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Abstract: Reproducing complex phenomena with simple models marks our understanding of the
phenomena themselves, and this is what Jack Herring’s work demonstrated multiple times. In that
spirit, this work studies a turbulence shell model consisting of a hierarchy of structures of different
scales `n such that each structure transfers its energy to two substructures of scale `n+1 = `n/λ. For
this model, we construct exact inertial range solutions that display intermittency, i.e., absence of self-
similarity. Using a large ensemble of these solutions, we investigate how the probability distributions
of the velocity modes change with scale. It is demonstrated that, while velocity amplitudes are
not scale-invariant, their ratios are. Furthermore, using large deviation theory, we show how the
probability distributions of the velocity modes can be re-scaled to collapse in a scale-independent
form. Finally, we discuss the implications the present results have for real turbulent flows.

Keywords: turbulence; intermittency

1. Introduction

Constructing simple models that reproduce the phenomenologically complex be-
haviour of fluid flows has always been a driving force in turbulence research and is
a direction in which Jack Herring’s work excelled. There are numerous works in his career
explaining complex phenomena in fluid dynamics with simplified models [1–13]. In par-
ticular, the energy cascade in scale space is a phenomenon that has met various modeling
approaches in the literature, such as direct interaction approximation [1,5,14–16], eddy
damping quasi-normal Markovian models [17–20] energy diffusion models [21,22], and
shell models [23–26]. Such models have led to predictions about the direction of cascade,
the power-law exponents of the energy spectra, and intermittency. Intermittency that still
escapes a firm quantitative understanding manifests itself as a deviation from self-similarity
and from the prediction obtained on purely dimensional grounds. In particular, shell mod-
els have been used to study intermittency for many years now. Their simplicity has enabled
examining asymptotically large Reynolds numbers and merits various rigorous analytical
studies [27–32]. Recent reviews can be found in [33–35]. Typically, shell models quantify
all structures of a given scale ` by a single real or complex amplitude U`. As such, spatial
intermittency that is linked to the appearance of rare but extremely intense structures can-
not be captured this way. Nonetheless, the temporal variation of the modes Ul does display
intermittency, as has been demonstrated by many models [24–26,36]. This type of intermit-
tency has been recently linked to the fluctuation dissipation theorem [37]. Furthermore,
a solvable (but not energy-conserving) model was also derived and studied in [38].

In the spirit discussed in the first paragraph, we here construct and study a binary
tree shell model for turbulence that displays intermittency. In this model, energy at each
scale is split between multiple different structures. Each structure transfers its energy into
two smaller-scale structures, building a binary tree structure as shown in Figure 1. In this
way, the number of structures increases exponentially as smaller scales are reached. Such
models with binary structure were introduced in the 1990s but have not been investigated
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extensively [39–41]. Here, we follow a similar analysis as in [42], where stationary solutions
of non-binary shell models were investigated. We demonstrate that such analysis allows
the construction of exact stationary solutions that display intermittency.
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Figure 1. A sketch of the two-branch (µ = 2) shell model. Each node marked by blue circles represents
one dynamical mode of amplitude Un,m marked by the two indexes n, m, where n characterises the
scale `n = `0λn and m characterises the number of the mode in that scale. In each scale n, there are
Mn = µn−1 modes. The red line indicates one possible path on which energy cascades.

2. Multi-Branch Shell Models

We consider the evolution of a turbulent flow modeled by the real amplitudes Un,m of
structures of scale `n = 1/kn where

kn = λnk0 or `n = `0/λn (1)

and 1 < λ. At scale `1, there is one structure whose amplitude is given by U1,1; this
structure will transfer its energy to µ ∈ N structures of scale `2, each one of which will
transfer its energy to µ structures of scale `3 and so on, as shown in Figure 1 for µ = 2.
The volume of each structure is given by Vi = `D

n , where D is the spatial dimension. If the
cascade process is space-filling, the number of substructures µ is related to λ and D by

