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Abstract: This paper presents a novel mapping prediction method for surface solar radiation with
linear regression models. The dataset for surface solar radiation prediction is the daily surface
incoming shortwave radiation (SIS) product from CM SAF SARAH-E. The spatial resolution is
0.05◦ × 0.05◦ and the temporal coverage is from 2007 to 2016. The first five years (2007–2011) are used
as training data, and the remaining five years (2012–2016) are used as test data in the prediction model.
Datasets were detrended, de-seasonalized, and normalized before being applied to multiple linear
regression (MLR), principal component regression (PCR), stepwise regression (SR), and partial least
squares regression (PLSR), which are used to perform prediction mapping. The statistical analysis
using MAE, MSE, and RMSE shows that the PCR model had the smallest MAE, MSE, and RMSE
as compared to the other three models. The PCR model seems better for SSR mapping prediction
over Reunion Island. Although the PCR model provides better prediction results, its MAE, MSE, and
RMSE are quite large.

Keywords: surface solar radiation; linear regression model; principal component analysis; map-
ping prediction

1. Introduction

Reunion Island is a French overseas territory that lies at 21◦06′ South and 55◦32′ East.
Figure 1 shows the global horizontal irradiance (GHI) (kWh/m2) distribution on Reunion
Island [1]. The annual sunshine on Reunion Island is in the range of 1400–2500 h and
can reach a value of 2900 h at altitudes lower than 400 m. The monthly daily radiation
reaches more than 6.5 kWh/m2 during the austral summer season in some parts of the
coastal region (altitude < 300 m). Daily insulation is characterized by a strong evolution
due to orographic cloud formations on the mountains. The two main applications of solar
energy in Reunion are solar water heating and photovoltaic electricity (PV). And Reunion
is actively engaged in the development and promotion of solar thermal and PV energy
through various action plans and programs in the context of sustainable development, such
as GERRI, PRERURE, and so on, because of its solar energy potential [2].

Before making use of the abundant solar energy for electricity generation, it is neces-
sary to evaluate and predict how much surface solar radiation we could obtain, especially
given the complex geography and few ground observation stations over Reunion Island [3].
There were many different solar energy forecasting methods applied in previous studies.
Gueymard evaluated the performance of broadband direct irradiance predictions through
investigation of nineteen models selected from a literature survey [4]. According to [5],
Boata and Pop used Takagi-Sugeno fuzzy algorithms to estimate daily global solar irradia-
tion with the station data of Timisoara. Calinoiu et al. proposed a clear-sky solar irradiance
mode based on atmospheric parameters at five stations [6]. Either those studies focused
on numerical weather prediction methods or they used ground-based or satellite image
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techniques. More and more researchers are conducting deep learning to predict surface
solar radiation or its direct/diffuse parts [7].Oyewola et al. [8] made a global solar radiation
prediction for the Fiji Islands based on empirical models. Bamisile et al. compared machine
learning and deep learning algorithms for hourly global/diffuse solar radiation predictions
and applied these models to four different locations in Nigeria [9]. An evolutionary robust
solar radiation prediction model based on WT-CEMDAN (wavelet transform and complete
ensemble empirical mode decomposition with adaptive noise) and IASO-optimized (im-
proved atom search optimization) outlier robust extreme learning machines was proposed
by Zhang et al. [10]. A hybrid deep learning CNN-REGST method where a convolutional
neural network was integrated with a dual-stage stacked regression followed by a support
vector machine to predict the daily global solar radiation was proposed by Ghimire et al.,
and this model was tested on six solar energy farms in Queensland, Australia [11]. An arti-
ficial neural network (ANN) and a recurrent neural network (RNN) model were developed
in the Pang et al. study to investigate the performances of the deep learning algorithms
for the solar radiation prediction [12]. Samuel et al. provided a statistical analysis of
the efficiency of real-time solar systems simulated numerically and probabilistically as a
renowned approach for beam, diffuse, and global solar radiation prediction in Southern
African and Middle Eastern countries [13]. The studies above mostly predicted one or a
few of the stations’ surface solar radiation but did not focus on an “area”. Those studies
mostly had enough observational data, or the study area was not overly complex. And their
prediction results could not present a big picture of the surface solar radiation’s distribution.
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There have been some studies on solar radiation forecasting that have also focused
on Reunion Island. Diagne et al. used a weather research and forecasting (WRF) model to
forecast day-ahead solar radiation in one year covering Reunion Island [14]. Boata et al.
used numerical weather prediction with thermodynamic variables as predictors to forecast
the solar radiation over Reunion Island [5]. Lauret et al. proposed a benchmarking of su-
pervised machine learning techniques to forecast the global horizontal solar irradiance [15].
Li et al. conducted the prediction of daily surface solar radiation maps for Reunion Island
via a hybrid approach that combines principal component analysis, wavelet transform
analysis, and ANN [16,17]. In this study, a novel mapping prediction method of surface
solar radiation with linear regression models is proposed over Reunion Island. This method
could be seen as another test of mapping prediction like [16,17].

