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1. Introduction

Accurate and timely fog forecasts are needed to support decision making for various
activities which are critically affected by low visibility conditions. The societal impact of
fog has significantly increased in recent decades, due to increasing air, marine, and road
traffic, as well as the emergence of solar power as a source of renewable energy. In fact,
the financial costs related to fog have become comparable to the losses from other weather
events, such as storms [1]. Low visibility levels in fog lead to delays in air travel, hazardous
navigation in crowded waterways and ports, and unsafe traffic conditions on roadways.
More recently, information on fog is required for the applications of solar energy production
and autonomous driving. Therefore, improved decision support systems tailored to a wide
range of activities that are impacted by fog are needed more than ever. At the core of
such systems, improved nowcasting (minutes to hours) and forecasting (hours to days)
techniques for fog onset, severity, and dissipation are necessary. Further refinement of
numerical weather prediction (NWP) models, new observation platforms and observational
networks, and advanced analysis capabilities offered by artificial intelligence and machine
learning algorithms all represent potential sources of improvement for next-generation
fog predictions. Each of these approaches offer possibilities, but they also have their
own limitations in providing forecasts with added value to decision makers. One aspect
representing a significant challenge and requiring further attention is the capability of
providing clear and reliable information on forecast uncertainty. Several aspects of these
capabilities and challenges are discussed in this review.

This Special Issue, in particular, provides an overview of recent advances in the
development of decision support systems, and their related components, for fog nowcasting
and forecasting. The contributions highlight the use of different approaches (e.g., data-
driven techniques, NWP models and ensemble forecasting systems, artificial intelligence
and machine learning algorithms), either used individually or in combination (i.e., blending
information from various sources), for generating improved fog predictions. We would
like to thank all of the authors who contributed to this Special Issue for their hard work in
creating the material contained within, as well as for considering the revisions based on the
reviewers’ comments. We also thank the reviewers for their constructive comments and
suggestions. All of these contributions serve as key elements in this review to provide a
fresh perspective on the state of the art of fog decision support systems and the remaining
challenges to the production of useful fog predictions.

2. Why Is Fog Forecasting So Challenging?

Despite advances in atmospheric science research, fog forecasting remains challenging,
as several physical and chemical processes are involved, along with many non-linear

Atmosphere 2023, 14, 1314. https://doi.org/10.3390/atmos14081314 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14081314
https://doi.org/10.3390/atmos14081314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-8511-0553
https://orcid.org/0000-0002-7704-5974
https://orcid.org/0000-0003-1313-0878
https://doi.org/10.3390/atmos14081314
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14081314?type=check_update&version=1


Atmosphere 2023, 14, 1314 2 of 13

interactions. The consequence is difficulty in developing comprehensive and reliable
forecast models. The main factors that make fog forecasting difficult are described below.

1. Atmospheric stability: The stability of the atmosphere can impact the onset and
subsequent development of fog. For example, the onset phase of radiation fog is
typically associated with a stable surface layer, while the mature phase is associated
with unstable or neutral atmospheric conditions within the boundary layer. During
the LANFEX fog field experiment in England, Price et al. (2018) [2] showed that
approximately 50% of radiation fog cases developed into deep, optically thick layers
(defined here as being opaque to thermal radiation in the 8–12 µm wavelength range).
The other 50% remained shallow, optically thin, and often heterogeneous. Predicting
these transitions between thin and deep fog layers can be challenging, due to the
complex interactions involved between the temperature, humidity, and wind in the
boundary layer. In addition, turbulence intensity, itself dependent on atmospheric
stability, is a crucial factor that can affect the fog’s development. For example, a fog
layer may dissipate if the temperature inversion weakens or disappears, while the
fog may deepen if the inversion becomes stronger under the influence of stronger or
weaker turbulent exchanges of dry air at the top of the fog. The presence and strength
of the inversion at the top of the fog layer modulates the turbulent interactions
between the fog layer and the non-cloudy overlying atmosphere and, therefore, helps
change the fog’s properties during its life cycle;

2. Radiation balance: The balance between incoming and outgoing radiation can im-
pact the transition from the onset to the dissipation of fog layers. During the onset
phase, the balance is typically in favor of cooling while, during the mature phase,
warming near the surface is favored, while cooling occurs at the top of the fog layer.
Furthermore, solar radiation is one of the main factors that can cause fog to dissi-
pate. However, the intensity of solar radiation can vary significantly, depending on
the time of day and season but, more importantly, with the presence of aloft clouds
and their microphysical properties. Thus, predicting changes in the radiation bal-
ance can be difficult, due to the complex interplay between clouds, solar radiation,
and atmospheric stability;

3. Moisture availability: The availability of moisture is a critical factor that can impact
not only the likelihood of fog formation, but also the transition from the onset to the
mature phase of fog. The onset phase is typically associated with a high moisture
content in the air, but the deposition of dew on surface elements can delay fog
formation. During the mature phase, the deposition of fog water on the surface is
dependent on turbulent and microphysical fog properties and, therefore, represents a
highly (temporally and spatially) variable sink of water. The local processes driving
this variability contribute to the difficulties with accurately predicting fog properties.
The local processes responsible for this variability need to be better understood before
more accurate predictions can be achieved. Another factor hindering fog predictions
is the general lack of dense networks of humidity observations, limiting the details
with which moisture distributions are described in the initial conditions in numerical
weather forecasts;

