
Citation: Jiang, X.; Ma, Y.; Ren, F.;

Ding, C.; Han, J.; Shi, J. Research on

Typhoon Precipitation Prediction

over Hainan Island Based on

Dynamical–Statistical–Analog

Technology. Atmosphere 2023, 14, 1210.

https://doi.org/10.3390/

atmos14081210

Academic Editor: Muhammad

Jehanzaib

Received: 7 June 2023

Revised: 22 July 2023

Accepted: 26 July 2023

Published: 27 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Research on Typhoon Precipitation Prediction over Hainan
Island Based on Dynamical–Statistical–Analog Technology
Xianling Jiang 1,2, Yunqi Ma 3,4, Fumin Ren 5,*, Chenchen Ding 6, Jing Han 1 and Juan Shi 1,2

1 Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province,
Haikou 570203, China; jiangxl0127@163.com (X.J.)

2 Hainan Meteorological Observatory, Haikou 570203, China
3 CMA Henan Key Laboratory of Agrometeorological Support and Applied Technique,

Zhengzhou 450003, China
4 Henan Meteorological Observatory, Zhengzhou 450003, China
5 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
6 Public Meteorological Service Center of CMA, Beijing 100081, China
* Correspondence: fmren@163.com; Tel.: +86-139-1032-4105

Abstract: Based on the Dynamical–Statistical–Analog Ensemble Forecast model for Landfalling
Typhoon Precipitation (DSAEF_LTP model), the optimal forecast scheme for the tropical cyclone
(TC) accumulated precipitation over Hainan Island, China (DSAEF_LTP_HN) is established. To
test the forecasting performance of DSAEF_LTP_HN, its forecasting results are compared with
other numerical models. The average threat score (TS) of accumulated precipitation forecast by
DSAEF_LTP_HN is compared with other numerical models over independent samples. The results
show that for accumulated precipitation ≥ 100 mm, the TS produced by DSAEF_LTP_HN reaches
0.39, ranking first, followed by ECMWF (0.36). For accumulated precipitation ≥ 250 mm, the TS of
DSAEF_LTP_HN (0.04) is second only to ECMWF (0.19). Further analysis reveals that the forecasting
performance of DSAEF_LTP_HN for TC precipitation is closely related to the TC characteristics. The
longer the TC impacts Hainan Island and the heavier the precipitation delivered to Hainan Island, the
better the forecasting performance of DSAEF_LTP_HN is. DSAEF_LTP_HN can successfully capture
the center of heavy precipitation. However, there is still a phenomenon of false forecasts for some TC
heavy precipitation, which requires further improvement of the model in the future.

Keywords: DSAEF_LTP_HN; Hainan Island; TC; accumulated precipitation; forecasting performance

1. Introduction

A tropical cyclone (TC) is a rotating and violent storm that occurs in the tropical ocean,
sometimes with extremely destructive power. It may cause an alarming loss of life and
property, and can become one of the most serious natural disasters on earth. As one of
the triggers of TC hazards, heavy rainfall can cause flash floods, river overflows, reservoir
collapses, and so on [1–4]. For example, Typhoon Nina (1975) caused an extraordinary
rainstorm event in Henan Province, resulting in more than 90,000 deaths, six medium-large
reservoirs collapsing, 102 km of the Beijing-Guangzhou Railway being destroyed, and direct
economic losses of nearly CNY 10 billion [5]. Therefore, to defend and mitigate the disasters
caused by TCs, it is crucial to improve the skill of TC precipitation forecasting. However, in
recent years, although the track forecasting of TC has become more and more mature, the
forecasting of precipitation caused by TCs has progressed slowly. Therefore, the study of TC
precipitation forecasting technology is very important, and it can provide a reference for the
government to make decisions when defending against TC heavy precipitation disasters.

Previous research results on forecasting techniques surrounding landfalling TC (LTC)
precipitation can be summarized into the following three categories: dynamical forecasts,
statistical forecasts, and dynamical–statistical forecasts. Dynamical forecasts mainly refer to
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numerical model forecasts. Although the numerical model has been improving the forecast-
ing skill of TC precipitation in recent years [6–15], its ability to forecast TC precipitation is
still limited [16–22]. Statistical forecasts [23–27] consider historical TC-caused precipitation,
but it is unlikely to be the mainstream direction for LTC precipitation forecasting because
of the lack of consideration of the physical processes (dynamical and thermal processes)
in the atmosphere. Therefore, dynamical–statistical forecasts have been proposed for fore-
casting LTC precipitation. For this approach, some studies used forecasted TC tracks and
historical precipitation data to forecast TC precipitation from a climatological average
perspective [28–30], some studies used rainfall integration of forecasted TC tracks and
initial rainfall rates to forecast LTC precipitation [31–33], and others considered dynamical–
statistical schemes constructed by various TC internal variables and their environmental
fields [34,35].

Recently, Ren et al. [36] proposed the theory of Dynamical–Statistical–Analog Ensem-
ble Forecast (DSAEF), and applied it to LTC accumulated precipitation (the precipitation on
land caused by a TC during its whole life) forecasting, developing the Dynamical–Statistical–
Analog Ensemble Forecast model for Landfalling Typhoon Precipitation (DSAEF_LTP
model). The model contained two physical factors initially: the TC track and the TC
landfall season. Subsequently, Ding et al. [37] introduced TC intensity into the model and
conducted rainfall forecasting experiments for 21 LTCs in South China. Other studies
added new values of two parameters to the model: similarity region [38] and ensemble
forecast scheme [39], and further improved the DSAEF_LTP model by conducting simula-
tion experiments for a single TC (Lekima) and 10 TCs, respectively, over China. To test the
forecasting performance of the improved model with the new parameter values added, Ma
et al. [40] and Qin et al. [41] applied the improved model to TC precipitation forecasting
in south China and southeast China, respectively, and found that the improved model
outperformed other dynamical models in forecasting heavy precipitation.

