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Krčadinac, O. Study of Particular Air

Quality and Meteorological

Parameters at a Construction Site.

Atmosphere 2023, 14, 1267. https://

doi.org/10.3390/atmos14081267

Academic Editors: Elena Hristova,

Manousos Ioannis Manousakas,

Anikó Angyal and Maria Gini

Received: 5 July 2023

Revised: 5 August 2023

Accepted: 7 August 2023

Published: 10 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Study of Particular Air Quality and Meteorological Parameters
at a Construction Site
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Abstract: The construction industry is a major contributor to dust, greenhouse gases, and other air
pollutants. Implementing effective and sustainable practices in managing construction site operations
can greatly mitigate the environmental effects of a project. To achieve this, a collaboration between
a scientific research institution and a construction company enabled the real-time monitoring of
air quality parameters at a construction site using Internet of Things (IoT) technologies. They im-
plemented an IoT-based system framework that integrated a distributed sensor network to collect
real-time data from the construction site. Various sensors were utilized to gather data on the concen-
tration of NO2 and particulate matter (PM2.5 and PM10), as well as meteorological parameters such
as wind speed, wind direction, humidity, pressure, and temperature. The real-time measurements
yielded insights into the level of air pollution at the construction site and its association with earth
excavation, the primary construction activity. This information can be utilized to manage excavation
work and reduce the levels of polluting gases (NO2) and suspended particles. By conducting an
on-site monitoring of these three pollutants, the study discovered that the dust levels resulting from
excavation activities were relatively high. When comparing the wind direction with NO2 and PM
concentrations, it was concluded that earth excavation significantly influenced the air quality in
the construction area. However, in terms of the primary factors affecting NO2 and construction
dust concentrations, the analysis revealed that meteorological factors did not exhibit a significant
correlation with NO2 and dust levels at the construction site. The multiple linear regression (MLR)
and the artificial neural network (ANN) models for predicting PM2.5, PM10 and NO2 concentration
in air using meteorological parameters as predictors were applied. The ANN model showed greater
accordance with the measured concentrations in air than the MLR model.

Keywords: construction pollution; PM10; PM2.5; NO2; meteorology; prediction model

1. Introduction

Air pollution is a critical issue that affects air quality worldwide, and it has significant
implications for human health, ecosystems, and the environment. Air pollution is primarily
caused by the emission of harmful substances into the atmosphere, including particulate
matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and volatile organic
compounds (VOCs), among others. These pollutants are released from various sources
such as industrial facilities, transportation, agriculture, and energy production.

One of the major challenges in addressing air pollution and its impacts on air quality
is the lack of sufficient monitoring stations, particularly in developing countries. In many
developed nations, comprehensive air quality monitoring networks are in place to measure
and report pollutant concentrations accurately. However, this is not the case in numerous
developing countries where the infrastructure and resources for monitoring are limited [1].
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As a result, detailed information about the extent and intensity of air pollution in many
areas is not adequately reported or available. This lack of data hampers the understanding
of local air quality conditions, making it difficult for policymakers to implement targeted
measures to tackle the problem effectively.

Furthermore, insufficient monitoring hinders the ability to establish connections be-
tween air pollution and health outcomes, which is crucial for raising awareness among the
population about the risks they face and for advocating for necessary air quality regula-
tions [2].

In conclusion, air pollution is a pressing issue that directly impacts air quality, human
health, and the environment. To address air quality conditions effectively, it is vital to
develop comprehensive air quality monitoring networks, especially in developing countries,
to obtain accurate data and take the appropriate actions to protect public health and
the environment.

The COVID-19 pandemic has had both positive and negative impacts on air pollution.
The COVID-19 pandemic has revealed both short-term improvements in air quality during
lockdowns and challenges in managing medical waste that indirectly affect air pollution.
During the lockdowns and restrictions imposed to control the spread of the virus, there was
a noticeable reduction in economic activities and transportation, leading to a temporary
improvement in air quality in many urban areas. This reduction in pollution provided a
glimpse of what cleaner air could look like with the appropriate measures in place [3,4].