4. Aerosols and microphysics: The presence and characteristics of aerosols in the at-
mosphere can impact the whole life cycle of the fog. Aerosols can act as nuclei for
fog droplet formation, and can influence subsequent fog development. For exam-
ple, results from the WIFEX field experiment in India [3] have demonstrated that a
significant fraction of water-soluble inorganic aerosols (chloride, sulfate and nitrate,
ammonium) exist during high aerosol loading. These aerosols grow exponentially in
size once deliquescence occurs, and can remain in a hydrated state over a significant
amount of time. Enhanced loading of hydrated aerosols can play a major role in
visibility reductions in subsaturated conditions and, therefore, influence the radiation
balance within the boundary layer. These results, and others from previous field
campaigns, indicate that accurately predicting changes in aerosol concentrations and
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properties can be challenging, due to the complex interactions between atmospheric
conditions, emissions, and transport. Once nucleated, the size distribution of fog
droplets can evolve through a variety of mechanisms, including condensation, depo-
sition, autoconversion, and collision-coalescence. The relative importance of each of
these mechanisms can vary depending on overall environmental conditions, but also
on the size and composition of the aerosols. Therefore, predicting the evolution of the
size distribution of fog droplets, which influences the radiation balance and overall
fog properties, is also a challenging objective;

5. Turbulence: The turbulent transport of heat, humidity, and droplets plays a very
important role in the fog life cycle. However, turbulent transport has an ambiguous
role, as it can both contribute to or prevent fog formation. At night, when the sky
is clear, the atmosphere is stable due to surface cooling. The thermal (buoyant)
production of turbulence is then negative. The production of turbulence, therefore,
depends only on the intensity of the wind. If the wind is very weak or calm, the cooling
of the surface will dominate, and saturation can be reached very quickly near the
surface, depending on moisture availability. However, this surface cooling will
not be able to propagate to the atmosphere, due to the lack of turbulent exchanges.
The temperature inversion will be very strong and shallow (typically about ten degrees
on a layer of about ten meters). Saturation will, therefore, not be able to propagate
vertically, and will mainly result in a very thin layer of fog with the possibly of
a significant deposition of dew. A stronger wind will reduce the cooling at the
surface by increasing the turbulent exchanges on the vertical. However, once this
is reached, it will allow the fog to develop vertically and, therefore, lead to a very
dense fog. However, the existence of a well-defined turbulence threshold in radiation
fog development remains an open question. As suggested by the discussion above,
predicting the timing and intensity of turbulence is challenging, due to the complex
nature of interactions involved, adding to the difficulty of accurately predicting fog
occurrences and properties;

6. Advection: This is the transport of heat, moisture, aerosols, and clouds by the wind.
It can influence the evolution of fog conditions by bringing in or removing moisture
and altering the temperature and humidity profiles. The transport of aerosols can
also modify fog properties. Mesoscale circulations and related advection patterns
can be induced by contrasts in surface properties (e.g., land–water and urban–rural
contrasts), and by topography (see the next item). Accurate modeling, and hence
predicting, of changes in wind speed and direction can be challenging, particularly
at small scales in complex terrain. The accurate representation of circulations and
advection patterns affecting fog requires using a high-resolution NWP, in conjunction
with high-density networks of observations and efficient data assimilation methods
able to provide initial conditions representing the spatial variability in temperature,
moisture, and wind at small scales;

7. Topography and land use: Topography plays an important role in fog occurrences
and evolution by influencing circulations, as well as temperature and humidity pro-
files. For example, valleys and low-lying areas can experience deeper and more
persistent fog layers, due to the high humidity levels and low wind speed conditions
resulting from the pooling effects of drainage flows. On the other hand, urban areas
tend to experience foggy conditions less frequently, due to their characteristic higher
temperatures and lower humidity levels, in comparison with the adjacent rural ar-
eas. However, urban and industrial areas are generally characterized by increased
concentrations of aerosols, which can affect the formation and dissipation of fog.

As outlined in the discussion above, fog formation, development, and dissipation
is determined by a large number of physical processes and subtle interactions, which
are difficult to accurately represent in numerical models. On the other hand, the lack of
widely available comprehensive sets of observations, taken in a wide range of environ-
ments, represent a limitation for the development of observation-driven forecast algorithms.
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The fact that fog occurs in a variety of environments and weather conditions makes the
development of comprehensive forecast models a difficult task. The highly heterogeneous
nature of fog at very small scales, as revealed through high-density visibility observations
around Charles de Gaulle airport, Paris, for example (see [4]), further adds to the difficulty.
Our current knowledge on fog, as outlined above, has been acquired through the analysis
of observations from field campaigns and carefully designed numerical modeling experi-
ments. Despite the progress achieved, it is also recognized that the insights gained from
such observations have limits. The highly heterogeneous character of fog at small scales
limits the usefulness of local observations for informing on conditions over wider areas.
Furthermore, the presence of gravity waves can affect the evolution of fog characteristics,
as revealed by Large Eddy Simulations (LES) (e.g., [5]), are generally not detected from
typical surface-based observations that can be more easily deployed as networks. Therefore,
progress in fog forecasting is hindered by persisting incomplete understandings of and
capabilities for modeling the multi-scale interactions involved. A lack of high-density
networks of routine observations monitoring the wide arrays of conditions relevant to fog
forecasting is also an important limiting factor. Our current fog prediction capabilities and
related issues are discussed in more detail in the following sections.