λD = µ. (2)

Accordingly, at energy scale `i, we have Mn = µn−1 (with M0 = 1) structures so that
if we consider N such scales we have a total of

Z = 1 +
N

∑
n=1

Mn =
µN − 1
µ− 1

+ 1 (3)

structures. The energy of every structure is given by

En,m =
1
2

ρU2
n,mVn =

1
2

ρU2
n,m`

D
n (4)
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so the total energy is given by

E =
1
2

N

∑
n=0

1
Mn

Mn

∑
m=1

U2
n,m (5)

where ρ is from now on taken to be unity.
In the Desnianskii and Novikov model [23], structures of scale `n interact with only

structures of scale `n+1 and `n−1, and there is no branching µ = 1. The amplitudes Un then
follow the following dynamical equation:

U̇n = akn[Un−1Un−1 − λUnUn+1] + bkn[UnUn−1 − λUn+1Un+1]− νk2Un + Fn (6)

For ν = 0 and Fn = 0, this system conserves the energy (5) (with Mn = 1) for any
value of a, b. The flux of energy across a scale `n is given by:

Πn = aknUnUn−1Un−1 + bknUnUnUn−1. (7)

The Desnianskii and Novikov model [23] is the simplest energy-conserving model
one can consider. Since its construction, more complex models have been designed that
include more distant mode couplings and complex amplitude modes. The newer models
display chaotic dynamics and also conserve more invariants than just the energy. The most
popular ones are the SABRA and the GUY model [24–26,36]. A comparison of the two
can be found in [34]. Although these models are more realistic, here, we are going to keep
the structure of the Desnianskii and Novikov model [23] because its simplicity allows for
analytical treatment.

Expanding on the Desnianskii and Novikov model, allowing each structure to branch
out to two (µ = 2) smaller-scale structures Un,m results in the following dynamical equation:

U̇n,m = akn

[
Un−1,m∗Un−1,m∗ −

λ

2
(
Un,mUn+1,m′ + Un,mUn+1,m′+1

)]
+ (8)

bkn

[
Un,mUn−1,m∗ −

λ

2
(
Un+1,m′Un+1,m′ + Un+1,m′+1Un+1,m′+1

)]
−νk2

nUn,m + Fn,m

where ν is the viscosity, Fn,m is the forcing, and a, b are again free parameters. The branching
diagram for the model given in (9) is provided in Figure 1. The integers m′ and m′ + 1
correspond to the index of scales `n+1, with which the mode Un,m is linked where m′ is
explicitly given by m′ = 2m − 1 and m∗ corresponds to the index of scale `n−1 linked
to Un,m given by m∗ = Int[(m + 1)/2], as illustrated in the left panel of Figure 2. For
ν = 0, Fn,m = 0, and, for any value of a, b, the system conserves the energy (5), where now
Mn = 2n−1. The energy flux Πn,m through a scale `n and structure (n, m) expressing the
rate energy from the large scales (i < n) is lost to the smaller scales (i ≥ n) through the
structure m due to the non-linearity, which is given by

Πn,m = aknUn,mUn−1,m∗Un−1,m∗ + bknUn,mUn,mUn−1,m∗ (9)

The total flux through scale `n is then given by

Πn =
1

Mn

Mn

∑
m=1

Πn,m (10)

Conservation of energy by the non-linear terms implies that, at scales smaller than the
forcing scale and larger than the dissipation scale (`ν), the flux Πn is constant and equal to
the energy injection/dissipation ε
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Πn = ε, 1 < n� nν (11)

where `ν = (ν3/ε)1/4 and nν = logλ(`1/`ν).

Figure 2. The basic interactions of the mode Un,m for the two-branch Desnianskii and Novikov model.

The range 1 < n � nν, where forcing and viscous effects can be neglected, is called
the inertial range.

