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Abstract: We examined the influence of significant 21st century warming on the radial growth pat-
terns of shortleaf pine growing on adjacent north/northeast- and south/southwest-facing slopes
(hereafter NS and SS), in the Uwharrie Mountains of North Carolina, USA. Using two chronolo-
gies developed from old-growth trees dating to the 1700s, we compared raw radial growth rates
(hereafter radial growth) associated with earlywood, latewood, and totalwood during 1935–2020.
Both chronologies exhibited similar (r = 0.951, p < 0.001) age-related growth decreases through the
20th century. However, both chronologies experienced abrupt increases in radial growth with less
fidelity (r = 0.86, p < 0.001), correlating with the onset of warming mean annual temperatures (r = 0.58,
p < 0.01) and warming winter temperatures (r = 0.55, p < 0.05) in 2002. These results show that
shortleaf pine growing on both NS and SS have experienced significant radial growth increases since
the early 21st century, but that aspect affected growth rates. During 2002–2020, NS radial growth
increased significantly (p < 0.05) more than SS earlywood, latewood, and totalwood, indicating that
the effects of warming were greater for NS trees. We conclude that old-growth shortleaf pine trees
retain climatic sensitivity to significant environmental changes associated with a warming climate
and can reverse age-related growth declines.

Keywords: topographic aspect; dendrochronology; southeastern USA; radial growth patterns;
shortleaf pine

1. Introduction

Shortleaf pine (Pinus echinata Mill.) has the widest distribution of any southeastern
USA pine, ranging from southern New York to eastern Texas. Growing at elevations
between 3 and 900 m and commonly found in deep, well-draining soils [1], the species is
both ecologically and economically important [2]. Further, shortleaf pine is commonly used
for dendrochronological studies (e.g., [3–6]) because it is a long-lived species exceeding
300 years [7] that exhibits climate sensitivity. Less is known about its responses to a warming
climate [8,9] and how these changes may affect the species’ use in dendrochronological research.

Radial growth patterns of shortleaf pine respond to variations in temperature and precipi-
tation, particularly warm (−) or wet summers (+), above-average winter temperatures (+), and
absence of extreme minimum temperatures (+) [9–12]. Correlations with Palmer Drought Severity
Index (PDSI) [13], a measure of soil moisture, are positively associated with radial growth from
early summer (May) to late summer (September) [11,12]. Further, Friend and Hafley (1989) [14]
found that high spring temperatures and high soil moisture levels provided a consistent positive
influence on annual cambial growth, potentially due to an earlier onset of cambial activity.

Other factors in concert with climate may influence the radial growth of temperate
trees. Topographic aspect can impact site-specific environmental conditions [15] that in
turn can affect radial growth [16]. The greatest impact of topographic aspect on microen-
vironmental features occurs in the mid-latitudes (30–60◦ north and south) [17,18] and

Atmosphere 2023, 14, 1240. https://doi.org/10.3390/atmos14081240 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14081240
https://doi.org/10.3390/atmos14081240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0009-0000-6971-2258
https://doi.org/10.3390/atmos14081240
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14081240?type=check_update&version=1


Atmosphere 2023, 14, 1240 2 of 9

is the result of differences between solar radiation receipt [15,19] that affects humidity,
soil moisture, and temperature [15,20,21]. Further, site-specific variability of temperature
regimes related to topographic aspect can impact the climatic sensitivity of trees [22] and
may promote divergence (i.e., less correlation) between temperature and radial growth
patterns. For example, Leonelli et al. (2009) [22] found that topographic aspect influences
growth divergence patterns with south-facing slopes experiencing greater divergence from
summer temperatures while north-facing slopes experienced stable relationships with
summer temperatures. Microclimatic conditions between north- and south-facing slopes
can affect the radial growth patterns of trees due to induced environmental stress associated
with temperature and/or soil moisture [19,20,22–25].

Little research, however, has addressed the potential role that topographic aspect has on
shortleaf pine radial growth [11]. Here, we address the interaction between radial growth,
aspect, and 21st century warming conditions in the Uwharrie Mountains, North Carolina, USA.
Despite extensive research on shortleaf pine, the interactive effects of aspect and changing
climate on radial growth is less understood. We evaluate radial growth patterns of two
old-growth shortleaf pine populations growing on adjacent north- and south-facing slopes
in the Uwharrie Mountains. Specifically, we evaluate (1) radial growth patterns between
adjacent north-and south-facing slopes, (2) climate/growth responses between stands, and
(3) if the onset of warming average temperatures differentially affected radial growth rates.