Given the anticipated repercussions of climate change, endeavors to achieve sustain-
ability have become paramount across various sectors, including the construction domain.
Measuring the extent of atmospheric contamination resulting from diverse activities has
emerged as a critical objective. Construction sites, spanning protracted periods, invari-
ably generate substantial amounts of pollution. Within the construction industry, which
accounts for approximately 12% of global emissions, the emission of greenhouse gases
(GHG) remains a prominent concern. The Delhi Pollution Control Committee (DPCC) has
officially reported that emissions from construction sites account for 30% of dust-related
air pollution. Excavation, the operation of diesel engines, demolition, incineration, and
the handling of toxic substances are among the manifold construction undertakings that
contribute to air pollution. The principal catalyst behind the release of nitrogen and sulfur
oxides during construction projects is the utilization of heavy machinery—namely, excava-
tors, loaders, bulldozers, and others—which burn fossil fuels. Excavation work primarily
attributes to particulate matter (PM) pollution on construction sites. Diesel engine exhausts,
diesel generator sets, vehicles, and heavy equipment constitute significant sources of PM2.5.
Moreover, the air pollution dilemma is exacerbated by the emission of harmful substances
from oils, adhesives, solvents, paints, treated timber, plastics, cleaning agents, and other
perilous chemicals widely employed within construction sites [5].

In 2015, the Sustainable Development Goals (SDGs), also known as the 2030 Agenda
for Sustainable Development, were adopted by 193 countries [6]. Within these goals, air
pollution is specifically addressed in two targets: SDG 3.9, which aims for a substantial
reduction in the health impacts from hazardous substances, and SDG 11.6, which focuses
on reducing the adverse effects of cities on people. Taking action in the energy sector is
crucial for achieving these SDGs related to air pollution [7,8]. The majority of sulfur dioxide
(SO2) and nitrogen oxide (NOX) emissions, as well as approximately 85% of particulate
matter (PM) emissions, are associated with energy-related activities. These three primary
pollutants have significant direct and indirect consequences on air pollution, resulting from
chemical reactions and atmospheric transport. Among them, PM2.5 poses the highest risk
to human health, while sulfur and NOX (which contribute to ozone formation) are linked
to various illnesses and environmental harm [5,9]. The Sustainable Development Scenario
(SDS) is designed to align with the selected SDGs established by the United Nations. It aims
to achieve three interrelated objectives: ensuring universal access to affordable, reliable, and
modern energy services by 2030 (SDG 7.1), significantly reducing air pollution that leads
to high mortality and disease (SDG 3.9) and taking effective measures to combat climate
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change (SDG 13). Serbia leads the construction sector in the Balkan region, experiencing
annual growth. In August 2022, there were 2562 permits granted for construction projects.
This upward trend in construction poses the risk of significantly increasing greenhouse
gas concentrations and other pollutants. Consequently, it becomes imperative to establish
the real-time monitoring of noxious gases and particulate matter (PM). Such monitoring
aims to provide insights into pollutant levels and their correlation with atmospheric con-
ditions, thereby facilitating the formulation of measures to mitigate the concentration of
harmful emissions.

Despite the escalating construction activities in Serbia, the implementation of a real-
time emission monitoring tool remains absent from construction sites. This tool is crucial in
helping construction teams prevent the excessive release of harmful substances. The signif-
icance of adopting such a system and conducting this type of research lies in safeguarding
the health of construction site workers, who often face health issues due to adverse working
conditions and poor air quality. At times, the air quality at these sites deteriorates to such
an extent that it poses a direct threat to the lives of the labor force.

This problem deserves much more attention due to the impact on the health of the
population in the immediate vicinity of the construction site, too. The results of this
research provide the new possibility of predicting air quality at the construction site, given
the possibility of predicting meteorological parameters. This fact is significant because it
suggests the possibility of planning and managing the works in such a way that the health
of the workers, the population, and the environment are minimally affected. This way
of working and this approach to complex activities on the construction site represents a
sustainable way of managing the construction site and the construction project as a whole.