In Figure 3, we plot the energy spectra U2
n,m as a function of n with blue dots, while the

red dots indicate the averaged value U2
n = (∑m U2

n,m)/Mn from a realisation of a simulation
of Equation (9) performed with N = 14, λ = 21/3 forced at n = 1, while the amplitude
of the mode n = 0 was kept fixed at U0,1 = 0. The forcing for this simulation was
constant in time and random initial conditions were used. The spectra were calculated
a few turnover times after the initialization. At that time, the amplitudes Un,m appear to
be very dispersed even for the same value of n. The averaged value follows power law
close to the Kolmogorov scaling U2

n ∝ k−2/3
n , although individual U2

n,m can vary orders of
magnitude from this mean value. This indicates that higher-order statistics can deviate
from the dimensional analysis spectrum. If the simulation is carried over to longer times,
there is a slow synchronisation between same n modes for large n such that Un,m attain
similar values for all m. This effect is due to viscosity and has been noted in previous
works [40,41] and is referred to as phase synchronisation. It can be avoided if additional
interaction terms between same n modes are added. Here, we do not add this further
complexity and consider only interactions as depicted in Figure 2 and focus only on the
inertial properties.

100 101
kn
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10−2

10−1

100

U
2 n,
m

0 100 200
m

10−7

10−5

10−3

10−1

U
2 n,
m
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Figure 3. Energy spectrum from numerical simulations of the model (9). In the left panel, the red
points correspond to Un,m averaged over m for a given n while the blue points correspond to Un,m for
all n, m. The right panel displays Un,m as a function of m for n = 9.
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The present model is computationally expensive as its complexity increases as 2N . As
a result, it is not easy to obtain a long inertial range (large N) to investigate the resulting
power-law behaviours numerically. On the other hand, its simplicity allows for analytical
treatment, which is what we are examining in the next section by constructing exact inertial
range solutions of arbitrary large n.

3. Inertial Range Intermittent Solutions

We look for stationary solutions of Equation (9) in the inertial range where forcing and
dissipation can be ignored. Stationarity implies that, for any n, m:

0 = a
[

Un−1,m∗Un−1,m∗ −
λ

2
(
Un,mUn+1,m′ + Un,nUn+1,m′+1

)]
+ b

[
Un,mUn−1,m∗ −

λ

2
(
Un+1,m′Un+1,m′ + Un+1,m′+1Un+1,m′+1

)]
(12)

The way we proceed to find such a solution is the following: given Un−1,m∗ and
Un,m, we look for Un+1,m′ and Un+1,m′+1 such that the equation above is satisfied; then,
we proceed to the next scale and search for Un+2,2m′−1 and Un+2,2m′ and so on, finding
a recursive relation that provides all Un,m. The solutions only depend on the relative
amplitude of Un,m, so we define their normalised ratio as

rn,m =
Un,mλ1/3

Un−1,m∗
(13)

To simplify the notation, we denote

r = rn,m, x = rn+1,m′ y = rn+1,m′+1 and b = cλ1/3 (14)

and then stationary solutions of (12) satisfy

0 = U2
n,mλ2/3

(
a
[

1
r2 −

1
2
(x + y)

]
+ c
[

1
r
− 1

2

(
x2 + y2

)])
(15)

which simplifies to

(
x +

a
2c

)2
+
(

y +
a

2c

)2
= 2

(
a

cr2 +
1
r
+

a2

4c2

)
. (16)

which has real solutions only if

0 ≤ a
cr2 +

1
r
+

a2

4c2 = R2. (17)

The solutions (x, y) form a circle in the x, y plane centered at (−a/2c,−a/2c) and
with radius R depicted in the right panel of Figure 4. It is important to note that any
point (x, y) in this circle is a solution of (16), and thus we have multiple possible solutions.
The condition (17) is satisfied for positive r, a, c, which will be the focus of the present
investigation. Returning to the rn,m notation, the values of rn+1,m′ and rn+1,m′+1 that satisfy
the stationarity condition can be written in full generality as

rn+1,m′ = − a
2c

+
√

2 cos(θn,m)