Hainan Island, the only tropical island in China, is affected by typhoons, with frequent
typhoon activities and serious heavy precipitation disasters. In addition, the complex
topography of Hainan Island, with high inland elevation in the south-central part and
low surrounding elevation, has a complex impact on TC precipitation, which increases the
difficulty of TC precipitation forecasting. Therefore, it is of great significance to further
study the precipitation forecasting technology suitable for Hainan Island. In this study, the
DSAEF_LTP model is used to establish a typhoon precipitation forecast scheme, to provide
a reference for improving the forecasting ability of typhoon extreme precipitation events
over Hainan Island. The second section of this paper introduces the data and methods, and
the third section presents the experimental design. The fourth section is the analysis of the
results, while the fifth section includes the conclusion and discussion.

2. Data and Methods
2.1. Data

The data include the best-track dataset for TCs in the Northwest Pacific from the
Shanghai Typhoon Institute of the China Meteorological Administration, the daily pre-
cipitation data (from 1200 UTC on the previous day to 1200 UTC on the current day) for
18 meteorological stations over Hainan Island, provided by the Meteorological Informa-
tion Center of Hainan Province, and the TC track and intensity forecast data from the
official subjective forecasts of the National Meteorological Information Center of the China
Meteorological Administration.

An important task of this study was to test the forecasting performance of the
DSAEF_LTP model. The forecasting data of other numerical models commonly used
for operational weather forecasting were selected to compare with the forecasting results
of the DSAEF_LTP model. These models include the China Meteorological Adminis-
tration Global Forecast System (CMA-GFS), available online (http://data.cma.cn/data/
cdcdetail/dataCode/A.0012.0001.html, accessed on 13 January 2022), the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) atmospheric model, available on-
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line (https://www.ecmwf.int/en/forecasts/datasets, accessed on 13 January 2022), and
the National Centers for Environmental Prediction Global Forecast System (NCEP-GFS),
available online (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
global-forcast-system-gfs, accessed on 14 January 2022). The horizontal resolutions of the
data of the CMA-GFS, ECMWF, and NCEP-GFS models were 0.25◦ × 0.25◦, 0.125◦ × 0.125◦,
and 0.25◦ × 0.25◦, respectively. To deal with the data uniformly, the horizontal resolutions
of the three models were converted into 0.1◦ × 0.1◦ by bilinear interpolation.

2.2. Methods

The DSAEF_LTP model proposed by Ren et al. [36] was used for the TC precipitation
forecasting experiments. The combination of the dynamic method and statistical method
of this model is mainly reflected in two aspects. Firstly, the DSAEF idea is absorbed in the
forecast theory, that is, an accurate model (the model describing the real atmosphere, which
is the ultimate goal of the development of the current numerical model) is used to make
forecasts and an ensemble forecast is adopted to achieve forecasts. Secondly, the forecasting
track of the numerical model is directly absorbed, considering that the forecasting track
is the biggest advantage of the numerical model of TC forecasting [42]. The characteristic
ability of the DSAEF_LTP model is to use the similarity of several physical factors that
affect TC precipitation for forecasting, which is different from directly constructing a
dynamic framework that affects TC precipitation. The model doesn’t refer to dynamic
factors directly but can reflect dynamic factors to some extent. When forecasting the
precipitation of a given TC (called target TC) using the DSAEF_LTP model, the forecasting
procedure consists of four steps, that is, (1) obtaining the forecast track of the target TC,
(2) determining the generalized initial values (GIVs), (3) identifying the similarity of the
GIVs, and (4) conducting an ensemble forecasting of TC rainfall. The first step takes
advantage of the good performance of the TC track forecasting of numerical weather
prediction (NWP). Considering that the TC track and the intensity of the official subjective
forecasts of the National Meteorological Information Center are revised from the results of
the NWP, the revised forecast can be comparable to the NWP forecast. In the second step,
GIVs are the physical variables that may impact TC precipitation, and are determined by
both TC internal variables and environmental variables. So far, the model has considered
three GIVs: TC track, landfall season, and intensity. The third step refers to the selection of
TCs similar to the target TC from the historical TCs within a rectangular region (similarity
region) of interest. The fourth step is to make an ensemble of the accumulated precipitation
of the selected similar TCs using the best ensemble scheme to obtain the accumulated
precipitation forecast of the target TC.

The third step of the DSAEF_LTP model uses the TC track Similarity Area Index
(TSAI) [43] as a criterion to discern the TC track similarity of any two TCs. It refers to the
area enclosed by any two TC tracks, the connecting line between their starting points, and
the connecting line between their ending points. The smaller the TSAI, the more similar
the two TC tracks are.

The fourth step of the DSAEF_LTP model assembles historical similar TC precipita-
tion. The separation of TC precipitation uses the Objective Synoptic Analysis Technique
(OSAT) [44,45], which distinguishes the TC precipitation from the total precipitation by
analyzing the historical daily precipitation of Hainan Island.