Particulate matter (PM) is among the most pervasive air pollutants globally, alongside
NOX, photochemical oxidants, ozone (O3), carbon monoxide (CO), lead (Pb), and sulfur
dioxide (SO2) [10,11]. Recent studies have focused on dust concentration at construction
sites, specifically examining PM10 and PM2.5 [12–14]. These studies have identified numer-
ous factors influencing PM concentrations at construction sites. Notably, the surrounding
areas of the construction site can serve as a source of emissions that are transported and
detected at the site, independent of on-site activities, referred to as background emis-
sions. The impact of meteorological factors on pollutant concentrations, including PM, has
been explored through several investigations, yielding conflicting perspectives. Certain
authors [15] emphasize the considerable influence of meteorological parameters on PM con-
centrations at construction sites, yet due to limited measured data, a model linking PM con-
centrations to meteorological parameters remains elusive. Conversely, other researchers [16]
contend that dust emissions from construction sites exhibit significant seasonal fluctuations,
corroborated by additional studies [17]. This underscores the strong correlation between
PM concentration and meteorological parameters. Some research [18,19] exploring the
relationship between construction activities and meteorological parameters has found a
highly positive correlation between PM and wind speed and relative humidity, while the
correlation with temperature is weak. Apart from excavation work, internal construction
activities within buildings also contribute to emissions. Kinsey et al. [20] discovered that ve-
hicles departing from construction sites can carry substantial amounts of dust and sediment
onto nearby roads, resulting in secondary dust dispersion. Azarmi et al. [21] carried out
extensive monitoring during specific stages of work, including concrete mixing, drilling,
and cutting. They found that concentrations of PM10, PM2.5, and PM0.1 during drilling and
cutting activities were up to 14 times higher than the background levels [21]. In a study
by Moraes et al. [12], the focus was on monitoring PM10 concentrations resulting from
concrete and masonry work in construction activities. These and similar investigations
have provided evidence that certain work phases and activities on construction sites play a
crucial role in influencing PM concentrations [22].

The objective of this research is to conduct a more comprehensive and detailed analysis
of the relationship between NO2 and PM concentrations emitted from excavation work on
construction sites and meteorological parameters. The data analysis aims to explore the
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feasibility of employing predictive models to estimate NO2 and PM concentrations based
on meteorological parameters.

2. Materials and Methods

The investigation encompassed the assessment of airborne concentrations of PM2.5,
PM10, and NO2, as well as the measurement of meteorological variables (including air pres-
sure, temperature, humidity, wind speed, and wind direction). The study was conducted at
a construction site in Belgrade (refer to Figure 1) over a 15-day period in July 2022, spanning
from the first to the fifteenth of the month. Notably, the excavation zone is situated to
the west of the monitoring station, while other emission sources on the construction site,
such as the construction waste disposal area, carpentry workshop, and reinforcement work,
are located north of the monitoring device. Figure 2 illustrates the distances between
the measuring station and each individual emission source. Throughout the weekdays
(Monday to Saturday), two electric-powered machines (excavators) were employed in the
excavation zone. Heavy excavation activities were conducted from 07:00 to 17:00 h, except
on Sundays.

Atmosphere 2023, 14, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 1. Location of the construction site in Belgrade, Serbia. 

 
Figure 2. Illustration of the construction site indicating the locations of the monitoring station, 
excavation area, and other possible emission sources. 

The measurement devices utilized were portable sensors capable of indoor and 
outdoor use. Housed within the measurement station, these devices recorded 
measurements every 5 min. The RS-MG111-WIFI-1 (Shandong Renke Control Technology 
Co., Ltd, Shandong, China) served as an air environment multi-element transmitter, 
detecting NO2, PM2.5, and PM10 concentrations at the measurement site (Figure 3). 
Equipped with an imported sensor and a control chip known for its high precision, 
resolution, and stability, this transmitter seamlessly connected to the on-site WIFI 
network. It formed an integrated online air environment monitoring system, commonly 
employed in various settings such as smart homes, schools, hospitals, airports, and train 
stations, offering energy-saving solutions in heating, ventilation, and air conditioning 

Figure 1. Location of the construction site in Belgrade, Serbia.