This paper is organized as follows: Section 2 describes the surface solar radiation
dataset used in this study and the methodology of the 1-day-ahead SSR mapping predic-
tion. Section 3 presents the results of data pre-processing. Section 4 is dedicated to the
presentation and discussion of the prediction results, which are then briefly summarized in
Section 5.
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2. Dataset and Methodology
2.1. Global Solar Radiation from CM SAF

The dataset for surface solar radiation prediction is the daily surface incoming short-
wave radiation (SIS) product from CM SAF surface solar radiation data records for Heliosat-
East (SARAH-E), which are based on observations from the METEOSAT-East satellites [18].
The spatial resolution is 0.05◦ × 0.05◦, and the temporal coverage is from 2007 to 2016. The
mean of absolute bias (standard deviation) against reference ground measurements of the
Baseline Surface Radiation Network for the daily mean of SIS is 15.3 (21.1) W/m2 [19]. In
this study, the first five years (2007–2011) were used as training data, and the remaining
five years (2012–2016) were used as test data in the prediction model.

2.2. Methodology for the 1-Day-Ahead SSR Mapping Prediction

There are many studies on the SSR prediction model that are based on one-site time
series prediction (univariate or multivariate model). The goal of the present work is to build
a spatio-temporal multivariate model for mapping prediction. Each pixel of the Reunion
map could be predicted. Therefore, our new concept for 1-day-ahead SSR prediction was
to combine spatial and temporal correlation for building a set of daily maps using SSR
daily satellite data (CM SAF@5 km). As the 10 years (2007–2016) of SIS data were used for
the prediction, the first step was to conduct data pre-processing, which included checking
the missing data, detrended and de-seasonalized data, and principle component analysis
(PCA) decomposition. Then, the PC was used as input to conduct predictions using the four
linear regression models: multiple linear regression (MLR), principal component regression
(PCR), stepwise regression (SR), and partial least squares regression (PLSR). In the end, the
predicted SIS could be obtained, and the re-mapping of the distribution SIS could directly
show the performance of the prediction models. The methodology is presented in the
flowchart in Figure 2.
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In this study, multiple linear regression (MLR), principal component regression (PCR),
stepwise regression (SR), and partial least squares regression (PLSR) are used to perform
prediction mapping, which are described in the following briefly:

(1) Multiple Linear Regression (MLR)

In simple linear regression, a single predictor variable X is used to model the response
variable Y. However, in many applications, there is more than one factor that influences the
response. MLR models thus describe how a single response variable Y depends linearly on
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a number of predictor variables. A MLR model with k predictor variables X1, X2, . . ., Xk
and a response Y can be written as:

y = β0 + β1x1 + β2x2 + . . . βkxk + ε (1)

where β0, β1, β2, . . ., βk are coefficients and ε is the residual term of the model.
The MLR could be thought of as an extension of simple linear regression.

(2) Principal Component Regression (PCR)

PCR is a technique for analyzing multiple regression data that suffers from multi-
collinearity. In PCR, a principal component analysis (PCA) is conducted on the design
matrix, and then the first k principal components are used to conduct the regression.

