, these are the most important ones in terms of their frequency of usage): air
temperature and precipitation.
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Figure 5. Estimated climate change as the average differences over 20-year periods from the average
reference period (1981–2005) for the mean air temperature in degrees Celsius, the number of tropical
days and the number of days with precipitation amounts equal to or greater than 50 mm and as
precipitation and global radiation ratios to the reference period values. The global climate models
(GCMs) are plotted in gray, while the global and regional climate model (GCM-RCM) pairs are
marked in different colors. The green points indicate the observed climate changes in the Czech
Republic represented by the station measurements (technical series). The GCM-RCM pairs are
numbered based on their membership in the climate change envelope (CliChE); details are given in
the text and listed in Table 2.

Assigning a subset of five models requires adding wet and dry models. The models
chosen were C-RCA (order 4), which is wet, and E-RACMO (order 5), which is dry. Again,
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the characteristics considered included the change in precipitation under the future climate
conditions (Figure 5) and the distance from the center of all models (Figure 4). Models with
a large precipitation distance from the center were identified as much as possible. At the
same time, the mean air temperature (Figure 5) was considered by confirming that one of
the two distant models in terms of precipitation was warmer than the central model and
that the other one was colder than the central model. However, in this case, it was not
possible to find any models fulfilling these criteria. As such, the chosen models occurred
near the central model in terms of temperature.

Finally, a search for two additional models was performed to complete the selection
of the subset of seven models. Here, models were identified that could characterize the
original ensemble in regard to the extremes. The models fulfilling this criterion were the
I-RCA model (order 6), with the largest number of tropical days during the first half of
the 21st century (warmer during the mid-21st century and drier than the central model),
and the N-HIRHAM model (order 7), with the largest number of days with an extreme
precipitation equal to or more than 50 mm (colder and wetter than the central model).

The selected models for the CliChE are listed in Table 2, with their order in the CliChE
and their attributes. These models are also noted in Table 1.

Table 2. Climate change envelope (CliChE) for the Czech Republic based on the seven regional and
global climate model pairs with their order in the CliChE and their attributes.

Order Model Model Attributes

1 MPI-ESM-LR
RCA4

Central model; this represents the center in projections of
the mean air temperature and precipitation.

2 MOHC-HADGEM-ES
RACMO22E

This is the warmest and at the same time a wetter model
than the central model.

3 MPI-ESM-LR
CLM4.8.17

This is the coldest and at the same time a drier model than
the central model.

4 CNRM-CM5
RCA4

This is one of two wettest models over the 2041–2060
period, and it exhibits a wet trend till the end of the
21st century. It occurs near the central model in terms of
the mean air temperature.

5 EC-EARTH
RACMO22E

During the first half of the 21st century, this is the driest
model, after which it converges with the central model. It
occurs near the central model in terms of the temperature.

6 IPSL-CM5A-MR
RCA4

This is one of the warmest models, mainly during the first
half of the 21st century, and it has the largest number of
tropical days. During the first half of 21st century, it is a
drier model, and during the second half, it is a wetter
model than the central model.

7 NCC-NORESM1-M
HIRHAM5

This is a colder and wetter model than the central model. It
exhibits the largest number of days with a precipitation
amount equal or greater than 50 mm. It also has the
highest frequency of rainy days (amount ≥ 1 mm). It
consists of a unique RCM in the CliChE.

A comparison of the entire ensemble of well-performing models to the CliChE is
given in Table 3 for the 2021–2040 and 2041–2060 periods. There were no significant
differences between these two ensembles, which confirms that the described methodology
is appropriate and that the results are robust.
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Table 3. Comparison of statistics in the mean air temperature, precipitation and global radiation for
the entire ensemble of well-performing models relative to the CLiChE for 2021–2040/2041–2060 (in
the table, values for both periods are shown separated with a backslash).

Meteorological
Element Ensemble Mean Standard

Deviation Range

Mean air temperature
in ◦C

(daily annual mean)

CliChE 8.83/9.62 0.41/0.54 [8.40, 9.52]/[9.03, 10.40]

Entire
ensemble 8.96/9.73 0.37/0.49 [8.40, 9.52]/[9.03, 10.40]

Precipitation
in mm

(annual sum)

CliChE 731.7/766.6 26.0/20.2 [694.3, 778.0]/[742.0, 797.7]

Entire
ensemble 732.8/759.7 25.3/19.0 [686.7, 778.0]/[738.6, 797.7]

Global radiation
in W ·m−2

(mean daily sum)

CliChE 2753/2747 59 / 72 [2692, 2851]/[2652, 2869]

Entire
ensemble 2751/2734 54/60 [2691, 2851]/[2651, 2869]