The waste excavated material was transported off-site once every day by the same
truck. It was not possible, and so was not a goal of this study, to reliably confirm the origins
of the polluting substances in the air, but the main off-site factor affecting the real-time data
on the air pollutant concentration collected near the construction site is traffic, specifically
several busy road routes located at relatively short distances from the construction site, as
shown in Figure 1. However, during the entire measurement period, heavy earth excavation
works were carried out and were temporally predominant, while the only other work,
interior construction inside nearby buildings, was only very sporadically conducted during
the measurement period. For this reason, we believe that we can attribute the air pollution
at the site to the heavy earthworks. Therefore, the focus of this study was on the impact
of meteorological conditions on PM and NO2, considered to be from the heavy earth
excavation works, in the air.
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Figure 2. Illustration of the construction site indicating the locations of the monitoring station,
excavation area, and other possible emission sources.

The measurement devices utilized were portable sensors capable of indoor and out-
door use. Housed within the measurement station, these devices recorded measurements
every 5 min. The RS-MG111-WIFI-1 (Shandong Renke Control Technology Co., Ltd, Shan-
dong, China) served as an air environment multi-element transmitter, detecting NO2,
PM2.5, and PM10 concentrations at the measurement site (Figure 3). Equipped with an
imported sensor and a control chip known for its high precision, resolution, and stability,
this transmitter seamlessly connected to the on-site WIFI network. It formed an integrated
online air environment monitoring system, commonly employed in various settings such
as smart homes, schools, hospitals, airports, and train stations, offering energy-saving
solutions in heating, ventilation, and air conditioning systems. Another device used was
the CC-M12 weather station with RH&T and 4G communication, which measured wind
direction (WD), wind speed (WS), air temperature, air pressure, and humidity (Chao Sensor
Group, Zhejiang, China) (Figure 4).
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This comprehensive system provided real-time insight into air quality for construction
site managers and company stakeholders. It facilitated the identification of harmful gas
emissions from three primary construction activities: earthworks, transportation, and
interior works. Web and mobile applications enabled data visualization through maps, lists,
and charts, along with notifications and alarms for values exceeding predefined thresholds.
The system incorporated algorithms for data processing and allowed for data export in
CSV format.

The price and the parameters that can be measured were significant factors when
choosing a multi-sensor. The sensor is positioned in the middle part of the construction site,
surrounded by construction activities at a relatively short distance, enabling the detection
of polluting substances resulting from those activities. In our research, we utilized a
combination of optimization techniques to ensure accurate and reliable measurements of
PM particles and NO2 levels. The sensors’ calibration was carefully conducted to minimize
any potential biases and enhance their precision. To assess the sensors’ performance,
we conducted rigorous comparative analyses with reference-grade instruments known
for their accuracy and commonly used as the standard in air quality monitoring. This
comparison allowed us to evaluate the performance of our IoT sensors and identify any
potential discrepancies or variations in the measurements. Moreover, we addressed the
validation of the IoT sensors by conducting field tests in diverse environmental conditions.
This validation process involved monitoring air quality at different locations and times,
covering various pollutant levels and weather conditions. The collected data were then
compared against established air quality indices and regulatory standards to ensure the
reliability and credibility of our sensor measurements.

To ensure data quality, the sensors were calibrated against an official site, demonstrat-
ing an accuracy exceeding 0.98. Calibration involved a field collocation method, where
a low-cost device was colocated with a public air quality monitoring station for a 15-day
period, capturing hourly averaged values from both devices. A Least Squares Method
(LSM) [23] was employed as one of the commonly used calibration techniques due to
its simplicity.

A research flow chart presents the research process (Figure 5). For data analysis in
this study, SPSS 23.0 statistical software and Excel were utilized. Data modeling, including
multiple linear regression (MLR) and artificial neural network (ANN), was performed
using Statistica v.13 software (StatSoft, Dell, Round Rock, TX, USA).