(3) Stepwise Regression (SR)

Stepwise regression is an automated tool used in the exploratory stages of model
building in order to identify a useful subset of predictors. In each step, a variable is
considered for addition to or subtraction from the set of explanatory variables based on
some prespecified criterion. The main approaches include: (1) forward selection, which
involves starting with no variables in the model, testing the addition of each variable
using a chosen model fit criterion, adding the variable whose inclusion provides the
most statistically significant improvement of the fit, and repeating this process until none
improves the model to a statistically significant extent; (2) backward elimination, which
involves starting with all candidate variables, testing the deletion of each variable using a
chosen model fit criterion, deleting the variable whose loss provides the most statistically
insignificant deterioration of the model fit, and repeating this process until no further
variables can be deleted without a statistically significant loss of fit; and (3) bidirectional
elimination, a combination of the above, testing at each step for variables to be included
or excluded.

(4) Partial Least Squares Regression (PLSR)

PLSR is a powerful and frequently applied technique used in multivariate statistical
process control when the process variables are highly correlated. It is a technique that
reduces the predictors to a smaller set of uncorrelated components and performs least
squares regression on these components instead of on the original data. PLSR is especially
useful when the predictors are highly collinear or when there are more predictors than
observations, and ordinary least-squares regression either produces coefficients with high
standard errors or fails completely. PLSR does not assume that the predictors are fixed,
unlike MLR. This means that the predictors can be measured with error, making PLSR
more robust to measurement uncertainty.

A regression model needs a set of predictors and predictands, as we know. In this
study, the satellite data used to perform prediction is from SARAH-E (CM SAF @5 km),
which covers Reunion Island with 360 pixels. In this sense, there is a large set of predictors
and predictands. Building a prediction model with satellite data is not easy when the
number of variables increases. It would require a large amount of CPU time to perform the
regression process. Finding a way to reduce the size of the dimension set of the variables
could be the first step in the analysis. There are many methods of dimension reduction.
Some of these are principal component analysis (PCA), canonical correlation analysis
(CCA), kernel PCA, and k-nearest neighbor (k-NN) [20]. PCA is commonly used in climate
research as a tool to analyze meteorological fields with high spatio-temporal dimensionality.
PCA aims at finding a new set of variables that captures most of the observed variance
from the data through a linear combination of the original variables [21–23]. In this paper,
PCA was chosen to conduct the dimension reduction.
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3. Data Pre-Processing
3.1. Checking the Missing Data

The SARAH-E satellite data (CM SAF) were used to perform the 1-day-ahead pre-
diction for surface solar radiation (SSR) over Reunion Island. The domain used for the
prediction was 55.05 E~56 E, −21.55 S~−20.70 S, which covers Reunion Island, as shown in
Figure 3. Because the 10 years of data were from satellite and there were not many missing
days, the days for which we did not have records have been removed.
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Figure 3. The seasonal mean and standard deviation of SSR in summer, winter, and inter-season from
2007 to 2016 (10 years) over Reunion Island.

From Figure 4a,c,e,h, the obvious seasonal variability can be observed. The austral
summer season (DJF: December–January–February) obtains more SSR than the austral
winter season (JJA: June–July–August) over the whole island. During the inter-season
(MAM: March–April–May and SON: September–October–November), there is more SSR
over the northeast coast than over the inland area because, in this period, strong thermal
and wind inversion occurs [24]. Turbulent flow and cloud activities over the island are thus
exclusively vertical in the boundary layer.
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3.2. Daily Scale: Detrended and De-Seasonalized Data

The total amount of solar irradiation received at one place on the Earth’s surface and
at a given latitude varies daily and seasonally. In order to overcome these two-time scale
variabilities in each day, a filtering process was applied to the GHI dataset for de-trending
and de-seasonalizing. The adjusted seasonal index method, which is a simple and convenient
pre-processing method was used [25]. Let G(m,d) be GHI solar radiation observed at time m
(m ∈ [07 : 00− 18 : 00]) and day d (d ∈ [1/1/2007− 31/12/2016]). The steps to compute the
de-seasonalized GHI time series using the adjusted seasonal index method is as follows:

Step 1—Compute G(d) , which is the GHI daily mean:

G(d) =
1
M∑M

m=1 G(m, d) (2)
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Step 2—Compute the modified GHI time series Gm(m, d) by dividing the original time
series G(m, d) by its daily mean:

Gm(m, d) =
G(m, d)

G(d)
(3)

where G(d) is the GHI daily mean computed in step 1.