4. Discussion
4.1. Scale-Based Uncertainty of Climate Models

The evaluation of climate models against the observed data is crucial to any use of
climate models. This is particularly important when climate models are used to project
future climate conditions, and these projections are then used on the input of decision-
making processes, e.g., planning and fulfillment of adaptation and mitigation policies. The
validation is at the same time a crucial part of the presented methodology to narrow the
ensemble of Euro-CORDEX RCM simulations in the Czech Republic. Although climate
models can perform generally well across their entire domain [24], they can exhibit signif-
icantly higher errors on a local scale or over a specific region [13]. Even if an agreement
between model outputs and reality is acceptable on a large scale, on fine spatial scales,
where adaptation strategies need to be planned, the uncertainty increases and may reach
tens of percentage points, which already brings some difficulties. For instance, an RCM
wet bias of 100 mm per year over the Czech Republic (as follows from the RCMs processed
within this study) accounts for approximately 15% of the long-term mean annual precipi-
tation (668 mm). By considering that the average runoff in the Czech territory reaches on
average approximately 192 mm per year (i.e., 29% of precipitation), the wet bias accounts
for more than half of this amount. Applying these values within the Budyko space and
assuming no significant changes in vegetation landcover [25], an increase in runoff by at
least 30% could be expected, and the remaining part of the bias could be attributed to
evapotranspiration. Such a high bias could compromise detailed planning of technical
adaptation measures, such as building water reservoirs, and could indicate a relatively
optimistic future in terms of plant production. Nevertheless, the main take-home message
is that the uncertainty is so high that any adaptation measures must be very robust overall
and tailored to address extremes rather than long-term states [26].

4.2. Model Weights

A combination of models represents one of the options to obtain representative prob-
abilistic estimates of climate change within the Czech Republic. By assigning weights to
individual RCMs [8–10], reflecting their performance gained during the validation process,
it is expected to obtain better results in comparison to a simple aggregation. The weights
were calculated as the average of the exponential weights obtained from the AC and SC
for mean air temperature, precipitation, and global radiation. The weights based on the
precipitation and global radiation, compared to those based on the mean air temperature,
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showed higher uncertainty. The highest variability resulted from the AC for precipitation
and a lower variability resulted from the SC for the global radiation and precipitation
(Figure 2). For the models that passed the validation process, the estimated values of the
weights ranged from 7.9 to 8.7%. This suggests that all the RCMs were assigned very similar
weights, and weighting of the RCMs thus yielded a negligible effect overall. Therefore, it
is better to use equal weights for all RCMs, which avoids an introduction of additional
uncertainty in the ensemble. This conclusion is also supported by the findings of other
researchers [27].

For the evaluation of the climate change signal in some future period, a combination
of all suitable models using arithmetic or weighted average (or individual quantiles) is
a valid approach. In the case of impact studies, however, daily data are usually utilized
in the models. Unfortunately, as follows from the character of climate models, it is not
feasible to combine climate model projections on a daily time scale into one daily time
series. This leads to a solution where a single impact projection is obtained using input
from a single climate model, and this approach is repeated with other climate models to
obtain the matrix of impact model projections. Then, the impact model outputs can be
combined, again, using arithmetic average or by applying model weights. However, this is
an extremely costly strategy, given by the high number of climate model simulations on
the input of impact modeling (e.g., 19 in the case of Euro-CORDEX RCMs). Therefore, it is
needed to limit the number of input simulations for impact modeling. This is where the
proposed strategy of CliChE is focused—to limit the number of RCMs while preserving the
properties of the entire RCM ensemble.

In the case of monthly data instead of daily data, the approach of Chhin and Yoden [28]
may be applied, which offers either weighted or unweighted cases, and validation of the
models is based on the summation of rank, Euclidean distance of the cluster analysis,
and that of empirical orthogonal function analysis. Besides a temporal resolution, this
approach differs also in the spatial one—it was applied to GCMs. On the other hand, it
shows, in general, a very similar approach to validation and narrowing an originally large
model ensemble.

4.3. Comparison of RCMs with Their Driving GCMs

Even though models were carefully validated and selected from a larger ensemble, this
cannot guarantee that the results will yield correct estimates of future climate change. The
projected changes in the mean air temperature, precipitation, global radiation and other
important meteorological elements may differ across various model ensembles [29–33].
In Europe, the most prominent difference between RCM and GCM projections is the
reduction in summer warming, as obtained by RCMs [34] accompanied by a smaller
decrease in precipitation and a smaller increase in the global radiation in RCMs than those
in GCMs [31]. The differences between RCMs and GCMs deserve more attention, which is
beyond the scope of this article, and they are described in detail elsewhere [33]. Here, we
only emphasize that while climate change in mean air temperature RCM simulations is part
of the changes simulated by GCMs (even if under a lower margin—with lower estimates),
regarding precipitation and global radiation, the estimated trends do not coincide (Figure 5).