2. Materials and Methods

We collected tree-ring data from mature shortleaf pine on adjacent north/northeast-
and south/southwest-facing slopes separated by 0.15 km in the Uwharrie Mountains
(35.401467, −80.037806, Figure 1). The Uwharries are comprised of bouldery slopes with
varying steepness (2–50%) and narrow ridge crests [26] with shallow A and B horizons [27].
We sampled shortleaf pine on steep (30–40%), extremely bouldery slopes comprising
Georgeville silt loam [28] at elevations between 180–250 m. The slopes support a mixed
hardwood–coniferous forest consisting of chestnut oaks (Quercus prinus), shortleaf pine,
Virginia pine (Pinus virginiana), and relict longleaf pine (Pinus palustris) [29,30].
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2022 on the NS. Two 5.15 mm diameter increment cores were sampled from each tree on 
opposite sides at approximately 1.3 m height, and basal diameter, height, and GPS coor-
dinates were recorded. We excluded trees with rot, fire damage, or missing tops from 
sampling. A previously constructed chronology from the SS comprising 33 samples and 
extending to 2020 [6,32] was used to compare the growth trends between the slopes.  

The samples were dried and glued into wooden core mounts sanded with progres-
sively finer grit (120–600 µm) until the growth rings were clearly visible and could be 
scanned at 1200 DPI resolution. We uploaded scans into WinDENDRO (Regent Instru-
ments Inc., Québec City, Quebec, Canada 2013), measured ring widths at 0.001 mm preci-
sion [33] and verified cross-dating accuracy using COFECHA [34]. WinDENDRO com-
piles ring width data into three separate chronology files with measurements for ear-
lywood, latewood, and totalwood (Guay 2012). ARSTAN [34] was used to standardize all 
chronologies using the negative exponential function as well as generating a raw ring 
width chronology. However, we elected to use raw ring widths (hereafter ring widths or 
radial growth) to avoid potential inflation of widths near the end of a record (“end effect”) 
caused by some standardization methods, particularly for older trees experiencing age-
related narrowing [35]. Likewise, Soulé et al. 2019 [36] found that raw ring widths pro-
vided the strongest climate signal for trees old enough to where the age-related decline 
was less operative. We confirmed that the aggregated data were not affected by a few 
samples that expressed anomalous raw ring widths by examining individual cores to de-
termine if radial growth was consistent among the samples.  

Figure 1. Map Inset: map of North Carolina with the Uwharrie National Forest shown in red. Map:
10 m elevation contour map displaying trees sampled on the NS (blue circles) and SS (red circles)
sites. Map created using MapBox [31].
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We collected shortleaf pine samples from 30 adult trees in December 2021 and
June 2022 on the NS. Two 5.15 mm diameter increment cores were sampled from each
tree on opposite sides at approximately 1.3 m height, and basal diameter, height, and GPS
coordinates were recorded. We excluded trees with rot, fire damage, or missing tops from
sampling. A previously constructed chronology from the SS comprising 33 samples and
extending to 2020 [6,32] was used to compare the growth trends between the slopes.

The samples were dried and glued into wooden core mounts sanded with progres-
sively finer grit (120–600 µm) until the growth rings were clearly visible and could be
scanned at 1200 DPI resolution. We uploaded scans into WinDENDRO (Regent Instruments
Inc., Québec City, QC, Canada 2013), measured ring widths at 0.001 mm precision [33] and
verified cross-dating accuracy using COFECHA [34]. WinDENDRO compiles ring width
data into three separate chronology files with measurements for earlywood, latewood, and
totalwood (Guay 2012). ARSTAN [34] was used to standardize all chronologies using the
negative exponential function as well as generating a raw ring width chronology. However,
we elected to use raw ring widths (hereafter ring widths or radial growth) to avoid potential
inflation of widths near the end of a record (“end effect”) caused by some standardization
methods, particularly for older trees experiencing age-related narrowing [35]. Likewise,
Soulé et al., 2019 [36] found that raw ring widths provided the strongest climate signal for
trees old enough to where the age-related decline was less operative. We confirmed that
the aggregated data were not affected by a few samples that expressed anomalous raw ring
widths by examining individual cores to determine if radial growth was consistent among
the samples.