Step 3—Compute G(m), which is the GHI climatological daily mean of the modified
GHI time series Gm(m, d ):

G(m) =
1
D ∑D

d=1 Gm(m, d) (4)

Step 4—Compute AF, the adjusted factor of G(m) :

AF =
∑M

m=1 G(m)

M
(5)

Step 5—Compute the deseasonalized adjusted GHI time series Gda(m, d) by dividing the
modified GHI time series Gm(m, d) (computed in Step 2) by the GHI climatologically daily
mean G(m) (computed in Step 3), corrected by the adjusted factor AF (computed in Step 4):

Gda(m, d) = AF
Gm(m, d))

G(m)
. (6)

The adjusted seasonal index method above has been used in this study; however, the
results obtained present a low correlation coefficient (0.2~0.3) between 2 days. Based on
this consideration, it is not practical to apply it to our satellite dataset (CM SAF). Thus, only
normalization has been conducted for pre-processing.

3.3. Dataset Normalization

Normalization is the process of restructuring a relational database in accordance with a
series of so-called normal forms in order to reduce data redundancy and improve data integrity.
It was first proposed by [26]. If there is a dataset with various values or large differences
between them, then it is better to obtain a more compact dataset through normalization.
Normalization reduces dispersion of the collected data in order to obtain better results. Before
performing the prediction, the training and test datasets were normalized. Figures 5 and 6
show examples of the original and normalized GHI time series separately.
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3.4. PCA Decomposition

There were four linear regression models used in this study, as mentioned above: SR,
MLR, PCR, and PLSR. (1) SR: the first 3 days’ daily GHI in the domain area (all the grid
points) are the independent variables in this linear model, and the dependent variable is
the 4th day’s daily GHI in the domain area (all the grid points); (2) MLR: the independent
variables are the first 3 days’ daily GHI at each grid point of the domain, and the dependent
variable is the 4th day’s daily GHI at each grid point of the domain; (3) PCR: each PC
obtained from the PCA analysis of GHI data is the independent variable, and the predicted
PC is the dependent variable; (4) PLSR: each PC obtained from the PCA analysis of GHI
data is the independent variable, and the predicted PC is the dependent variable.

PCA was applied to the GHI data in 2007~2016 in order to obtain the PCs. The PCs that
could explain 95% of the variance were used as independent variables, and the predicted
PCs are the dependent variables as output in the linear model. The first 5 PCs with their
empirical orthogonal function (EOF) modes for the SSR data in 2007~2016 from CM SAF
(SARAH-E@5km) are presented in Figure 7. EOF provided us with both the spatial and
temporal patterns of the dominant modes of variability. The explained variance (%) of each
PC is shown in Figure 8, and 43 PCs together can explain 95% of the variance. In Figure 7, it
was observed that the leading 3 modes of EOF explained 61%, 6%, and 6% of the variance
separately, and the first PC provides a greater contribution for SSR over Reunion Island.
And these three PCs provide obviously different spatial distributions of SSR over Reunion
Island: the first EOF mode showed more (less) SSR over the northwest (southwest) part;
the second EOF mode showed more (less) SSR over the north (south) part; and the third
EOF mode showed more (less) SSR over the northeast (southwest) part.
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4. Prediction Results
4.1. Prediction Results with Four Linear Regression Models

Four linear regression models: SR, MLR, PCR, and PLSR were used in this study
to predict SSR in 2007~2016 over Reunion Island. The 5 years of 2007–2011 were used
as the training data and the 5 years of 2012~2016 as the test data. Figure 9 presents the
goodness of fitting in a plot of prediction against observation (left panel) and comparing
the daily prediction with observation (right panel) at one grid point over Reunion, for
example, for the four linear regression models of 2012~2016. From this one grid point, the
four models provide different predictions compared to the observations. For this one grid
point, it can be seen at first that the PCR prediction model fits better with the observations.
Even though the PCR predicted less SSR in the summer seasons than was observed, it
provides a very accurate value in the winter seasons compared to SR (MLR/PLSR), which
provides a relatively poor prediction for both summer and winter. Thus, PCR provides
better prediction results than the other three models.