Based on simulation experiments of multiple training samples of the DSAEF_LTP
model, the optimal forecast scheme applicable to the TC accumulated precipitation over
Hainan Island (called DSAEF_LTP_HN) was established. To test the performance of
DSAEF_LTP_HN, the threat score (TS), the bias score (BS), the false alarm rate (FAR), and
the missing rate (MR) were used as evaluation indices. Since the model mainly focused on
TC heavy precipitation forecasting, and the two precipitation thresholds (≥100 mm and
≥250 mm) are often concerned with operations, evaluation indices for the two thresholds of

https://www.ecmwf.int/en/forecasts/datasets
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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accumulated precipitation forecast by each model (DSAEF_LTP_HN, ECMWF, NCEP-GFS,
CMA-GFS) were compared. The formulas of evaluation indices are as follows.

TS =
NA

NA + NB + NC

BS =
NA + NB
NA + NC

FAR =
NB

NA + NB

MR =
NC

NA + NC
The test evaluation of TC accumulated precipitation is shown in Table 1.

Table 1. The test evaluation table of TC accumulated precipitation.

Observation Forecast

≥T <T
≥T NA NC
<T NB ND

In these formulas, NA is the number of stations correctly forecast for a certain threshold
of precipitation, NB is the number of stations falsely forecast for a certain threshold of
precipitation, and NC is the number of stations that were missing a forecast for a certain
threshold of precipitation.

3. Experimental Design

The experiment based on the DSAEF_LTP model was mainly divided into two parts.
One was the simulation experiment, and the other was the forecast experiment. The
simulation experiment used the historical TCs affecting Hainan Island in recent years to
obtain the optimal forecast scheme applicable to the TC accumulated precipitation over
Hainan Island. Then, the optimal forecast scheme was applied to the forecast experiment to
examine the forecasting performance of DSAEF_LTP_HN. The specific steps are as follows.

(1) Establish the data set of historical TCs. The data set contains information on historical
TCs affecting Hainan Island, including their precipitation fields, TC locations, and
intensity at 6 h intervals from 1960 to 2020. The precipitation fields are identified by
the OSAT method.

(2) Select suitable TC samples to conduct the simulation and forecast experiments of TC
accumulated precipitation.

Since the starting time of the TC track and intensity data obtained from the official
subjective forecast of the National Meteorological Information Center was 2004, TC samples
were selected from 2004. TCs having caused maximum daily precipitation ≥100 mm to
Hainan Island were selected. From 2004 to 2020, 37 TCs met the conditions and were
selected for experiments (Table 2). Among them, 27 TCs from 2004 to 2017 (Figure 1a)
were training samples used for simulation experiments, to establish DSAEF_LTP_HN,
and 10 TCs from 2018 to 2020 (Figure 1b) were independent samples used for the forecast
experiments to test the forecasting performance of this model.
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Table 2. List of TCs for experiments.

Sample Type Year TC Name

Training samples

2005 Vicente, Damrey, Kai-Tak

2006 Jelawat, Prapiroon

2007 Lekima

2008 Hagupit, Higos

2009 Goni, Ketsana, Parma

2011 Haima, Nock-Ten, Nesat, Nalgae

2012 Kai-Tak, Son-Tinh

2013 Rumbia, Jebi, Utor, Haiyan

2014 Rammasun, Kalmaegi

2016 Mirinae, Aere, Sarika

2017 Doksuri

Independent samples

2018 Ewiniar, Son-Tinh, Mangkhut

2019 Wipha, Podul, Kajiki

2020 Noul, Nangka, Molave, Vamco

Atmosphere 2023, 14, 1210 5 of 15 
 

 

TCs from 2018 to 2020 (Figure 1b) were independent samples used for the forecast exper-
iments to test the forecasting performance of this model. 

Table 2. List of TCs for experiments. 

Sample Type Year TC Name 

Training samples 

2005 Vicente, Damrey, Kai-Tak 
2006 Jelawat, Prapiroon 
2007 Lekima 
2008 Hagupit, Higos 
2009 Goni, Ketsana, Parma 
2011 Haima, Nock-Ten, Nesat, Nalgae 
2012 Kai-Tak, Son-Tinh 
2013 Rumbia, Jebi, Utor, Haiyan 
2014 Rammasun, Kalmaegi 
2016 Mirinae, Aere, Sarika 
2017 Doksuri 

Independent samples 
2018 Ewiniar, Son-Tinh, Mangkhut 
2019 Wipha, Podul, Kajiki 
2020 Noul, Nangka, Molave, Vamco 

 
Figure 1. TC tracks of experimental samples. (a) Training samples; (b) Independent samples. 

(3) Conduct simulation experiments based on the DSAEF_LTP model. The DSAEF_LTP 
model consists of eight parameters, shown in Table 3, each with several values. These 
values can produce many numerical combinations, and one combination is one fore-
cast scheme. These combined forecast schemes for 27 training samples affecting Hai-
nan Island were run one by one. 

Table 3. Parameters of the DSAEF_LTP model and parameter values of the optimal forecast scheme 
for TC accumulated precipitation over Hainan Island. 

Parameters 
(1–8) Tested Values 

Number 
of Values 

Parameter Values 
of the Optimal 

Forecast Scheme 

Initial time (P1) 1–3 for 12:00, 00:00 UTC on the day of LTC precipitation 
falling on land and 12:00 UTC on the day before 

3 1 

Similarity region (P2) 
A TSAI parameter: decided by the predicted TC track, ini-

tial time, and diameter of the TC. There are 20 experi-
mental values (1–20) 

20 20 

Threshold of the segmen-
tation ratio of a latitude 

extreme point (P3) 
A TSAI parameter: 1–3 for 0.1, 0.2, and 0.3, respectively 3 2 

Figure 1. TC tracks of experimental samples. (a) Training samples; (b) Independent samples.