3. Contributions and Limitations of NWP Models

Accurately forecasting the occurrence of fog constitutes a crucial meteorological ser-
vice, providing important information on atmospheric conditions that can affect public
safety and disrupt a wide array of operations. While NWP models have greatly improved
our ability to forecast severe weather, they still face several challenges when it comes to
predicting fog (see, e.g., [6]). NWP models often fail to correctly predict events predomi-
nantly driven by sub-grid scale processes such as fog. The main challenges of NWP models
for fog forecasting include:

(1) Resolution: The current NWP models lack sufficient resolution, both vertically and
horizontally, to accurately simulate the fog’s life cycle. Some research efforts have
been undertaken using LES, but generating operational forecasts using LES remain
out of reach, due to computational expenses and difficulties in accurately representing
initial conditions at small scales. Moreover, fog layers exhibit a significant spatial
variability at the metric scale, and their vertical development is strongly determined
by turbulent motions occurring at very fine scales. Accurate representations of these
small scales remains out of the reach of current NWP models;

(2) Boundary layer: The fog life cycle is strongly influenced by conditions within the
lower atmosphere under stable conditions. However, the stable boundary layer (SBL)
is often poorly represented in NWP models, which limits the accuracy of fog predic-
tions. Therefore, more efforts should be undertaken to improve parameterizations
of the SBL, particularly for scenarios where surfaces are characterized by small-scale
heterogeneities. Particular attention should be placed on understanding and param-
eterizing the interactions driving the variability of the boundary layer across scales
(from mesoscale to microscale);

(3) Microphysics: Fog formation, and the subsequent evolution of its characteristics, are
strongly determined by the ambient aerosol properties and related microphysical
processes. Accurate representations of aerosol and cloud droplet spectra are necessary
for accurate fog predictions, particularly for accurate predictions of visibility. How-
ever, the complexity of these processes makes it challenging to model them accurately,
and the current NWP models fail to represent the different microphysical stages of
aerosols and fog evolution. Deficiencies in the relevant parameterizations (micro-
physics, radiation, and turbulence), and the interactions between them, limit models’
abilities to predict reductions in visibility. As such, Ref. [7] describes the limitations
associated with the use of fixed parameters in microphysical parameterizations that
do not take the regional variability in aerosol conditions properly into account. The au-
thors highlight the fact that use of existing parameterizations and their parameters to
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predict fog in contrasting environments is a flawed approach. The optimization of
microphysical parameters to better predict fog in one region can lead to less accurate
forecasts in another. NWP models are, in essence, complex ecosystems of interacting
components, each with a number of tuneable parameters. The global optimization of
these parameters is an extremely difficult, if not impossible, task to achieve, creating
a scenario where significant compromises have to be made. The development and
implementation of appropriate parameterizations in NWP models able to predict
fog everywhere and in all scenarios remains an open question. More research is
needed for more comprehensive representations of the relationships between key
microphysical properties within fog (e.g., the shape parameters describing particle
size distributions) and the local environmental conditions. Striking the right balance
between sophistication (often associated with sizable increases in computational costs)
and accuracy poses a significant barrier to achieving this. Recognizing this difficulty,
research should include a greater emphasis on the development of stochastic parame-
terizations, which aim to represent the inherent uncertainties in the representation of
key processes, rather than seek to develop more and more complex and expensive
parameterization schemes. A strategy which combines both approaches appears to be
the most promising way forward at this time;

(4) Model biases: NWP models are imperfect tools, characterized by systematic errors
that affect the accuracy of fog predictions. These biases can be difficult to correct,
due to the interactions between the different sources of errors, such as those related
to deficient model physics and lack of accurate initialization of the smaller scales.
Traditionally, Model Output Statistics (MOSs) have been used to post-process NWP
outputs to produce more accurate forecasts of variables related to the ceiling and
visibility (see, e.g., [8]). Recognizing the limitations of corrections based on multi-
linear regressions, as is the case with MOSs, more advanced bias correction methods
are being developed and tested, such as the analog method (e.g., [9]) to correct model
biases and provide more reliable fog forecasts. Recent efforts on the development of
other forecast correction methods involving Artificial Intelligence (AI) and Machine
Learning (ML) concepts have also shown promising results (see, e.g., [10]);

(5) Initialization: NWP models require accurate initial conditions to produce accurate
forecasts. These initial conditions are obtained by combining the information pro-
vided by a wide array of observations and prior short-term model forecasts using
sophisticated data assimilation (DA) schemes. Significant challenges remain related to
DA and initial conditions, with respect to fog forecasting. Generating accurate initial
conditions of critical parameters involved in fog formation and evolution remains
difficult, particularly in areas with complex terrain or limited observations. Standard
meteorological observations do not always inform on the complex processes occurring
at small scales, such as turbulent mixing in the SBL, whereas local measurements are
not always efficiently incorporated into NWP analyses. The accurate depiction of
conditions within the boundary layer remains a challenge, particularly with respect
to SBL characteristics and humidity conditions prior to fog formation. Once fog has
formed, the representation of important fog characteristics, such as water content,
the depth of the fog layer, etc., are difficult to obtain using standard observations.
The assimilation of data from new observing systems could help overcome these
deficiencies. For example, more widespread use of cloud-affected radiances from
latest-generation satellites would help fill gaps with needed information about cloud
presence and properties. The assimilation of observations from Doppler and dif-
ferential absorption lidars (DIALs), would help refine analyses of boundary layer
properties with high-resolution information on wind, turbulence, and water vapor
profiles. Such information has the potential to help improve forecasts of the boundary
layer structure prior to fog formation, timing, location of fog onset, and its subsequent
development. The assimilation of observations from ground-based microwave ra-
diometers (see, e.g., [11]) provides the needed high temporal resolution information
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on bulk fog properties, despite the low vertical resolution characterizing observa-
tions from these instruments. The use of imagery from IR cameras (see, e.g., [12])
could also help overcome the poor coverage of observations on fog presence and
characteristics. A challenge here is the availability of suitable forward operators, par-
ticularly with respect to the use of camera imagery, needed for effective assimilation
of such observations;

(6) Variability time-scale: Conditions favorable to fog formation and the evolution of
fog itself can change rapidly. Therefore, timely forecasts initialized with the latest in-
formation available are needed by end users. Predicting fog formation and dissipation
at local scales requires frequent and locally adapted forecasts (i.e., rapid cycling using
local observations). However, NWP models are typically initialized on time-scales
between one and a few hours, which can limit their ability to generate up-to-date
predictions of rapid changes in fog conditions. The use of single-column models
with rapid cycling in a local nowcasting framework have been shown to produce
useful forecasts of local fog conditions (see, e.g., [13]), overcoming this deficiency to
some extent. The remaining challenge here is how to properly take into account the
influences of heterogeneities at the mesoscale on the evolution of local conditions.