The re-mapping was conducted for the predicted data for spatial comparison over the
whole island. The 3rd of July and the 31st of December 2016 were taken as two examples
to show the mapping results (Figures 10 and 11). These 2 days stand for the winter and
summer seasons and could reflect the character of seasonal variability. The top mapping in
Figures 10 and 11 represents the observations, and the other four mappings in the bottom
are the prediction mapping results from four linear regression models separately: SR, MLR,
PCR, and PLSR.
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Figure 9. The goodness of fitting in a plot of prediction against observation (left panel) and comparing
the daily prediction with observation (right panel) at one grid point in 2012~2016 over Reunion (W/m2).
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In Figure 10, SR, MLR, PCR, and PLSR predictions all could present the obvious less
SSR over the volcano area (Piton de la Fournaise) and the Cirque de Salazie compared to
the observation on 3 July 2016. The four models show similar spatial variability of SSR
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over the other areas of the island, and it seems that the PCR model provides a closer SSR
distribution (more SSR) over the southern coastal line as observed.

Figure 11 shows the observation of SSR on the 31st of December 2016 and the prediction
due to the SR, MLR, PCR, and PLSR models, respectively. All four prediction models
present more (less) daily SSR over the northeast (three cirques and the volcano) area
compared to the observation.

Figure 12 shows the multi-annual mean of daily SSR mapping prediction with SR,
MLR, PCR, and PLSR models in 2012~2016 compared to the observation. Four prediction
models could all present more (less) daily SSR over the northeast (three cirques and the
volcano) area as the observation in the next 5 years. PCR seems to provide less difference
compared to the observations than the other models.

Atmosphere 2023, 14, x 14 of 17 
 

 

  
Figure 11. The SSR prediction mapping with four different linear regression methods against the 
original mapping (W/m2) on 31 December 2016. 

Figure 11 shows the observation of SSR on the 31st of December 2016 and the predic-
tion due to the SR, MLR, PCR, and PLSR models, respectively. All four prediction models 
present more (less) daily SSR over the northeast (three cirques and the volcano) area com-
pared to the observation. 

 

 

  

Atmosphere 2023, 14, x 15 of 17 
 

 

  
Figure 12. The multi-annual mean of daily SSR mapping prediction with SR, MLR, PCR, and PLSR 
models in 2012~2016 compared to the observations. 

4.2. Score Evaluation: MAE, MSE, and RMSE 
Based on the mapping prediction results with four linear regression models (SR, 

MLR, PCR, and PLSR), the statistical analysis using MAE, MSE, and RMSE was con-
ducted. Table 1 lists the calculations for the four models. Table 1 shows that the PCR model 
had the smallest MAE, MSE, and RMSE compared to the other three models. The PCR 
model seems to be better for SSR mapping prediction over Reunion Island. Although the 
PCR model provides better prediction results, it can be seen that (MAE, MSE, and RMSE 
are quite large) the method was not quite accurate. Therefore, it is necessary to find a way 
to improve the accuracy of this prediction method. 

Table 1. Statistics of linear regression models. 

 MAE (W/m2) MSE RMSE (W/m2) 
SR 1.142 × 10³ 2.15× 106 1.47 × 10³ 

MLR 1.00 × 10³ 1.58× 106 1.26 × 10³ 
PCR 7.97 × 102 9.24× 105 9.61 × 102 
PLSR 1.11 × 10³ 1.93× 106 1.39 × 10³ 

5. Conclusions and Discussion 
In this paper, a novel mapping prediction method for surface solar radiation with 

four linear regression models: MLR, PCR, SR, and PLSR, over Reunion Island, was used 
as a case study. Ten years of the SIS CM SAF SARAH-E dataset (0.05° × 0.05°), from 2007 
to 2016, were first detrended, de-seasonalized, and normalized, then analyzed with PCA 
to obtain the input for the prediction models. Four linear regression models in the predic-
tion were compared, which showed that SR, MLR, PCR, and PLSR predictions all pre-
sented obviously less SSR over the volcano area (Piton de la Fournaise) and the Cirque de 
Salazie compared to the observation. The four models showed similar spatial variability 
of SSR over the other areas of the island, and it seems that the PCR model provided closer 
SSR distribution (more SSR) over the southern coastal line, as observed. 