(3) Conduct simulation experiments based on the DSAEF_LTP model. The DSAEF_LTP
model consists of eight parameters, shown in Table 3, each with several values.
These values can produce many numerical combinations, and one combination is one
forecast scheme. These combined forecast schemes for 27 training samples affecting
Hainan Island were run one by one.

Table 3. Parameters of the DSAEF_LTP model and parameter values of the optimal forecast scheme
for TC accumulated precipitation over Hainan Island.

Parameters
(1–8) Tested Values Number

of Values
Parameter Values of the

Optimal Forecast Scheme

Initial time (P1)
1–3 for 12:00, 00:00 UTC on the day of LTC

precipitation falling on land and 12:00 UTC on the
day before

3 1

Similarity region (P2)
A TSAI parameter: decided by the predicted TC

track, initial time, and diameter of the TC. There are
20 experimental values (1–20)

20 20

Threshold of the segmentation ratio
of a latitude extreme point (P3)

A TSAI parameter: 1–3 for 0.1, 0.2, and 0.3,
respectively 3 2

The overlapping percentage
threshold of two TC tracks (P4)

A TSAI parameter: 1–6 for 0.9, 0.8, 0.7, 0.6, 0.5 and
0.4, respectively 6 5
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Table 3. Cont.

Parameters
(1–8) Tested Values Number

of Values
Parameter Values of the

Optimal Forecast Scheme

Seasonal similarity (P5)

1–5 for the whole year, May to November, July to
September, the same landfall month with the target
TC, and within 15 days of the target TC landfall time,

respectively

5 2

Intensity similarity (P6)

Four categories: average and maximum intensity on
first rainy day, average and maximum intensity on

all rainy days. Five levels: all grades (grade 1
tropical depression to grade 6 super typhoon), same
grade and above, same grade and below, same grade,

and less than one grade, respectively

4 × 5 4, 5

Number (N) of
TCs with the top N closest similarity

(P7)
1–10 for 1, 2, . . ., and 10, respectively 10 8

Ensemble forecast scheme (P8)

Mean, maximum, optimal percentile, fuse,
probability matching mean (PM), equal
difference–weighted mean (ED-WM),

TSAI-weighted mean (TSAI-WM)

7 3

Total number of schemes 3 × 20 × 3 × 6 × 5 × 4 × 5 × 10 × 7 = 7,560,000

(4) Conduct forecast experiments. After conducting simulation experiments for 27 train-
ing samples, the common forecast schemes of the 27 TCs were screened and the
average TS of each common scheme was calculated for two different thresholds of
accumulated precipitation (≥250 mm and ≥100 mm). The scheme with the maximum
sum (TSsum) of the TS for accumulated precipitation ≥ 250 mm (TS250) and that for
accumulated precipitation ≥ 100 mm (TS100) was selected as the best forecast scheme
of the DSEAF_LTP model (Figure 2), and was applied to forecast the TC precipitation
of 10 independent samples.
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4. Results
4.1. Simulation Experiments

Table 3 lists the parameters of the DSAEF_LTP model. Under the current parameter
combinations, a single TC may have a total of 7,560,000 sets of forecast schemes, ideally.
Since some TCs cannot be fully valued on certain parameters, such as the initial time (P1)
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or the similarity region (P2), the number of schemes for each TC may be different. Finally,
there were a total of 447,853 sets of common schemes for the 27 TCs. The average TSsum of
each common scheme was calculated, and the optimal forecast scheme applicable to the
TC accumulated precipitation over Hainan Island was established based on the maximum
TSsum (solid box in Figure 2). The specific parameters of the optimal scheme are listed in
the fourth column of Table 3. When the initial time was selected as 1200 UTC on the day of
LTC precipitation starting on land, the similarity region was selected as 20, the threshold
of the segmentation ratio of a latitude extreme point was selected as 0.2, the overlapping
percentage threshold of two TC tracks was set to 0.5, the seasons of similar historical TCs
were controlled from May to November, the TC intensity was set such that the intensity
difference between the maximum intensity of the historical TCs during its precipitation
process and the target TC intensity was controlled within one grade, the number of similar
historical TCs was set to eight, and the ensemble forecast scheme was selected as the 90%
percentile value, the forecasting performance was the best.