√
a

cr2
n,m

+
1

rn,m
+

a2

4c2 (18)

rn+1,m′+1 = − a
2c

+
√

2 sin(θn,m)

√
a

cr2
n,m

+
1

rn,m
+

a2

4c2 (19)



Atmosphere 2023, 14, 1316 6 of 13

where θn,m is arbitrary. Equations (18) and (19) form a recurrence relation out of which,
given r1,1 and a choice of θn,m, one can construct all rn,m. Then, given rn,m, one can obtain
Un,m based on (14) as

Un,m = U1,1 r1,1 r2,m1 r3,m2 . . . rn,m (20)

where m1, m2, . . . are the m one crosses along the path from (1,1) to (n, m) as shown by the
red line in Figure 1. This recurrence relation, however, does not always lead to bounded
solutions of rn,m. For some values of θn,m, the resulting x, y can be negative or zero. Negative
values can lead to un-physical solutions with negative flux from the small to the large scales.
If the flux Πn,m is negative for some (n,m), then the sum of the flux of the “daughter” nodes
Πn+1,m′ + Πn+1,m′+1 has to be negative and equal to Πn,m and so on for their “daughter”
nodes. There would then exist at least one descendant at each scale with negative flux,
and this can only be realised if there is a source of energy at the very small scales, which
is un-physical. Negative flux stationary solutions are thus not accepted. Furthermore,
if x or y is zero, it means that the particular branch is zero for all subsequent values
(i.e., all descendants). We need thus to limit the choice of θ so that positive and finite rn,m
are obtained.

y

x

Figure 4. A plot of all admissible solutions x, y of (16). The red line shows the ones chosen for a given
choice of ∆θ.

The simplest case is obtained by choosing θn,m = π/4. It corresponds to an equal part
of energy being distributed to the left and the right branch and leads to the Kolmogorov
solution rn,m = 1 or in terms of the velocity Un,m = λn/3) (where U1,1 = 1 is assumed). It
corresponds to a finite flux non-intermittent (self-similar) solution.

Intermittency, however, can manifest itself if we chose θn,m 6= π/4 so that energy is
not equally distributed in the left and right branch. Here, we will chose θn,m randomly with
uniform distribution in the range θmin = π/4− ∆θ < θn,m < π/4 + ∆θ = θmax for a given
∆θ < π/4, as shown in red in Figure 4. Then, it can be shown that, for c > a, there exists
rmax > rmin > 0 such that, for all r ∈ (rmax, rmin), both x ∈ (rmax, rmin) and y ∈ (rmax, rmin).
For c ≤ a, the recurrence relation converges either to rn,m = 0 or rn,m = ∞ and we are
going to limit ourselves only to the c > a case here. To obtain rmax, rmin, one needs to
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note that, from the recurrence relation (19), the largest value of rn+1,m′ = rmax is obtained
when θ = θmax and rn,m = rmin, while the smallest value of rn+1,m′ = rmin is obtained when
θ = θmin and rn,m = rmax. This leads to the following relations

rmax = − a
2c

+
√

2 cos(θmin)

√
a

cr2
min

+
1

rmin
+

a2

4c2 (21)

rmin = − a
2c

+
√

2 cos(θmax)

√
a

cr2
max

+
1

rmax
+

a2

4c2 . (22)

We arrive at exactly the same relations if we examine Equation (19).
We solved Equations (21) and (22) numerically and the results are shown in the left

panel of Figure 5 for three different values of c/a. For ∆θ = 0, only the Kolmogorov
solution is allowed with rmax = rmin = 1. As ∆θ = 0 increases, rn,m cover a wider range of
values up until a critical value of ∆θ = ∆θc for which rmin becomes zero and rmax diverges.
The value of this critical angle as a function c/a is shown in the right panel of the same
figure. ∆θc is zero for c/a = 1 and grows for larger values approaching ∆θc = π/4 as
c/a→ ∞ (not demonstrated here).
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m
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0.10

0.15
Δθ

c/π

Figure 5. Left: The minimum and maximum value of r as a function of ∆θ. Right: The critical value
of ∆θ for which rmax diverges as a function of c/a.