The MLR model involved fitting a linear equation to the observed data, allowing for
the examination of relationships between variables without indicating a causal mechanism.
This model was crucial in determining how meteorological factors influenced air pollutant
concentrations. Consequently, NO2 and PM concentrations were treated as responses to
meteorological variables acting as predictors.
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The ANN, a widely used prognostic method, served as a solution when other statistical
techniques were not applicable. Its advantages, such as learning from examples, fault
tolerance, real-time operation, and forecasting non-linear data, made it the preferred choice.
The ANN models accurately captured non-linear variables, distinguishing themselves
from the multivariate linear analysis that relies on linear variables. These models aimed to
simulate the functioning of neurons in the human brain through mathematical functions.
The multilayer perception (MLP) consisted of input layers corresponding to input data,
hidden layers with interconnected artificial neurons, and an output layer with “target”
neurons for predictions.

The coefficient of determination (R2) was employed as an indicator to assess whether
the data provided sufficient evidence for reliable predictions. It measured the degree to
which the prediction models fit the data, with values ranging from zero to one. A higher
value closer to one indicated a more accurate prediction.

3. Results and Discussion

The measurement results over the measurement period are shown in Figures 6 and 7.
Data are given for work hours, showing the separate work hours from 07:00 to 17:00 h
on work days (Monday to Saturday). Three sets of data were obtained by monitoring
the concentrations of polluting substances (PM2.5, PM10, and NO2) in air. As shown
in Figures 3 and 4, these three sets of data are plotted as box plots (NO2, PM10, and
PM2.5). From the results shown, it can be seen that PM2.5 concentrations ranged from 1 to
38 µg/m3. The mean PM2.5 concentration during work hours was 14.66 µg/m3. The 24-h
mean concentrations of PM2.5 for all 15 days were: 26.46, 14.69, 21.06, 26.87, 27.09, 15.76,
15.16, 16.55, 11.66, 7.26, 5.75, 9.38, 8.36, 10.20, and 15.26 µg/m3.
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Figure 7. (a) Atmospheric pressure at the construction site during excavation works in a period of
15 days (data from work hours). (b) Humidity at the construction site during excavation works in a
period of 15 days (data from work hours). (c) Temperature at the construction site during excavation
works in a period of 15 days (data from work hours). (d) Wind speed at the construction site during
excavation works in a period of 15 days (data from work hours).

PM10 concentrations during work hours ranged from 2 to 41 µg/m3. The mean
concentration was 16.05 µg/m3. The 24-h mean concentrations of PM10 for all 15 days were:
29.18, 16.22, 23.05, 30.21, 30.15, 16.97, 16.04, 17.50, 12.69, 7.98, 6.48, 10.55, 9.11, 11.08, and
16.94 µg/m3. The highest PM10 and PM2.5 concentrations were measured during the night
(non-work) hours, which could be attributed to the stable stratification of the atmosphere,
according to [24].
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The relationship between PM10 and PM2.5 concentrations (from a daily average) was
calculated. The PM2.5 concentration was approximately 90% of the PM10 concentration.
The PM2.5 to PM10 ratios for all 15 days were: 90.7%, 90.6%, 91.4%, 88.9%, 89.8%, 92.9%,
94.5%, 94.6%, 91.9%, 91.0%, 88.7%, 88.9%, 91.8%, 92.1%, and 90.1%. In accordance with the
calculated values, we can indirectly estimate the emission sources. High ratios indicate
industrial and traffic emissions.