4.2. Forecast Experiments

The best forecast scheme was applied to precipitation forecasts of independent samples.
Figure 3 shows the average TS of TC accumulated precipitation forecast by each model.
For accumulated precipitation ≥ 100 mm, DSAEF_LTP_HN has the highest TS of 0.39,
and ECMWF ranks second (0.36). NCEP-GFS and CMA-GFS rank third (0.28) and fourth
(0.24), respectively. For accumulated precipitation ≥ 250 mm, the TS of ECMWF (0.19)
ranks first, mainly because of the better forecasting performance of the accumulated
precipitation of Typhoon Ewiniar (2018) and Typhoon Wipha (2019). DSAEF_LTP_HN
ranks second, with a score of 0.04, whereas NCEP-GFS and CMA-GFS both have a score of
0, having no forecasting capability for the heavy precipitation of these 10 TCs. From the
TSsum, the ranking of the four models is ECMWF, DSAEF_LTP_HN, NCEP-GFS, and CMA-
GFS. Therefore, DSAEF_LTP_HN has advantages in forecasting TC heavy precipitation,
especially precipitation over 100 mm, and is second only to ECMWF.
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The average BS, FAR, and MR of TC accumulated precipitation forecast by each model
were further analyzed (Figure 4). For accumulated precipitation ≥100 mm, DSAEF_LTP_HN
has the highest FAR, and ECMWF is second only to DSAEF_LTP_HN, while the MR of
DSAEF_LTP_HN performs the best, followed by ECMWF. BSs indicate that DSAEF_LTP_HN
tends to overestimate the precipitation, and the remaining three models tend to under-
estimate it. For accumulated precipitation ≥250 mm, ECMWF shows the best perfor-
mance in terms of MR, followed by DSAEF_LTP_HN. CMA-GFS has a higher FAR than
DSAEF_LTP_HN and ECMWF. The FAR of NCEP-GFS is null and the MR is 1, which
shows that NCEP-GFS completely underestimated the precipitation, neither forecasting
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correctly nor overestimating the precipitation. For BSs, ECMWF performed the best, with
the BS closest to 1, and DSAEF_LTP_HN performed second best. Therefore, the forecast
results of the other three numerical models tended to underestimate the precipitation,
whereas DSAEF_LTP_HN tended to overestimate the precipitation. However, in general,
DSAEF_LTP_HN and ECMWF show better forecasting performance.
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To better understand the characteristics of DSAEF_LTP_HN’s forecasting performance
for TC precipitation over Hainan Island, two groups, the top four TCs, with higher TSsums
and the bottom four TCs, with lower TSsums, were selected from independent samples,
and the average TSs, BSs, FARs, and MRs of the two groups were compared. For the
top four TCs with higher TSsums (Figure 5a), for accumulated precipitation ≥ 100 mm,
DSAEF_LTP_HN has the highest TS and the lowest MR, but its false forecast is obvious.
For the accumulated precipitation ≥ 250 mm, DSAEF_LTP_HN ranks second in TS and
MR following ECMWF, but also had the phenomenon of overestimating precipitation.
Therefore, for the top four TCs with higher TSsums, the performance of each evaluation
index for each model was similar to that of all the 10 independent samples.
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For the bottom four TCs with lower TSsums (Figure 5b), for accumulated precipitation
≥ 100 mm, the TS of DSAEF_LTP_HN performed second, following CMA-GFS, with fewer
missed stations and more false stations. The false forecast led to the poor performance of
other related indices.

From the above, whether from the view of all the samples in the forecast experiments,
the samples that performed well in the forecast experiments, or the samples that performed
poorly in the forecast experiments, it was found that DSAEF_LTP_HN has advantages in
forecasting TC heavy precipitation, especially precipitation over 100 mm, but there was
still a phenomenon of false forecasts.

To further explore the characteristics of DSAEF_LTP_HN’s forecasting performance
for TC precipitation over Hainan Island, the TC track, impact period (the number of days
TCs have generated precipitation on Hainan Island), station maximum daily precipitation,
and station maximum accumulated precipitation (Figures 6 and 7) of the top four TCs
with higher TSsums and the bottom four TCs with lower TSsums were compared. Three
of the top four TCs with higher TSsums made landfall on Hainan Island and hovered
near Hainan Island and its nearby sea with a long impact period, with the average impact
period reaching as long as 5.25 days. They also caused large precipitation amounts, with
the average station maximum daily precipitation reaching 215 mm, and the average station
maximum accumulated precipitation reaching 347 mm. The bottom four TCs with lower
TSsums all moved straight west–northwest and only one made landfall on Hainan Island,
with a short impact period of only 2.00 days on average. The precipitation they caused
was weak, with a station maximum daily precipitation of 133 mm on average and a station
maximum accumulated precipitation of 147 mm on average. Therefore, the longer the TC
impacts on Hainan Island and the heavier the precipitation caused to Hainan Island, the
better the forecasting performance of DSAEF_LTP_HN for TC precipitation. This is because
this model pays more attention to extreme precipitation, and the stronger the precipitation,
the better the forecast ability. The longer the impact period, the longer the duration of
precipitation, and the stronger the TC precipitation may be.
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4.3. Analysis of Typical Cases

To prove that DSAEF_LTP_HN has advantages in forecasting TC heavy precipitation,
especially precipitation over 100 mm, despite the phenomenon of false forecasts discussed
in Section 4.2, two typical cases were selected to discuss it further from the two groups,
that is, Typhoon Kajiki (2019), with good forecasting performance, and Typhoon Vamco
(2020), with poor forecasting performance.

The spatial distribution characteristics of precipitation forecast by each model were
compared. From the observation of Typhoon Kajiki (Figure 8), the accumulated precipita-
tion of over 250 mm was distributed in the northeast of Hainan Island, and DSAEF_LTP_HN
forecast this heavy precipitation center in the northeast, but overestimated the accumulated
precipitation of over 400 mm, whereas the other three numerical models all missed the
accumulated precipitation of more than 250 mm. Therefore, DSAEF_LTP_HN can capture
the heavy precipitation center for accumulated precipitation of over 250 mm, whereas the
other models have no forecasting capability, that is, DSAEF_LTP_HN has advantages for
heavy precipitation forecasting.
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Analyzing the accumulated precipitation of Typhoon Vamco (Figure 9), DSAEF_LTP_HN
could also successfully forecast accumulated precipitation of over 100 mm, whereas other
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models did not have this forecasting capability. However, DSAEF_LTP_HN still showed
false forecasts.
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From the above, it is proved further that DSAEF_LTP_HN can successfully forecast
the center of heavy precipitation when other numerical models cannot, but for some TC
heavy precipitation, there is still a phenomenon of false forecasts, which necessitates further
improvement.