For any given choice of ∆θ < ∆θc, we can construct an ensemble of exact solutions of
the present model by following the recurrence relations (18) and (19), picking each time
randomnly θn,m ∈ (π/4− ∆θ, π/4 + ∆θ) and reconstructing Un,m by Equation (20). We
note that, other than c/a, the only other parameter that controls the ensemble of solutions
considered is ∆θ/∆θc, which provides a measure of how much our ensemble deviates from
the Kolmogorov solution ∆θ = 0. This process has direct links with the random cascade
models studied in the past [43–45]; however, we need to note that, unlike the random
cascade models, the solutions found here are energy-conserving.

4. Statistical Behaviour and Intermittency

In this section, we examine a large ensemble of the exact solutions shown in the
previous section and investigate their properties. For our investigation, we have set
c/a = 2 and we consider only a single path (as the one shown in red in Figure 1) and not
the full tree. The differences in the statistics between the two choices (single path and full
tree) lie in the cross correlations between different modes that are not captured in the single
path. As an example, we mention that the flux Πn in Equation (10) is identically equal to ε
for every realisation, while the flux Πn,m given in Equation (9) fluctuates and only its mean
value is equal to ε

〈Πn,m〉 = Πn = ε.
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Along such path, we consider three different ensembles for ∆θ/∆θc = 0.1, 0.5, 0.9,
each one composed of 107 different solutions. The solutions were constructed by picking
randomly θn,m for each node examined, from a uniform distribution between π/4− ∆θ
and π/4 + ∆θ. The value of n varied from n = 1 to n = 200. We note that, if the full tree
was investigated instead of a single path for such large value n, it would require to solve
for 2200 degrees of freedom, which is computationally unattainable.

In the top panels of Figure 6, we plot the probability distribution function (PDF)
PU(Un,m) of the variable Un,m for the three values of ∆θ/∆θc = 0.1, 0.5, 0.9 (from left to
right) and different values of n. The PDFs of different values of n do not seem to overlap,
although the x-axis has been normalised by the Kolmogorov prediction λ−1/3. Instead, as
large values of n are reached, the PDFs display larger tails, reaching values of Un,m much
larger and much smaller than their mean values. The closer ∆θ is to the critical value ∆θc,
the larger this deviation is. On the other hand, the PDFs Pr(rn,m) of the ratios rn,m that are
displayed in the lower panels of Figure 6 do not display such widening. For sufficiently
large n, all PDFs collapse to the same functional form that depends only on the choice of
∆θc. This implies that, while Un,m are not self-similar under scale transformations, their
ratios rn,m are!
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Figure 6. Top panels: PDFs PU(Un,m) of the velocity modes Un,m for the three different ensem-
bles (left ∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5, and right ∆θ/∆θc = 0.9) for different values of n.
Bottom panels: PDFs Pr(rn,m) of the velocity ratios rn,m for the same ensembles and the same n.

The same behaviour can be observed for the energy fluxes Πn,m. In the top panels
of Figure 7, we plot the PDFs PΠ of Πn,m for the same values of ∆θ and n as in Figure 6.
As with the velocity amplitudes Un,m, as n is increased, the PDFs of Πn,m widen without
collapsing to an n-independent form. In the lower panel of the same figure, we plot the the
PDFs Pπ(πn,m) of the flux ratio πn,m. It is defined as