Based on the limits set by the World Health Organization (WHO), Geneva, Switzer-
land [25], the annual mean for PM2.5 concentration should not surpass 5 µg/m3, while the
24-h mean should not exceed 15 µg/m3. For PM10, the annual mean limit is 15 µg/m3,
and the 24-h mean limit is 45 µg/m3. After analyzing the average 24-h means of PM2.5
and PM10 concentrations at our construction site, it can be concluded that PM2.5 poses a
significantly higher health risk. This is due to the measured concentrations consistently
exceeding the prescribed daily limit set by the WHO, even on non-work days, on more than
50% of occasions. In contrast, the PM10 concentrations did not exceed the permissible 24-h
mean, according to WHO standards, as frequently. The Republic of Serbia implemented
the Law on Air Protection in 2009 to align with European Union (EU) regulations, which
have less stringent standards compared to the WHO. Both PM2.5 and PM10 concentrations
display a right-skewed distribution pattern.

The NO2 concentrations (during work hours) ranged from 0 to 510 µg/m3. The mean
NO2 concentration during work hours was 167.741 µg/m3. A significantly higher NO2
concentration was observed at the construction site during work hours than during non-
work hours. For the entire 15 days, the work-hours mean NO2 concentration was about 70%
higher than the 24-h mean. The concentration of NO2 in the air could have been impacted
by the transport of the waste that was taken to the construction waste disposal site by
truck every day, but also by the off-site traffic from nearby roads. For NO2 a right-skewed
distribution can be observed too.

Four sets of meteorological data (wind speed, temperature, humidity, and atmospheric
pressure) were obtained. As shown in Figure 7, the four sets of data are plotted in box
plots. The pressure ranged from 999 to 1010 kPa throughout the work hours. The average
atmospheric pressure was 1004.307 kPa. For pressure, a left-skewed distribution can
be observed.

The work-hours mean humidity ranged from 13.75 to 80.4%, and the work-hours
mean humidity was 40.67%.

The work-hours mean air temperature ranged from 15.2 to 41.1 ◦C. The work-hours
mean air temperature was 28.6 ◦C. For humidity and temperature, right-skewed distribu-
tions can be observed.

The wind speed (24-h mean) ranged from 0 to 2 m/s during work hours. The mean
wind speed during work hours was 0.467 m/s.

Table 1 shows the values of the Spearman correlation coefficients for the measured
parameters, from which we can conclude that the concentrations of PM10 and PM2.5 were
not significantly correlated with any meteorological factor. A very high correlation between
PM2.5 and PM10 concentrations was observed. This coefficient was chosen in accordance
with the fact that the data do not have a normal distribution.

The absence of a correlation between dust and the examined meteorological factors
can be attributed to the multifaceted nature of construction dust influences. Construc-
tion activities directly contribute to the generation of construction dust, making them the
primary driver [20] of construction dust levels, surpassing the impact of meteorological
factors. Throughout the monitoring period, the meteorological conditions remained rela-
tively stable, which may have mitigated or limited the influence of meteorological factors
on construction dust. Precipitation emerges as the primary factor that affects dust levels.
Consequently, it can be inferred that the emission of construction dust shows no significant
association with any meteorological factor when these factors exhibit minimal variation.
To some extent, this finding aligns with the conclusions drawn from studies investigating
urban PM10 and PM2.5 levels [26,27].
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Table 1. Values of the Spearman correlation coefficient among the measured parameters.

NO2 PM10 PM2.5 Pressure Humidity Temperature Wind
Direction

Wind
Speed

NO2 1 0.239763 0.253295 0.051102 −0.37261 0.957658 0.333358 0.269198
PM10 1 0.986733 −0.07757 0.165151 0.194665 0.177881 0.14115
PM2.5 1 −0.10016 0.149039 0.2059 0.17116 0.134286

Pressure 1 0.763782 −0.02965 0.576633 0.668878
Humidity 1 −0.44567 0.402222 0.520197

Temperature 1 0.271544 0.195947
Wind

direction 1 0.819766

Wind
speed 1

Figure 8 shows pollution roses for NO2, PM2.5, and PM10, indicating the relationship
between the pollutant concentrations and the wind direction. Clearly, the S-W wind was
the predominant wind direction as it had the greatest contribution to the concentrations of
air pollutants (Figure 2). This was likely due to the nearby excavation zone.
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The Conditional Probability Function (CPF) calculates the probability that a source is
located within a particular wind direction sector (Figure 9). CPF is useful for determining
the direction of a source with respect to a receptor site. However, it cannot determine the
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actual location of the source. Pollution in this case, for NO2 concentrations, comes from the
south, predominantly (Figure 9a).