In general, the output from NWP models remain a crucial source of forecast informa-
tion for end users. Consequently, a complete and thorough analysis of the shortcomings of
these models and possible avenues of refinement remains a priority. As suggested by the
papers submitted to this Special Issue, there appears to be very little direct use of NWP data
in decision support systems. Current efforts rather focus on developing the post-processing
of existing NWP systems via, e.g., AI/ML methods, or developing ways of representing
elements of fog predictability via ensemble forecasting methods.

4. Machine Learning

Artificial Intelligence (AI) has been applied to fog forecasting using various techniques,
including machine learning, deep learning, and fuzzy logic (see, e.g., [14]). Machine
learning algorithms, such as random forest, decision tree, and support vector machines,
have been used to predict fog formation using observations of atmospheric parameters.
Deep learning techniques, such as convolutional neural networks (CNN), have also been
used to predict fog occurrences using satellite images, meteorological data, and NWP
output. Recently, machine learning has emerged as a powerful tool for predicting fog
occurrences, due to its ability to learn complex relationships between meteorological
variables and the occurrence of fog.

AI applications aiming to predict fog generally focus on enhancing NWP models,
either by emulating sub grid-scale parameterizations [15,16], or by emulating the numerical
models altogether [17]. In some cases, numerical model outputs remain an essential
component in the training of a ML-based model while, in other applications, the ML model
is driven by observational data alone [18]. In other applications, the ML model is based on
a combination of the two data sources (NWP model and observations) (see, e.g., [19]).

The application of AI for fog forecasting has shown promising results, with high
accuracy rates in predicting fog occurrences. The use of AI for fog forecasting can provide
several benefits, including:

(1) Improved accuracy and faster predictions: AI algorithms, such as machine learning,
neural networks, fuzzy logic, and expert systems, can analyze vast amounts of meteo-
rological data in real-time and identify patterns and relationships that may be difficult
for human analysts to detect. This can result in more accurate fog forecasting, and
allows for faster predictions of fog formation and dissipation;

(2) Cost-effectiveness: AI algorithms can be trained to analyze meteorological data,
resulting in integrated systems that best meet users’ needs. This can result in cost
savings for national meteorological services and a wide community of other end
users. Additionally, AI-based fog forecasting systems can also be automated, reducing
the workload of forecasters, improving the efficiency of forecasting operations, and
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best meeting users’ needs. Additionally, AI-based systems can be trained to adapt to
changing weather patterns, improving the accuracy of forecasts over time. Therefore,
the use of AI offers several benefits over traditional forecasting methods, including
increased accuracy, efficiency, and adaptability.

However, there are several challenges associated with the application of AI and
machine learning for fog forecasting:

(1) Availability of high-quality data: This is critical for training and validating machine
learning models [20]. However, fog observations remain sparse, and often come from
different sources, such as meteorological stations, satellite imagery, and remote sens-
ing. These data sources may have different spatial and temporal resolutions, which
can affect the accuracy of AI models. Additionally, fog is a complex phenomenon in-
fluenced by various factors, some difficult to measure directly and accurately (e.g., tur-
bulence, slight changes in humidity levels, etc.). Obtaining a comprehensive and
reliable dataset that captures all these factors can be challenging. Beyond the standard
meteorological variables as predictors, Bartok et al. [21] developed a ML forecast
model that uses visibility information obtained through remote camera observations.
The authors found that camera-based observations help overcome some of the draw-
backs associated with the use of automated sensors (predominantly point-based
measurements) and human observers (more comprehensive observations, but taken
at lower frequencies), and offer a viable solution in certain situations, such as during
the recent COVID-19 pandemic;

(2) Model complexity and interpretability: The need for interpretable models that can
provide insights into the physical mechanisms underlying the occurrence of fog.
Although AI models can provide accurate predictions, they often lack interpretability,
making it challenging to identify the critical variables driving the occurrence of fog.
Peláez-Rodríguez et al. [22] propose different explainable forecasting approaches,
based on inductive and evolutionary decision rules, for extreme low-visibility event
predictions. The explainability of the processes derived from the rules generated
by their system is one of the core objective of this work. The authors proposed a
combination of the individual rules into a fuzzy-based controller to refine the final
results obtained, or testing functional regression methods as final outcomes for the
system to overcome the limitations in the interpretability of the proposed approach. A
lack of interpretability can be problematic in critical applications, such as in aviation
forecasting, where understanding the reasons for fog formation is a desirable outcome.
This is not always achievable, as most AI models used in fog forecasting are complex,
such as with deep learning models which can have millions of parameters. Such
models are challenging to train, require significant computing resources, and the
results are often difficult to interpret. The inability to interpret rapidly varying results
from a series of consecutive forecasts can represent a significant barrier to gaining
confidence in the results;