πn,m =
Πn,m

Πn−1,m∗
(23)

after a little algebra and using (9) and (18) leads to

πn+1,m′ = 1 + f (rn,m) cos(2θn,m) (24)
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where f (r) = 1 + (a/2c)2r2/(a/c + r). The flux ratio, much like the velocity ratio rn,m,
does converge to an n-independent PDF as large values of n are reached. Furthermore, the
functional form of this PDF appears to be flat, limited by a minimum and a maximum value
of πn,m. This appears to be so because f (r) in (24) varies little with r for small variations in
r and the variations in πn,m are mostly controlled by the variations in θn,m.
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Figure 7. Top panels: PDFs PΠ(Πn,m) of the fluxes Πn,m for the three different ensembles
(left ∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5, and right ∆θ/∆θc = 0.9) for different values of n.
Bottom panels: PDFs Pπ(πn,m) of the velocity ratios πn,m for the same ensembles and the same n.

Given that the PDFs of rn,m and πn,m arrive at an n-independent form, a large n has
some implications for the evolution in n of the PDFs PU , PΠ. Both Un,m and Πn,m can be
written as a product of all rn′ ,m and πn′ ,m with n′ ≤ n. As a result, the logarithms of Un,m
and Πn,m can be written as

ln(Un,m) = ln(U1,1) + nLU , ln(Πn,m) = ln(Π1,1) + nLΠ (25)

where LU and LΠ stand for the mean value of the logarithms of rn,m and πn,m, respectively:

LU =
1
n

n

∑
n′=1

ln(rn′ ,m), and LΠ =
1
n

n

∑
n′=1

ln(πn′ ,m). (26)

The properties of Un,m and Πn,m remind of the random cascades studied in the past [43–45].
However, while the random cascade models were not conserving energy, in the present
model, energy is conserved exactly. Another important difference here is that rn′ ,m and πn,m
are not independent but each one depends on the value of the previous one. Nonetheless,
we can proceed assuming such independence, although not entirely correct. In that case,
PU and PΠ can be reconstructed using large deviation theory [46]. In this framework, LU
and LΠ follow for large n a distribution of the form

PLU (LU) ∝ exp[−nIU(LU)], and PLΠ(LΠ) ∝ exp[−nIΠ(LΠ)] (27)

where IU and IΠ are called the rate functions that can in principle be obtained from Pr and
Pπ using the Legendre–Fenchel transform [46]. Here, we limit ourselves in noting that, if
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PLU and PLΠ follow the form of Equation (27), then the distributions of Un,m and Πn,m that
are linked to LU and LΠ by (25) should take the form

PU(Un,m) ∝ exp
[
−nIU

(
1
n

ln
(

Un,m

U1,1

))]
, PΠ(Πn,m) ∝ exp

[
−nIΠ

(
1
n

ln
(

Πn,m

Π1,1

))]
(28)

where only the largest terms in n are kept. To test this prediction, we plot in Figure 8
(PU/P∗U)1/n as a function (Un,m/U∗)1/n (top panels) and (PΠ/P∗Π)1/n as a function
(Πn,m/Π∗)1/n, where U∗ and Π∗ correspond to the value at which the probability obtains
its maximum P∗U , P∗Π. With this normalization, the PDFs both for Un,m and for Πn,m collapse,
indicating that the large deviation principle works well for this model.
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Figure 8. Top panels: PDFs PU(Un,m) for the different cases examined normalised using the pre-
dictions of large deviation theory (left ∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5, and right ∆θ/∆θc = 0.9).
Bottom panels: The same for the PDFs PΠ(Πn,m).

As a final look at the intermittency problem, we display in the top panels of Figure 9
the first ten structure functions Sp(`p) defined as

Sp(`n) =
〈

Up
n,m

〉
(29)

where the angular brackets stand for ensemble average. The structure functions have
been normalised by the Kolmogorov scaling to emphasise the differences. The structure
functions are fitted to power laws

Sp(`n) ∝ `
ζp
n (30)

and the measured exponents ζp are plotted in the lower panels of Figure 9. The exponents
show similar behaviour, with real turbulence displaying larger values for p < 3 and smaller
values for p > 3, while the exact result ζ3 = 1 is satisfied. It is worth noting that the
deviations from the Kolmogorov scaling are not universal but depend on our choice of
ensemble, which is controlled by ∆θ.