All four prediction models presented more (less) daily SSR over the northeast (three 
cirques and the volcano) area compared to the observation. The multi-annual mean of the 
daily SSR mapping prediction with SR, MLR, PCR, and PLSR models for 2012~2016 com-
pared to the observation shows that the four prediction models could all present more 
(less) daily SSR over the northeast (three cirques and the volcano) area than the observa-
tion during 2012~2016. PCR seems to provide less difference compared to the observations 
than the other models. The statistical analysis using MAE, MSE, and RMSE shows that the 
PCR model had the smallest MAE, MSE, and RMSE compared to the other three models. 

Figure 12. The multi-annual mean of daily SSR mapping prediction with SR, MLR, PCR, and PLSR
models in 2012~2016 compared to the observations.



Atmosphere 2023, 14, 1331 15 of 17

4.2. Score Evaluation: MAE, MSE, and RMSE

Based on the mapping prediction results with four linear regression models (SR, MLR,
PCR, and PLSR), the statistical analysis using MAE, MSE, and RMSE was conducted.
Table 1 lists the calculations for the four models. Table 1 shows that the PCR model had
the smallest MAE, MSE, and RMSE compared to the other three models. The PCR model
seems to be better for SSR mapping prediction over Reunion Island. Although the PCR
model provides better prediction results, it can be seen that (MAE, MSE, and RMSE are
quite large) the method was not quite accurate. Therefore, it is necessary to find a way to
improve the accuracy of this prediction method.

Table 1. Statistics of linear regression models.

MAE (W/m2) MSE RMSE (W/m2)

SR 1.142 × 103 2.15× 106 1.47 × 103

MLR 1.00 × 103 1.58× 106 1.26 × 103

PCR 7.97 × 102 9.24× 105 9.61 × 102

PLSR 1.11 × 103 1.93× 106 1.39 × 103

5. Conclusions and Discussion

In this paper, a novel mapping prediction method for surface solar radiation with four
linear regression models: MLR, PCR, SR, and PLSR, over Reunion Island, was used as a
case study. Ten years of the SIS CM SAF SARAH-E dataset (0.05◦ × 0.05◦), from 2007 to
2016, were first detrended, de-seasonalized, and normalized, then analyzed with PCA to
obtain the input for the prediction models. Four linear regression models in the prediction
were compared, which showed that SR, MLR, PCR, and PLSR predictions all presented
obviously less SSR over the volcano area (Piton de la Fournaise) and the Cirque de Salazie
compared to the observation. The four models showed similar spatial variability of SSR
over the other areas of the island, and it seems that the PCR model provided closer SSR
distribution (more SSR) over the southern coastal line, as observed.

All four prediction models presented more (less) daily SSR over the northeast (three
cirques and the volcano) area compared to the observation. The multi-annual mean of
the daily SSR mapping prediction with SR, MLR, PCR, and PLSR models for 2012~2016
compared to the observation shows that the four prediction models could all present more
(less) daily SSR over the northeast (three cirques and the volcano) area than the observation
during 2012~2016. PCR seems to provide less difference compared to the observations than
the other models. The statistical analysis using MAE, MSE, and RMSE shows that the PCR
model had the smallest MAE, MSE, and RMSE compared to the other three models. The
PCR model seems better for SSR mapping prediction over Reunion Island. Although the
PCR model provided better prediction results, its MAE, MSE, and RMSE were quite large.
Therefore, it is necessary to find a way to improve the accuracy of this prediction method in
the future. At the same time, this study was an exploration to test linear regression models’
capability for SSR mapping prediction. For Reunion Island’s complex terrain, geographical
location, and abundant energy resources, and to solve the limitations of this study a novel
method will be used in future work.
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