(3) Generalizability: Fog can occur in different regions and under various meteorological
conditions. Therefore, AI models need to be trained on diverse datasets to be able to
generalize to new scenarios. However, collecting such datasets can be challenging, due
to the general sparsity of fog data, particularly in regions lacking dense observations;

(4) Real-time processing: Fog forecasting is a time-critical task, and AI models need to
process data in real-time to provide accurate predictions. However, deep learning
models, which are commonly used in fog forecasting, can be computationally inten-
sive, making real-time processing challenging. Bari et al. [23] applied optical flow
(sparse and dense) and deep learning techniques (CNN, ConvLSTM, and Unet) to
geostationary satellite images for fog/low-stratus (FLS) nowcasting. Although quan-
titative and qualitative comparisons indicate the superiority and greater effectiveness
of DL techniques over nowcasts based on extrapolation of satellite RGB products,
some limitations remain. These include the limited availability of training data, owing
to the typical infrequent occurrences of FLS conditions (e.g., limited spatial coverage,
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occurrences, and duration). This lack of data hinders the development of robust
models, and can ultimately lead to under-performing forecasts. One strategy which
can overcome these limitations consists of combining the optical flow with deep
learning, leveraging the strengths of both techniques while mitigating their individual
limitations (see FlowNet [24,25] and DeepFlow [26]). From a practical perspective,
it is important to note the large costs associated with the download and storage of
large amounts of satellite data. This represents a significant barrier to the use of this
valuable source of weather information.

5. Predictability

Despite an overall improvement in weather forecasts in recent decades, errors in
forecasts of fog occurrences and characteristics remain large. As outlined in the previous
sections, multiple factors contribute to imposing significant limits to the predictability of
fog. Among the main remaining challenges are:

(1) The complexity of physical processes driving the fog life cycle: Fog formation and
evolution depend on a variety of factors that interact in complex ways over multiple
scales, making it difficult to accurately predict occurrences and duration of foggy
conditions. Furthermore, fog events can be highly localized, with only subtle contrasts
delineating the presence or absence of fog. Therefore, providing accurate fog forecasts
for specific locations is very challenging;

(2) The lack of observations, particularly of small-scale atmospheric features that af-
fect the fog life cycle: Fog forecasting requires data from multiple sources of observa-
tions, including weather stations, satellites, and radars. In some regions, such as rural
areas or developing countries, availability of this data may be limited or outright un-
available. In addition, current weather observation networks typically do not capture
the variability in temperature and humidity conditions at smaller scales, such as in
urban areas and mountainous regions. Furthermore, limited observations of other
important features, such as water vapor distribution in the boundary layer, structure
of the stable boundary layer, or properties of low clouds in the case of stratus-lowering
fog events, all contribute significant uncertainties in initial NWP conditions, as well
as the development of more comprehensive observation-based ML forecast models.
All of these issues impose limits on our ability to forecast fog.

Recognizing these limits on fog predictability, having access to information on how
much confidence can be placed on a fog forecast becomes essential for decision makers
involved in ensuring safety and productivity in many socio-economic activities. Ensemble
prediction systems (EPSs) have emerged as powerful tools for estimating uncertainties in
NWP forecasts. By producing multiple forecasts (members of an ensemble), the dispersion
characterizing the ensemble can be directly related to the uncertainty in the forecast. An-
other advantage of EPSs consists of having direct access to probabilistic information on the
occurrence, duration, and intensity of fog events, which can help end-users make more
informed decisions. For example, a local ensemble prediction system has shown significant
improvement over traditional deterministic forecasts of fog in the context of a single-model
forecasting system [27]. Furthermore, using a combination of multiple models, and/or per-
turbations of model parameterizations, and/or perturbations of initial conditions, and/or
perturbations of lateral boundary conditions, EPSs can reduce the uncertainty and increase
the reliability of fog forecasts. Parde et al. [28] found that their EPS produces forecasts
with substantially reduced errors in predicting fog onset and dissipation (mean onset and
dissipation errors of 1 h) compared to control (deterministic) forecasts.

One of the main limitations of EPSs are the high computational requirements and
data storage needs. Ensemble systems require significant computational power and storage
space to process and store large amounts of ensemble data. Such requirements represent
barriers for smaller organizations to implement ensemble forecasting systems. However,
the analog ensemble method is considered one of the most low-cost and intuitive ensemble
methods [9]. Typically, the selection of analogs is performed from historical data only for
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each grid point in the study domain closest to the observation sites. Here, the authors
suggest extending the search space by considering neighboring grid points to enhance the
chances of finding the best analogs.

Another challenge of EPSs are their need for constant and regular updating and
maintenance of the system to ensure that forecasts remain accurate and reliable. This
can be time-consuming and costly, and requires a skilled team of meteorologists and data
scientists to maintain the system.

Despite the challenges and limitations, the outlook for use of ensemble systems
adapted to fog forecasting is encouraging. Advances in computing technology, including
increased computational power and development of more easily accessible cloud-based
computing, make ensemble forecasting systems more accessible and cost-effective. Addi-
tionally, the development of machine learning algorithms and artificial intelligence can
help automate updates to and maintenance of the system, reducing the workload for
meteorologists and data scientists.