We plotted each chronology with the adjacent slope chronology (e.g., NS LW chronol-
ogy plotted with SS LW chronology) to determine the radial growth differences. The slope,
r values, and mean annual radial growth were recorded to compare trends during three
periods: 1935–2001, when radial growth declined (early period); 2002–2020, when radial
growth increased (late period); and 1935–2020 (full period). We collected climate data from
NOAA’s National Centers for Environmental Information [37] for seasonal (winter = D–F;
spring = M–M; summer = J–A; fall = S–N) divisional time series for average, minimum, and
maximum temperature as well as precipitation, PDHI (Palmers Drought Hydrologic Index),
and PDSI from the Southern Piedmont Climate Division (CD5) of North Carolina. We
selected data from 1935–2020 to avoid potential errors associated with statewide averaging
of climate data prior to 1931 [38] and used bivariate correlation (SPSS 2021) to analyze
climate–growth relationships using monthly and seasonal climate data.

3. Results and Discussion

The NS chronology contained 33 shortleaf pine cores from 20 trees and the SS chronol-
ogy contained 32 cores from 20 trees. The median tree age on the NS was 120 years and
132 years on the SS. The age distribution of the NS and SS chronologies based on the inner-
most ring binned by decade ranged from 1790 to 1950 with the majority (65%) established
prior to 1900. Series intercorrelations for NS and SS chronologies ranged from 0.41–0.60
while mean sensitivities ranged from 0.27 to 0.43 with the highest values for LW for both
measures (Table 1).

Table 1. The number of dated series, series intercorrelation, and mean sensitivity of the NS and SS
chronologies for EW, LW, and TW.

Chronology Dated Series Series Intercorrelation Mean Sensitivity

NS EW 33 0.414 0.306
SS EW 32 0.487 0.277
NS LW 33 0.586 0.432
SS LW 32 0.602 0.416
NS TW 33 0.526 0.292
SS TW 32 0.588 0.270
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Raw radial growth widths of EW (Figure 2A), LW (Figure 2B), and TW (Figure 2C)
exhibited an expected age-related downward trend of growth [39] until the early 2000s,
when growth began to increase through the end of the record in 2020. TW growth between
the NS and SS chronologies are highly correlated (r = 0.941, p < 0.001) with a negative trend
in the early period (i.e., 1935–2001) but a positive trend with reduced fidelity (r = 0.86,
p < 0.001) during the late period (i.e., 2002–2020).
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Figure 2. Raw ring widths for NS and SS during 1935–2020 showing EW (A), LW (B), TW (C).

The relationship between radial growth and monthly climate variables varied by
period, aspect, and chronology. Average temperature was correlated (p < 0.05) with all
periods but varied by aspect and chronology (Figure 3A–F). Likewise, minimum winter
temperature was positively correlated with the late and full periods but varied by chronol-
ogy for the full period (Figure 3C,F). Minimum winter temperature was not correlated with
the early period (Figure 3A). Conversely, no significant correlations (p > 0.05) exist between
the chronologies and maximum temperature, PDHI, PDSI, or precipitation during the early,
late, and full periods.
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The late period trend correlated with the onset of warming mean annual tempera-
tures (r = 0.58, p < 0.01) and warming winter (Figure 3D–F) minimum temperatures (r = 
0.55, p < 0.05) (Figure 4). These results are consistent with the findings of Johnson and 
Abrams (2009) [40], who documented an increase in the growth rates of old-growth Pop-
ulus, Quercus, Pinus, Tsuga, and Nyssa in the eastern United States and counter to typical 
age-related radial growth decline [41]. Johnson and Abrams (2009) [40] proposed that 
growth increases in older trees may be related to either warming temperatures and/or 
land use changes, while others have identified an atmospheric CO2 fertilization effect for 
some pine species (e.g., [42,43]). Here, radial growth increases were significantly 

Figure 3. Correlation between raw ring widths and minimum winter temperature (A,C,E) and mean
annual temperature (B,D,F) during the early, late, and full periods for north and south aspects.
Significance is marked by ** (p < 0.01) and * (p < 0.05). SS LW r-value for the full period (−0.003) does
not appear in the figure.