PM10 pollution comes from the south, southwest and west, predominantly (Figure 9b).
The location of the excavation zone is west of the measuring station, so the real-time data on
the air pollutant concentration collected cannot all be attributed to the earthworks. Similar
results are shown for PM2.5 (Figure 9c).
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Two prediction models were developed based on the experimental data, the MLR
(multiple linear regression) and the ANN (artificial neural network) models (Figure 10). A
set of 1492 data were used, since not all of the expected 1800 data were valid. In shorter
periods of time during the operation of the device for measuring parameters, the power
supply was interrupted, or the internet connection was interrupted.
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3.1. Prediction Model for Air Pollutant Concentrations: ANN-Model

For the ANN model, 1040 data were used for training, 452 for testing, and 1492 for
model validation. Predictors for the model for NO2, PM10 and PM2.5 prediction were wind
speed (m/s), pressure (kPa), humidity (%), wind direction (◦), and temperature (◦C). The
dependent variables were the concentrations of NO2 (µg/m3), PM10 (µg/m3) and PM2.5
(µg/m3). The R2 coefficient of determination for NO2 was 0.967, for PM10 it was 0.668, and
for PM2.5 it was 0.706. The results are presented in Figure 11.
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Figure 11. ANN model results for (a) NO2, (b) PM10, and (c) PM2.5 concentrations in µg/m3.

3.2. Prediction Model for Air Pollutant Concentrations: MLR Model

The predictors for the model for NO2 prediction were wind speed (m/s), pressure
(kPa), humidity (%), wind direction (◦), and temperature (◦C). The dependent variable was
NO2 (µg/m3). Model results for NO2 are shown in Tables 2–4.

Table 2. Model summary (R—coefficient of correlation, R2—coefficient of determination, Std. Error
of the Estimate—standard error of the estimate) for NO2 prediction.

R R2 Adjusted R2 Std. Error of the Estimate

0.958 0.917 0.917 41.700

Table 3. ANOVA table (Df—degrees of freedom, F—ratio of between group variation and within
group variation, Sig.—significance level) for NO2 prediction.

Model Sum of Squared Df Mean Square F Sig.

Regression 28,724,409.308 5 5,744,881.862 3303.797 0.000

Residual 2,583,964.619 1486 1738.873

Total 31,308,373.928 1491

The predictors for the model for PM10 prediction were wind speed (m/s), pressure
(kPa), humidity (%), wind direction (◦), and temperature (◦C). The dependent variable was
PM10 concentration (µg/m3). Model results for PM10 are shown in Tables 5–7.
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Table 4. Model coefficients (t—t-statistics, Sig.—significance) for NO2 prediction.

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

Constant −899.221 633.401 −1.420 0.156

Pressure (kPa) 0.380 0.618 0.007 0.615 0.539

Humidity (%) −0.361 0.129 −0.034 −2.791 0.005

Temperature (◦C) 24.464 0.429 0.938 57.070 0.000

Wind direction (◦) 0.017 0.018 0.008 0.949 0.343

Wind speed (m/s) −1.368 2.227 −0.005 −0.614 0.539

Table 5. Model summary (R—coefficient of correlation, R2—coefficient of determination, Std. Error
of the Estimate—standard error of the estimate) for PM10 prediction.

R R2 Adjusted R2 Std. Error of the Estimate

0.726 0.527 0.525 7.290

Table 6. ANOVA table (Df—degrees of freedom, F—ratio of between group variation and within
group variation, Sig.—significance level) for PM10 prediction.

Model Sum of Squares df Mean Square F Sig.

Regression 87,955.640 5 17,591.128 331.014 0.000

Residual 78,970.743 1486 53.143

Total 166,926.383 1491

Table 7. Model coefficients (t—t-statistics, Sig.—significance) for PM10 prediction.