6. Perspectives for Fog Decision Support Systems
6.1. Design Features of Decision Support Systems

To improve the accuracy of fog forecasting, decision support systems (DSSs) are being
developed that incorporate a wide range of data sources and analytical techniques. Future
fog DSSs should provide frequently updated, highly accurate, timely forecasts. DSS output
should be easily accessible, as well as customizable to meet the needs of different industries
and stakeholders. Incorporating machine learning and real-time data collection is believed
to be key to achieving these goals. Here are some potential design features of future
fog-forecasting DSSs:

(1) Integration of Machine Learning: DSSs could incorporate machine learning algo-
rithms to analyze large volumes of historical and real-time data, complementing other,
more traditional, algorithms, such as calculating fog indices (see, e.g., [29]). This could
enhance the identification of patterns and relationships between weather conditions
and the likelihood of fog formation;

(2) Improved data collection: The accuracy of fog forecasting can be improved by col-
lecting more comprehensive data. This should include more precise and numerous
“classical meteorological” measurements of temperature, humidity, wind speed, and
direction, as well as real-time monitoring of atmospheric conditions, particularly
in the atmospheric boundary layer (ABL), using more advanced sensing platforms
such as ground-based remote sensing instruments (e.g., radiometers, lidars) and
instrumented drones;

(3) Improved NWP products: Despite their limitations with respect to fog, NWP sys-
tems can provide valuable weather forecast information, which should be used as
additional input in DSSs. NWP systems are continuously being improved through in-
creased resolution, implementations of enhanced parameterization schemes, improve-
ments to data assimilation systems, and the use of new sources of key observations.
Updating DSSs to ingest the most up-to-date NWP products should prioritized;

(4) Cloud-based architecture: To facilitate data integration and analysis, a cloud-based
architecture could be adopted. This would enable data to be more easily shared
and accessed by different stakeholders, as well as providing a more scalable
development environment;

(5) User-friendly interface: DSSs should have a user-friendly interface that provides easy
access to weather data and forecast information. This would enable decision-makers
to quickly and accurately assess the risk of fog formation and take appropriate actions;

(6) Customizable alerts: DSS should be able to generate customizable alerts that are
tailored to the specific needs of different the industries and stakeholders. For example,
airlines may require more detailed information on fog formation and duration, to
ensure safety and efficiency of their operations.
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6.2. Types of Needed Fog Forecast Information

Operational meteorologists and industry end-users may require different types of
information to effectively utilize fog forecast guidance. Here are some examples of the
information that could be provided to each group:

For operational meteorologists:

(1) Model output data: NWP models can provide information on the atmospheric condi-
tions conducive to fog formation, including the main thermodynamic atmospheric
parameters and more elaborate parameters, such as fog water content and fog index.
Any changes in fog forecast should be communicated as soon as new information
becomes available. In addition, providing information on the probability of fog occur-
rences in specific locations or over specific regions, along with the level of confidence
in the forecast, could help meteorologists assess the likelihood of fog formation and
provide the most useful forecast information;

(2) Observational data and satellite imagery: Observational data from surface and
upper-air weather stations, as well as satellite imagery, can provide the most up-
to-date insights into current weather conditions (e.g., information on cloud cover,
occurrence of precipitation and type, and temperature gradients) and, hence, the like-
lihood of fog formation and evolution. The availability of historical fog climatological
data can also assist meteorologists in understanding the typical frequency, intensity,
and duration of fog events, providing valuable context for the current forecast;

(3) NWP model guidance and ensemble forecasts: Information about the various NWP
models and ensembles used to generate fog forecasts should be made available,
including details on their performance and skill over previous fog events, to help
meteorologists evaluate their reliability. Any biases and specific performance is-
sues should be highlighted for each of the models. Access to verification statistics,
including metrics tailored to rare threshold events such as fog, should help meteo-
rologists assess the accuracy and reliability of forecasts from the different models
and, therefore, provide further guidance into their task of producing an integrated
final forecast product.

For end-users:
Industry end-users are generally weather savvy, but not as highly trained as weather

forecasters. Therefore, information derived from raw forecast data and tailored to be more
closely related to the specific operational needs should be provided. For example:

(1) Forecast information: End-users require information on the timing of the onset,
intensity, and duration of fog events. Information on the likelihood of visibility and/or
ceiling height conditions reaching meaningful thresholds specific to operational needs
is also required to assess safety risks and make informed decisions about operations
in transportation, aviation, and other outdoor activities impacted by the presence
of fog;

(2) Impact assessments: End-users may require information on the potential impacts of
fog events on their operations, including transportation delays, flight cancellations,
and other disruptions to industry activities. A tailored analysis of relevant cost–benefit
parameters derived from weather forecast data can help end-users in their decision
making process;

(3) Recommended actions: End-users may also require specific guidance on recom-
mended actions to take during fog events, such as reducing driving speed, using fog
lights, or altering flight plans.

Providing information on fog uncertainties in a clear and concise manner is of utmost
importance for end-users, so that informed decisions are made and the societal impacts of
fog events are minimized. Here are some ways to provide information on fog uncertainties:
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(1) Visual display: End-users are more likely to understand the information when it is
presented in a visual format, such as graphs, charts, and maps. Displaying information
in a clear and visually appealing way help end-users interpret the data and act
accordingly in a more effective manner;

(2) Probabilistic forecast information: Providing probabilistic information on fog pa-
rameters can help end-users make more effective and informed decisions. For example,
providing information on the probability of fog occurrence, or the range of possible
visibility conditions, can help end-users take necessary precautionary decisions;

(3) Collaboration with stakeholders: Collaborating with stakeholders, such as trans-
portation companies or aviation authorities, can help tailor the information to their
specific needs. A complete understanding of the operational needs helps determine
which forecast products should be provided, and how forecast information is pre-
sented (e.g., which forecast metrics are provided). This can improve the usefulness of
the information provided, and help minimize the impact of fog events on the specific
activities that the various stakeholders are concerned with.