The late period trend correlated with the onset of warming mean annual temperatures
(r = 0.58, p < 0.01) and warming winter (Figure 3D–F) minimum temperatures (r = 0.55,
p < 0.05) (Figure 4). These results are consistent with the findings of Johnson and Abrams
(2009) [40], who documented an increase in the growth rates of old-growth Populus,
Quercus, Pinus, Tsuga, and Nyssa in the eastern United States and counter to typical
age-related radial growth decline [41]. Johnson and Abrams (2009) [40] proposed that
growth increases in older trees may be related to either warming temperatures and/or
land use changes, while others have identified an atmospheric CO2 fertilization effect for
some pine species (e.g., [42,43]). Here, radial growth increases were significantly associated
with warming temperatures but not rising atmospheric CO2, nor were growth changes
coincident with land use modifications, suggesting that temperatures were the primary
driver of change. Mean annual radial growth for NS, EW, LW, and TW was greater than SS,
EW, LW, and TW for the early and full periods, and significantly greater (p < 0.05) during
the full and late periods. Further, the growth differences for LW and TW in the full period
were driven by the significance (i.e., magnitude of correlation coefficient) in the late period
(Figure 4 and Table 2).
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Table 2. Mann–Whitney U test calculated for each chronology by aspect for the early (1935–2001), late
(2002–2020), and full (1935–2020) periods, and the significance of difference. Significant p-values bolded.

Early Period

Chronology Difference of Means Significance

EW 0.01 0.73
LW 0.07 0.29
TW 0.08 0.4

Late Period

EW 0.13 <0.05
LW 0.15 <0.001
TW 0.28 <0.05

Full Period

EW 0.03 0.12
LW 0.09 <0.05
TW 0.12 <0.05

We suggest that warming winter temperatures have increased radial growth rates due
to an earlier onset of cambial growth, thus extending the growing season. The late period,
characterized by a warming trend and a significant (p < 0.05) reduction in colder winters
(<0 ◦C average), coincided with a significant (p < 0.05) growth divergence between the two
chronologies (Figure 2, Table 2). Conversely, there were no significant (p > 0.05) differences
between the two chronologies during the early period (Figure 2, Table 2). Specifically,
during the early period, the average minimum winter temperature was −0.74 ◦C with 33%
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of the years being above 0 ◦C while the average minimum winter temperature during the
late period was 0.5 ◦C with 69% of the years being above 0 ◦C. Further, comparison between
the early and late periods are distinguished by significantly (−0.74 ◦C verses 0.5 ◦C, p < 0.01)
warmer minimum winter temperatures suggesting that accelerated growth is an artifact of
the lack of freezing temperatures, concurring with Kosiba et al., 2018 [44]. Growing season
elongation due to climate change is well documented (e.g., [45–50]). Specifically, these
findings are consistent with cambial growth characteristics of shortleaf pine that develops
earlier in the spring than other southeastern U.S. Pinus species [14] and thus may be more
sensitive to early spring temperatures.

It is unlikely that other external factors contributed to the radial growth increases.
Atmospheric CO2 fertilization has been documented for several tree species (e.g., [51–53])
where increased water use efficiency has benefited trees growing in semiarid environments,
whereas others have found no or limited effects where soil moisture is not a limiting feature
(e.g., [54,55]), or that fertilization effect diminishes with tree age [42]. Further, neither
annual nor summer precipitation amounts during the full period significantly (p > 0.05)
changed, suggesting this variable was not a driver of growth increases. Lastly, no direct
anthropogenic disturbances such as logging were observed (no remnant stumps), and the
open woodland-like forest with a rocky understory is not conducive to fire spread that
would alter stand dynamics.

4. Conclusions

This study evaluated topographic aspect influences on radial growth patterns under
warming conditions within the Uwharrie Mountains of North Carolina, USA. We found that
ring widths of old-growth shortleaf pine were positively affected—regardless of aspect—by
warming winter minimum temperatures that likely created conditions favorable for an
earlier onset of cambial growth in the spring. However, climate–growth relationships were
not temporally stable. Here, chronologies built from opposite, but adjacent (0.15 km) slopes
expressed nearly identical growth rates during the 20th century but diverged significantly
beginning in the 21st century when winter minimum temperatures began rapidly warming.
An elongation of the growing season due to warming minimum temperatures suggests
potential increased forest productivity in this environment, but may be species-specific,
such as for shortleaf pine. These findings suggest that changes in tree physiology have
implications regarding site selection for dendrochronological studies and emphasize the
dynamic nature of tree growth under warming conditions.
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