5. Conclusions and Discussion

Based on the DSAEF_LTP model, the optimal scheme applicable to the TC accumulated
precipitation forecast over Hainan Island, China was established using the best-track
dataset for TCs in the Northwest Pacific from the Shanghai Typhoon Institute of the
China Meteorological Administration, the daily precipitation data of the meteorological
observatories over Hainan Island from the Meteorological Information Center of Hainan
Province, and the TC track and intensity data from the official subjective forecasts of the
National Meteorological Information Center of the China Meteorological Administration.
Then, the forecasting performance of DSAEF_LTP_HN was further tested. The main
conclusions are as follows.
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(1) Compared with other numerical models, for accumulated precipitation ≥ 100 mm, the
TS of the DSAEF_LTP_HN forecast reaches 0.39, ranking first, followed by ECMWF,
NCEP-GFS, and CMA-GFS, with TSs of 0.36, 0.28, and 0.24, respectively. For ac-
cumulated precipitation ≥ 250 mm, the TS of ECMWF ranks first (0.19), and the
DSAEF_LTP_HN forecast ranks second (0.04).

(2) The forecasting performance of DSAEF_LTP_HN for TC precipitation is closely related
to TC characteristics. The longer the TC impacts on Hainan Island and the heavier
the precipitation caused to Hainan Island, the better the forecasting performance of
DSAEF_LTP_HN is.

(3) Further analysis shows that the distribution of heavy precipitation areas forecast by
DSAEF_LTP_HN is reasonable, and the center of heavy precipitation can be success-
fully captured, albeit with heavier precipitation than observations sometimes.

Therefore, DSAEF_LTP_HN is promising for precipitation forecasting for TCs affecting
Hainan Island. It is believed that with the continuous improvement and development
of DSAEF_LTP_HN, it will play an increasingly important role in the forecasting of TC
precipitation over Hainan Island. At present, DSAEF_LTP_HN takes into account track
similarity, seasonal similarity, and intensity similarity when discriminating the similarity
among the target TC and historical TCs. Moreover, TC translation speed, as an important
impact factor on TC precipitation [11], should also be considered to introduce into the
DSAEF_LTP model. Future research work will focus on adding the parameter of the
TC translation speed similarity into the model so that DSAEF_LTP_HN can be further
improved.

Author Contributions: Conceptualization, X.J., F.R. and Y.M.; Data curation, X.J. and Y.M.; Formal
analysis, X.J. and C.D.; Methodology, Y.M., F.R. and X.J.; Software, J.H.; Supervision, F.R.; Visualiza-
tion, Y.M. and J.S.; Writing—original draft, X.J. and Y.M.; Writing—review and editing, X.J., Y.M., C.D.
and J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was jointly supported by the Regional Innovation and Development Joint
Fund of the National Natural Science Foundation of China (Grant No. U21A6001), the Key Laboratory
of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province (Grant No.
SCSF202102), the Hainan Natural Science Foundation of China (Grant No. 420QN372, 422RC803), the
China Meteorological Administration Review Special Project (Grant No. FPZJ2023-101), the National
Natural Science Foundation of China (Grant No. 42275037), the Hainan Provincial Key R&D Program
of China (Grant No. ZDYF2019213), and the Specific Research Fund of Innovation Platform for
Academicians of Hainan Province (YSPTZX202143).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ge, X.; Li, T.; Zhang, S.; Pen, M.G. What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos.

Sci. Lett. 2010, 11, 46–50. [CrossRef]
2. Ren, F.; Wu, G.; Wang, X.; Wang, Y.; Dong, W.; Liang, J.; Bai, L. Tropical Cyclones Affecting China over the Last 60 Years; China

Meteorological Press: Beijing, China, 2011; 203p. (In Chinese)
3. Yu, Z.; Wang, Y.; Xu, H.; Davidson, N.; Chen, Y.; Chen, Y.; Yu, H. On the Relationship between Intensity and Rainfall Distribution

in Tropical Cyclones Making Landfall over China. J. Appl. Meteor. Climatol. 2017, 56, 2883–2901. [CrossRef]
4. Jiang, X.; Ren, F.; Li, Y.; Qiu, W.; Ma, Z.; Cai, Q. Characteristics and preliminary causes of tropical cyclone extreme rainfall events

over Hainan Island. Adv. Atmos. Sci. 2018, 35, 580–591. [CrossRef]
5. Chen, L.; Luo, Z.; Li, Y. Research advances on tropical cyclone landfall process. Acta Meteorol. Sin. 2004, 62, 541–549. (In Chinese)
6. Xiao, Q.; Kuo, Y.; Sun, J.; Lee, W.; Barker, D.; Lim, E. An approach of radar reflectivity data assimilation and its assessment with

the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol. 2007, 46, 14–22. [CrossRef]

https://doi.org/10.1002/asl.255
https://doi.org/10.1175/JAMC-D-16-0334.1
https://doi.org/10.1007/s00376-017-7051-0
https://doi.org/10.1175/JAM2439.1


Atmosphere 2023, 14, 1210 13 of 14

7. Xue, G.; Zhang, J.; Chen, H.; Zhu, X. The comparisons of different convective parameterization schemes applying precipitation’s
forecast of typhoon landing on Zhejiang and Fujian provinces. Plateau Meteor. 2007, 26, 765–773. (In Chinese)

8. Yuan, B.; Fei, J.; Wang, Y.; Lu, Q. 4DVAR numerical simulation analysis using ATOVS data and asymmetrical Bogus data on
landing Typhoon Weipha. Meteor. Mon. 2010, 36, 13–20. (In Chinese)