7. Concluding Remarks

A wide variety of socio-economic activities are affected by the presence of low visibility
conditions. Accurate fog nowcasts and forecasts are, therefore, required by a number of
stakeholders. Decision support systems (DSSs), providing the most accurate and concise
information on the likelihood of fog formation, the physical characteristics (e.g., minimum
visibility), and the dissipation, are emerging tools of choice by end-users. DSSs are tasked
with integrating a vast amount of information from numerous observational platforms and
forecast data, and produce timely fog products tailored to the specific user needs.

Recent developments, including the ones reported in this Special Issue, have high-
lighted the importance and limitations of key components of any DSS. Despite the limita-
tions, related to fog in particular, due to the resolution, deficient physical parameterizations,
and initial conditions, forecast data from NWP systems remain a primary source of fore-
cast information. The continuous improvement in NWP models and data assimilation
systems, including the input of new sets of observations, is greatly encouraged. However,
additional efforts beyond this traditional approach are strongly recommended. For in-
stance, in recognition of the severe limits of fog predictability, the further development and
greater exploitation of ensemble forecast systems should be considered, including their
application at the mesoscale and beyond. The availability of probabilistic forecasts, and the
ability to integrate the estimated confidence levels in fog forecasts into the decision-making
processes, should be central parts of any DSS. Furthermore, the integration of AI/ML
algorithms should be considered for fine-tuning NWP forecast outputs, and also for the
production of additional observation-based local fog nowcasts. These can complement
the existing NWP guidance by providing fast, up-to-date nowcasts. However, in order
for this to be successful, issues related to the training and validation of algorithms in
the case of rare events, such as fog, should be addressed to ensure more robust forecast
results. Furthermore, the formal identification of which observations are critically needed
to enhance fog nowcasts and forecasts should be undertaken, and the potential deployment
of additional observations, and possible development of new observational platforms,
should be considered. Finally, the design of DSS code infrastructure and interfaces should
be carefully considered, for (1) efficient integration of large volumes of data, (2) for ease
of access and analysis of forecast guidance and algorithm performance, (3) to effectively
translate forecast data into estimates of operational impacts and action recommendations,
and (4) for adaptability to the various needs of end-users.



Atmosphere 2023, 14, 1314 12 of 13

Acknowledgments: The authors wish to thank the editors and reviewers for their valuable comments
and helpful suggestions, which have greatly improved the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gultepe, I.; Tardif, R.; Michaelides, C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al.

Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159.
2. Price, J.D.; Lane, S.; Boutle, I.A.; Smith, D.K.E.; Bergot, T.; Lac, C.; Ducongé, L.; McGregor, J.; Kerr-Munslow, A.; Pickering, M.; et al.

LANFEX: A Field and Modeling Study to Improve Our Understanding and Forecasting of Radiation Fog. Bull. Am. Meteorol. Soc.
2018, 99 , 2061–2077. [CrossRef]

3. Ghude, S.D.; Jenamani, R.K.; Kulkarni, R.; Wagh, S.; Dhangar, N.G.; Parde, A.N.; Acharja, P.; Lonkar, P.; Govardhan, G.;
Yadav, P.; et al. WiFEX: Walk into the Warm Fog over Indo-Gangetic Plain Region. Bull. Am. Meteorol. Soc. 2023, 104, E980–E1005.
[CrossRef]

4. Lestringant, R.; Bergot, T. Analysis of Small-Scale Spatial Variability of Fog at Paris Charles de Gaulle Airport. Atmosphere 2021,
12, 1406. [CrossRef]

5. Bergot T. Small-scale structure of radiation fog: A large-eddy simulation study. Q. J. R. Meteorol. Soc. 2013, 139, 1099–1112.
[CrossRef]

6. Steeneveld, G.J.; Ronda, R.J.; Holtslag, A.A.M. The Challenge of Forecasting the Onset and Development of Radiation Fog Using
Mesoscale Atmospheric Models. Bound. Layer Meteorol. 2015, 154, 265–289. [CrossRef]

7. Contreras Osorio, S.; Martín Pérez, D.; Ivarsson, K.-I.; Nielsen, K.P.; de Rooy, W.C.; Gleeson, E.; McAufield, E. Impact of the
Microphysics in HARMONIE-AROME on Fog. Atmosphere 2022, 13, 2127. [CrossRef]

8. Ghirardelli, J.E.; Glahn, B. The Meteorological Development Laboratory’s Aviation Weather Prediction System. Weather Forecast.
2010, 25, 1027–1051. [CrossRef]

9. Alaoui, B.; Bari, D.; Bergot, T.; Ghabbar, Y. Analog Ensemble Forecasting System for Low-Visibility Conditions over the Main
Airports of Morocco. Atmosphere 2022, 13, 1704. [CrossRef]

10. Kamangir, H.; Collins, W.; Tissot, P.; King, S.A.; Dinh, H.T.H.; Durham, N.; Rizzo, J. FogNet: A multiscale 3D CNN with
double-branch dense block and attention mechanism for fog prediction. Mach. Learn. Appl. 2021, 5, 100038. [CrossRef]

11. Martinet, P.; Cimini, D.; Burnet, F.; Ménétrier, B.; Michel, Y.; Unger, V. Improvement of numerical weather prediction model
analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: A 1D-Var study.
Atmos. Meas. Tech. 2020, 13, 6593–6611. [CrossRef]

12. Price, J.; Stokkereit, K. The Use of Thermal Infra-Red Imagery to Elucidate the Dynamics and Processes Occurring in Fog.
Atmosphere 2020, 11, 240. [CrossRef]

13. Rémy, S.; Pannekoucke, O.; Bergot, T.; Baehr, C. Adaptation of a particle filtering method for data assimilation in a 1D numerical
model used for fog forecasting. Q. J. R. Meteorol. Soc. 2012, 138, 536–551. [CrossRef]