Generally, RCMs yield the same amount of precipitation in summer but generate
increased amounts in winter and spring over the current levels, which may lead to, among
other factors, higher winter and spring run-off levels as determined by hydrological mod-
els [35,36]. RCMs predict, on an annual basis, compared to GCMs, wetter future climate
conditions, lower global radiation and smaller increase in the mean air temperature [37].
Such conditions could lead to an ideal state for vegetation. This, combined with other
factors, such as much lower actual precipitation in recent years than the simulated precipi-
tation, leads us to conclude that RCMs, in their current version (Euro-CORDEX with the
driving GCMs of CMIP5), are not a suitable source of information on the future climate be-
cause they contradict observed trends. Such a statement is valid at least in our study region
of Central Europe, which is specific in that it occurs in a transient zone [6,37]. In contrast,
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these discrepancies resulting from RCMs are not found for GCMs, which predict more
frequent and severe droughts connected with higher temperature, higher potential evap-
otranspiration and lower precipitation levels in the future [38]. The selection of a model
ensemble is thus crucial to the overall results of any consequent analysis (e.g., within impact
studies). The uncertainty related to the choice of the model ensemble (regional versus
global models; CMIP5 or CMIP6 generation) or downscaling strategy (dynamical versus
statistical downscaling) is often larger and more important than the spread of individual
simulations, e.g., in the RCM ensemble.

4.4. Applicability of the Method

The presented method of narrowing the Euro-CORDEX ensemble was primarily
designed for local impact studies within the Czech Republic, but there are not known any
obstacles that would hinder its application, e.g., for the entire European domain. The same
is valid for the presented method of the validation of the Euro-CORDEX ensemble. At
least the validation part with SC and SV can be applied universally, for example, for all of
Europe. The AC should be applied better only on local scales, since on a European scale,
for example, the level of averaging (smoothing) is high and we work with information that
is too coarse. Both presented methods can also be applied to other model ensembles (e.g.,
GCMs). Once the new Euro-CORDEX simulations based on the CMIP6 GCMs become
available, it is planned to run the same procedure to define a new set of representative
RCMs for assessing the impact of climate change in the Czech Republic.

5. Conclusions

In this study, we introduced a new method to narrow a large ensemble of climate model
simulations for application in climate impact modeling in a cost-effective way while keeping
the uncertainty range in the entire climate model ensemble. It is a two-step approach that
combines the validation of climate models against observed data using several test criteria,
and the selection of individual climate models according to their projected climate change
signals and position in the entire ensemble. Both steps, validation and model selection,
were described and demonstrated on an example at the area corresponding to the territory
of the Czech Republic. An emphasis was placed on the selected meteorological elements
and their indices that are important inputs for impact modeling.

The validation revealed 7 RCMs (out of a total of 19 from Euro-CORDEX ensemble)
that do not qualify for the selection process. The main issues of RCMs excluded from the
ensemble were related to the poor annual cycle and spatial correlations and variability
in the representation of the current climate conditions in the Czech Republic. One RCM
was also excluded due to missing data for meteorological elements. On the other hand,
the evaluation based on the circulation criteria did not identify any RCM that would be
significantly worse and could be removed from the ensemble.

Twelve RCMs were entering the second step, which led to the selection of the subset of
a total of seven RCMs that represent the uncertainty in the entire twelve-member ensemble.
From this subset, even smaller subsets of five or three RCMs or only one RCM were
proposed for cases where the impact models cannot run all of the seven models.

The proposed climate model validation and selection methods are robust and suffi-
ciently general to be used for narrowing other ensembles of climate model simulations
over various world regions. It ensures that only the well-performing climate models are
taken for further impact modeling. It thus limits the cost of consequent impact studies
and preserves, at the same time, the corresponding uncertainty of the original ensemble of
well-performing climate models.
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G.; Moriondo, M.; et al. Expected effects of climate change on the production and water use of crop rotation management
reproduced by crop model ensemble for Czech Republic sites. Eur. J. Agron. 2022, 134, 126446. [CrossRef]

14. Stepanek, P.; Zahradnicek, P.; Huth, R. Interpolation techniques used for data quality control and calculation of technical series:
An example of a Central European daily time series. Idojaras 2011, 115, 87–98.

15. Stepanek, P.; Zahradnicek, P.; Farda, A. Experiences with data quality control and homogenization of daily records of various
meteorological elements in the Czech Republic in the period 1961–2010. Idojaras 2013, 117, 123–141.

16. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO
Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.

17. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The
NCEPNCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [CrossRef]

https://esgf.llnl.gov/nodes.html
http://doi.org/10.1002/wcc.95
http://dx.doi.org/10.1002/wcc.148
http://dx.doi.org/10.1029/2018JD030094
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://interactive-atlas.ipcc.ch/
http://dx.doi.org/10.1175/JCLI-D-19-0953.1
http://dx.doi.org/10.5194/esd-11-995-2020
http://dx.doi.org/10.1175/JCLI-D-14-00364.1
http://dx.doi.org/10.1080/02626667.2015.1131899
http://dx.doi.org/10.1016/j.jhydrol.2023.129607
http://dx.doi.org/10.1016/j.eja.2021.126446
http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2


Atmosphere 2023, 14, 1442 18 of 18

18. Jenkinson, A.F.; Collison, F.P. An Initial Climatology of Gales Over the North Sea. In Synoptic Climatology Branch Memorandum No.
62; Meteorological Office: Bracknell, UK, 1977.

19. Plavcová, E.; Kyselý, J. Evaluation of daily temperatures in Central Europe and their links to large-scale circulation in an ensemble
of regional climate models. Tellus 2011, 63A, 763–781. [CrossRef]

20. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.
[CrossRef]
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