9. Zhang, F.; Weng, Y.; Kuo, Y.; Whitaker, J.S.; Xie, B. Predicting Typhoon Morakot’s Catastrophic Rainfall with a Convection-
Permitting Mesoscale Ensemble System. Weather Forecast. 2010, 25, 1816–1825. [CrossRef]

10. Zhao, K.; Li, X.; Xue, M.; Jou, B.J.D.; Lee, W.C. Short-term forecasting through intermittent assimilation of data from Taiwan and
mainland China coastal radars for Typhoon Meranti (2010) at landfall. J. Geophys. Res. Atmos. 2012, 117, D06108. [CrossRef]

11. Hsiao, L.-F.; Yang, M.-J.; Lee, C.-S.; Kuo, H.-C.; Shih, D.-S.; Tsai, C.-C.; Wang, C.-J.; Chang, L.-Y.; Chen, D.Y.-C.; Feng, L.; et al.
Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol. 2013, 506, 55–68.
[CrossRef]

12. Fang, X.; Kuo, Y. Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy
Rainfall over Taiwan with a Modified Probability-Matching Technique. Mon. Weather Rev. 2013, 141, 3908–3932. [CrossRef]

13. Yu, X.; Park, S.K.; Lee, Y.H.; Choi, Y.S. Quantitative precipitation forecast of a tropical cyclone through optimal parameter
estimation in a convective parameterization. SOLA 2013, 9, 36–39. [CrossRef]

14. Zhang, H.; Pu, Z. Influence of Assimilating Surface Observations on Numerical Prediction of Landfalls of Hurricane Katrina
(2005) with an Ensemble Kalman Filter. Mon. Weather Rev. 2014, 142, 2915–2934. [CrossRef]

15. Hong, J.; Fong, C.; Yu, Y.; Tzeng, C. Ensemble Typhoon Quantitative Precipitation Forecasts Model in Taiwan. Weather Forecast.
2015, 30, 217–237. [CrossRef]

16. Cheng, Z.; Chen, L.; XU, X.; Peng, T. Research progress on typhoon heavy rainfall in China for last ten years. Meteor. Mon. 2005,
31, 3–9. (In Chinese)

17. Marchok, T.; Rogers, R.; Tuleya, R. Validation Schemes for Tropical Cyclone Quantitative Precipitation Forecasts: Evaluation of
Operational Models for U.S. Landfalling Cases. Weather Forecast. 2007, 22, 726–746. [CrossRef]

18. Tuleya, R.E.; DeMaria, M.; Kuligowski, R.J. Evaluation of GFDL and Simple Statistical Model Rainfall Forecasts for U.S. Landfalling
Tropical Storms. Weather Forecast. 2007, 22, 56–70. [CrossRef]

19. Huang, W.; Yu, H.; Liang, X. Evaluation of GRAPES-TCM rainfall forecast for China landfall tropical cyclone in 2006. Acta Meteor.
Sin. 2009, 67, 892–901. (In Chinese)

20. Yu, Z.; Chen, Y.; Ebert, B.; Davidson, N.; Xiao, Y.; Yu, H.; Duan, L. Benchmark rainfall verification of landfall tropical cyclone
forecasts by operational ACCESS-TC over China. Meteorol. Appl. 2020, 27, e1842. [CrossRef]

21. Wang, Y.; Shen, X.; Chen, D. Verification of tropical cyclone rainfall predictions from CMA and JMA global models. J. Trop.
Meteorol. 2012, 18, 537–542.

22. Qu, A.; Ma, S.; Zhang, J. Updated experiments of tropical cyclone initialization in global model T639. Meteor. Mon. 2016, 42,
664–673. (In Chinese)

23. Gong, J.; Niu, X.; Li, H. Forecast Epitomized of Typhoon’s Precipitation in East China. Chin. J. Atmos. Sci. 1995, 19, 101–110.
(In Chinese) [CrossRef]

24. Yue, C.; Chen, P.; Lei, X.; Yang, Y. Preliminary study of short-term quantitative precipitation forecast method for landfalling
typhoon. Meteorol. Sci. Technol. 2006, 34, 7–11. (In Chinese)

25. Wei, C. RBF Neural Networks Combined with Principal Component Analysis Applied to Quantitative Precipitation Forecast for a
Reservoir Watershed during Typhoon Periods. J. Hydrometeorol. 2012, 13, 722–734. [CrossRef]

26. Wei, C. Wavelet Support Vector Machines for Forecasting Precipitation in Tropical Cyclones: Comparisons with GSVM, Regression,
and MM5. Weather Forecast. 2012, 27, 438–450. [CrossRef]

27. Li, Q.; Lan, H.; Chan, C.L.J.; Cao, C.; Li, C.; Wang, X. An Operational Statistical Scheme for Tropical Cyclone Induced Rainfall
Forecast. J. Trop. Meteorol. 2015, 21, 101–110.

28. Marks, F.D.; Kappler, G.; DeMaria, M. Development of a tropical cyclone rainfall climatology and persistence (R-CLIPER) model.
In Proceedings of the 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, USA, 29 April–3 May 2002;
pp. 327–328.