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

Constant 1948.335 110.731 17.595 0.000

Pressure (kPa) −1.951 0.108 −0.523 −18.068 0.000

Humidity (%) 0.418 0.023 0.543 18.479 0.000

Temperature (◦C) 0.432 0.075 0.227 5.771 0.000

Wind direction (◦) 0.007 0.003 0.048 2.276 0.023

Wind speed (m/s) −1.971 0.389 −0.107 −5.063 0.000

The predictors for the model for PM2.5 prediction were wind speed (m/s), pressure
(kPa), humidity (%), wind direction (◦), and temperature (◦C). The dependent variable was
PM2.5 concentration (µg/m3). Model results for PM2.5 are shown in Tables 8–10.

Table 8. Model summary (R—coefficient of correlation, R2—coefficient of determination, Std. Error
of the Estimate—standard error of the estimate) for PM2.5 prediction.

R R2 Adjusted R2 Std. Error of the Estimate

0.765 0.586 0.584 5.900
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Table 9. ANOVA table (Df—degrees of freedom, F—ratio of between group variation and within
group variation, Sig.—significance level) for PM2.5 prediction.

Model Sum of Squares Df Mean Square F Sig.

Regression 73,093.861 5 14,618.772 419.966 0.000

Residual 51,726.752 1486 34.809

Total 124,820.613 1491

Table 10. Model coefficients (t—t statistics, Sig.—significance) for PM2.5 prediction.

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

Constant 1730.920 89.617 19.315 0.000

Pressure (kPa) −1.736 0.087 −0.538 −19.858 0.000

Humidity (%) 0.384 0.018 0.577 20.989 0.000

Temperature (◦C) 0.453 0.061 0.275 7.477 0.000

Wind direction (◦) 0.006 0.002 0.048 2.409 0.016

Wind speed (m/s) −1.570 0.315 −0.099 −4.984 0.000

From the applied models (Tables 2–10) and Figure 11, based on R2 values, the ANN
model showed greater accordance with the measured air pollutant concentrations than the
MLR model.

4. Conclusions

The main motivation of the presented research is to investigate the impact of construc-
tion activities on air quality at the construction site itself, directly affecting the health of
the workers and the immediate environment. Additionally, the challenge lies effectively
in organizing activities to minimize harmful impacts. By aligning activities with weather
conditions, to the greatest extent possible, we can significantly improve environmental
quality. Therefore, it is crucial to establish a connection between weather conditions, meteo-
rological parameters, and air quality parameters. Understanding their interrelation can aid
in predicting pollution levels based on forecasted weather conditions, providing valuable
information for sustainable construction management.

To assess the primary factors influencing dust and NO2 concentrations originating
from construction activities and their impact on the construction site, meteorological data
and airborne pollutant measurements were collected. The findings aimed to establish a
foundation for mitigating the effects of construction-related dust and NO2 emissions on
the construction area. The monitoring conducted at a construction site in Belgrade City
revealed significantly elevated dust concentrations during construction activities. The
average PM10 concentration during working hours was 16.05 µg/m3, while the average
PM2.5 concentration was 14.7 µg/m3. Additionally, the average NO2 concentration during
working hours was 167.741 µg/m3. Analysis of the working-hour data indicated that PM2.5
posed a significantly greater health risk as its concentrations exceeded the recommended
daily limits by a considerable margin. Regarding the main factors affecting construction
dust and NO2 concentrations, the results demonstrated the lack of a significant correla-
tion with individual meteorological factors, despite minimal variations in these factors
throughout the study. Given the weak correlation between PM and NO2 concentrations
and meteorological parameters, both multiple linear regression (MLR) and artificial neural
network (ANN) models were employed for predictive purposes. The ANN model exhib-
ited a better accordance with the measured air pollutant concentrations compared to the
MLR model.



Atmosphere 2023, 14, 1267 18 of 19

In the future, the research will concentrate on examining the influence of work dy-
namics (such as the number of construction equipment) on air quality. This investigation
will consider meteorological parameters and predict the impact of various construction
activities on air quality at the construction site.
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