Atmosphere 2023, 14, 1316 11 of 13

10−21 10−16 10−11 10−6 10−1
ℓn

100

S p
/ℓp

/3
n

p=1
p=2
p=3
p=4
p=5

p=6
p=7
p=8
p=9
p=10

10−21 10−16 10−11 10−6 10−1
ℓn

100

101

102

103

S p
/ℓp

/3
n

p=1
p=2
p=3
p=4
p=5

p=6
p=7
p=8
p=9
p=10

10−21 10−16 10−11 10−6 10−1
ℓn

102

105

108

S p
/ℓp

/3
n

p=1
p=2
p=3
p=4
p=5

p=6
p=7
p=8
p=9
p=10

0 5 10
p

−0.006

−0.004

−0.002

0.000

ζ p
−
p/
3

0 5 10
p

−0.15

−0.10

−0.05

0.00
ζ p

−
p/
3

0 5 10
p

−0.4

−0.2

0.0

ζ p
−
p/
3

Figure 9. Top panels: Structure functions up to 10th order for the three different values of ∆θ

examined (left ∆θ/∆θc = 0.1, center ∆θ/∆θc = 0.5, and right ∆θ/∆θc = 0.9). Bottom panels: The
resulting exponents ζp.

5. Discussion and Conclusions

One can argue that the exact stationary solutions obtained in this work have little
to do with real turbulence that displays chaotic spatio-temporal dynamics. This may be
true and multi-branch models with two neighbour interactions as in [39–41] that display
chaotic dynamics should be investigated instead. The present results, however, do point to
a clear instructive demonstration of how intermittency can appear in realistic flows and
how it can be modeled. Furthermore, it leads to a series of clear messages that are described
below that are of great use in future turbulence research and can guide measurements in
numerical simulations and experiments.

First, we note that intermittency appearing in stationary fields found here comes in
contrast with the typical shell model studies in single-branch models for which intermit-
tency comes from the temporal dynamics alone as only a single structure exists for each
scale `n. In the latter case, intermittency has been linked to the temporal dynamics through
the fluctuation dissipation theorem [37]. In reality, both temporal and spatial dynamics
contribute to the presence of intermittency and their role needs to be clarified.

In the present model, randomness comes from our choice of θn,m and the resulting
intermittency depends on that choice. In reality (or in more complex shell models), such
randomness comes from local chaotic dynamics that need to studied in order to clarify
which processes lead to enhanced cascade and with what probability. Multi-branch models
based on the more complex GOY or SABRA as proposed in [39–41] can help in this direction.
The additional coupling terms introduced in these works avoid phase synchronization and
lead to chaotic dynamics. Chaos can remove the arbitrariness of the choice of θ that should
ideally be self-imposed by the dynamics.

Perhaps the most interesting implication of this work is that it suggests new ways
to plot data from experimental and numerical simulations. One way suggested by this
work is, instead of focusing on the PDFs of velocity differences, experimental or numerical
data could focus on the PDFs of ratios of velocity differences. The latter are shown in this
work to become scale-independent and could lead to more precise measurements. An
alternative way is to re-scale the PDFs of velocity differences using the large deviation
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prediction (27), as was conducted in Figure 8. Of course, realistic data n ∝ ln(L/`n) are not
precisely defined and an optimal choice should be searched for.

A good model of a complex phenomenon, in the authors’ opinion, is not one that
quantitatively reproduces experimental measurements through parameter fitting but rather
one that unravels the processes involved. In that respect, we believe that the present model
and results are very fruitful. We only hope that this work comes close to the standards
set by Jack Herring. A.A. met Jack Herring during his ASP post doc in 2004–2006. Jack is
fondly remembered stopping by the offices of post docs just to see if they are OK. He will
be greatly missed.
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