14. Kneringer, P.; Dietz, S.J.; Mayr, G.J.; Zeileis, A. Probabilistic nowcasting of low-visibility procedure states at Vienna International
Airport during cold season. Pure Appl. Geophys. 2019, 176, 2165–2177. [CrossRef]

15. Claxton, B. Using a neural network to benchmark a diagnostic parametrization: The Met Office’s visibility scheme. Q. J. R.
Meteorol. Soc. 2008, 134, 1527–1537. [CrossRef]

16. Bari, D.; Ouagabi, A. Machine-learning regression applied to diagnose horizontal visibility from mesoscale nwp model forecasts.
SN Appl. Sci. 2020, 2, 556 . [CrossRef]

17. Weyn, J.A.; Durran, D.R.; Caruana, R. Improving data-driven global weather prediction using deep convolutional neural networks
on a cubed sphere. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002109. [CrossRef]

18. Kim, S.; Rickard, C.; Hernandez-Vazquez, J.; Fernandez, D. Early Night Fog Prediction Using Liquid Water Content Measurement
in the Monterey Bay Area. Atmosphere 2022, 13, 1332. [CrossRef]

19. Zhang, Y.; Wang, Y.; Zhu, Y.; Yang, L.; Ge, L.; Luo, C. Visibility Prediction Based on Machine Learning Algorithms. Atmosphere
2022, 13, 1125. [CrossRef]

20. Vorndran, M.; Schütz, A.; Bendix, J.; Thies, B. Current Training and Validation Weaknesses in Classification-Based Radiation Fog
Nowcast Using Machine Learning Algorithms. Artif. Intell. Earth Syst. 2022, 1, 1–16. [CrossRef]

21. Bartok, J.; Šišan, P.; Ivica, L.; Bartoková, I.; Malkin Ondík, I.; Gaál, L. Machine Learning-Based Fog Nowcasting for Aviation with
the Aid of Camera Observations. Atmosphere 2022, 13, 1684. [CrossRef]

22. Peláez-Rodríguez, C.; Marina, C.M.; Pérez-Aracil, J.; Casanova-Mateo, C.; Salcedo-Sanz, S. Extreme Low-Visibility Events
Prediction Based on Inductive and Evolutionary Decision Rules: An Explicability-Based Approach. Atmosphere 2023, 14, 542.
[CrossRef]

23. Bari, D.; Lasri, N.; Souri, R.; Lguensat, R. Machine Learning for Fog-and-Low-Stratus Nowcasting from Meteosat SEVIRI Satellite
Images. Atmosphere 2023, 14, 953. [CrossRef]

24. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Brox, T. Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015;
pp. 2758–2766.

http://doi.org/10.1175/BAMS-D-16-0299.1
http://dx.doi.org/10.1175/BAMS-D-21-0197.1
http://dx.doi.org/10.3390/atmos12111406
http://dx.doi.org/10.1002/qj.2051
http://dx.doi.org/10.1007/s10546-014-9973-8
http://dx.doi.org/10.3390/atmos13122127
http://dx.doi.org/10.1175/2010WAF2222312.1
http://dx.doi.org/10.3390/atmos13101704
http://dx.doi.org/10.1016/j.mlwa.2021.100038
http://dx.doi.org/10.5194/amt-13-6593-2020
http://dx.doi.org/10.3390/atmos11030240
http://dx.doi.org/10.1002/qj.915
http://dx.doi.org/10.1007/s00024-018-1863-4
http://dx.doi.org/10.1002/qj.309
http://dx.doi.org/10.1007/s42452-020-2327-x
http://dx.doi.org/10.1029/2020MS002109
http://dx.doi.org/10.3390/atmos13081332
http://dx.doi.org/10.3390/atmos13071125
http://dx.doi.org/10.1175/AIES-D-21-0006.1
http://dx.doi.org/10.3390/atmos13101684
http://dx.doi.org/10.3390/atmos14030542
http://dx.doi.org/10.3390/atmos14060953


Atmosphere 2023, 14, 1314 13 of 13

25. Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution of optical flow estimation with deep
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 2462–2470.

26. Weinzaepfel, P.; Revaud, J.; Harchaoui, Z.; Schmid, C. DeepFlow: Large displacement optical flow with deep matching. In Pro-
ceedings of the IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 1385–1392.

27. Roquelaure S.; Bergot, T. A Local Ensemble Prediction System for Fog and Low Clouds: Construction, Bayesian Model Averaging
Calibration, and Validation. J. Appl. Meteorol. Climatol. 2008, 47, 3072–3088 . [CrossRef]

28. Parde, A.N.; Ghude, S.D.; Dhangar, N.G.; Lonkar, P.; Wagh, S.; Govardhan, G.; Biswas, M.; Jenamani, R.K. Operational Probabilistic
Fog Prediction Based on Ensemble Forecast System: A Decision Support System for Fog. Atmosphere 2022, 13, 1608. [CrossRef]

29. Penov, N.; Stoycheva, A.; Guerova, G. Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices. Atmosphere
2023, 14, 773. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1175/2008JAMC1783.1
http://dx.doi.org/10.3390/atmos13101608
http://dx.doi.org/10.3390/atmos14050773

	Introduction
	Why Is Fog Forecasting So Challenging?
	Contributions and Limitations of NWP Models
	Machine Learning
	Predictability
	Perspectives for Fog Decision Support Systems
	Design Features of Decision Support Systems
	Types of Needed Fog Forecast Information

	Concluding Remarks
	References