29. Lee, C.S.; Huang, L.R.; Shen, H.S.; Wang, S.T. A climatology model for forecasting typhoon rainfall in Taiwan. Nat. Hazards 2006,
37, 87–105. [CrossRef]

30. Lonfat, M.; Rogers, R.; Marchok, T.; Marks, F.D. A Parametric Model for Predicting Hurricane Rainfall. Mon. Weather Rev. 2007,
135, 3086–3097. [CrossRef]

31. Kidder, S.Q.; Knaff, J.A.; Kusselson, S.J.; Turk, M.; Ferraro, R.R.; Kuligowski, R.J. The Tropical Rainfall Potential (TRaP) Technique.
Part I: Description and Examples. Weather Forecast. 2005, 20, 456–464. [CrossRef]

32. Liu, C. The Influence of Terrain on the Tropical Rainfall Potential Technique in Taiwan. Weather Forecast. 2009, 24, 785–799.
[CrossRef]

33. Ebert, E.E.; Turk, M.; Kusselson, S.J.; Yang, J.; Seybold, M.; Keehn, P.R.; Kuligowski, R.J. Ensemble Tropical Rainfall Potential
(eTRaP) Forecasts. Weather Forecast. 2011, 26, 213–224. [CrossRef]

34. Zhong, Y.; Yu, H.; Teng, W.; Chen, P. A dynamic similitude scheme for tropical cyclone quantitative precipitation forecast. J. Appl.
Meteor. Sci. 2009, 20, 17–27. (In Chinese)

https://doi.org/10.1175/2010WAF2222414.1
https://doi.org/10.1029/2011JD017109
https://doi.org/10.1016/j.jhydrol.2013.08.046
https://doi.org/10.1175/MWR-D-13-00012.1
https://doi.org/10.2151/sola.2013-009
https://doi.org/10.1175/MWR-D-14-00014.1
https://doi.org/10.1175/WAF-D-14-00037.1
https://doi.org/10.1175/WAF1024.1
https://doi.org/10.1175/WAF972.1
https://doi.org/10.1002/met.1842
https://doi.org/10.3878/j.issn.1006-9895.1995.01.11
https://doi.org/10.1175/JHM-D-11-03.1
https://doi.org/10.1175/WAF-D-11-00004.1
https://doi.org/10.1007/s11069-005-4658-8
https://doi.org/10.1175/MWR3433.1
https://doi.org/10.1175/WAF860.1
https://doi.org/10.1175/2008WAF2222135.1
https://doi.org/10.1175/2010WAF2222443.1


Atmosphere 2023, 14, 1210 14 of 14

35. Li, B.; Zhao, S. Development of forecasting model of typhoon type rainstorm by using SMAT. Meteor. Mon. 2009, 35, 3–12.
(In Chinese)

36. Ren, F.; Ding, C.; Zhang, D.; Chen, D.; Ren, H.; Qiu, W. A Dynamical-Statistical-Analog Ensemble Forecast Model: Theory and an
Application to Heavy Rainfall Forecasts of Landfalling Tropical Cyclones. Mon. Weather Rev. 2020, 148, 1503–1517. [CrossRef]

37. Ding, C.; Ren, F.; Liu, Y.; McBride, J.L.; Feng, T. Improvement in the Forecasting of Heavy Rainfall over South China in the
DSAEF_LTP Model by Introducing the Intensity of the Tropical Cyclone. Weather Forecast. 2020, 35, 1967–1980. [CrossRef]

38. Jia, L.; Jia, Z.; Ren, F.; Ding, C.; Wang, M.; Feng, T. Introducing TC intensity into the DSAEF_LTP model and simulating
precipitation of super-typhoon Lekima (2019). Q. J. R. Meteorol. Soc. 2020, 146, 3965–3979. [CrossRef]

39. Jia, L.; Ren, F.; Ding, C.; Jia, Z.; Wang, M.; Chen, Y.; Feng, T. Improvement of the ensemble methods in the dynamical-statistical-
analog ensemble forecast model for landfalling typhoon precipitation. J. Meteorol. Soc. Jpn. 2022, 100, 2022–2592. [CrossRef]

40. Ma, Y.; Ren, F.; Jia, L.; Ding, C. Experiments with the Improved Dynamical-Statistical-Analog Ensemble Forecast Model for
Landfalling Typhoon Precipitation over South China. J. Trop. Meteorol. 2022, 28, 139–153. [CrossRef]

41. Qin, S.; Jia, L.; Ding, C.; Ren, F.; McBride, J.L.; Li, G. Experiments of DSAEF_LTP Model with Two Improved Parameters for
Accumulated Precipitation of Landfalling Tropical Cyclones over Southeast China. J. Trop. Meteorol. 2022, 28, 286–296.

42. Ren, F.; Jia, L.; Wu, C.; Ding, C.; Zhang, D.; Jia, Z.; Ma, Y.; Qiu, W. Advances in dynamic-statistical analog ensemble forecasting
and its application to precipitation prediction of landfalling typhoons: A renewed understanding. Acta Meteor. Sin. 2023, 81,
193–204. (In Chinese)

43. Ren, F.; Qiu, W.; Ding, C.; Jiang, X.; Wu, L.; Xu, Y. An Objective Track Similarity Index and Its Preliminary Application to
Predicting Precipitation of Landfalling Tropical Cyclones. Weather Forecast. 2018, 33, 1725–1742. [CrossRef]

44. Ren, F.; Gleason, B.; Easterling, D.R. A technique for partitioning tropical cyclone precipitation. J. Trop. Meteorol. 2001, 17, 308–313.
(In Chinese)

45. Ren, F.; Wang, Y.; Wang, X.; Li, W. Estimating tropical cyclone precipitation from station observations. Adv. Atmos. Sci. 2007, 24,
700–711. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1175/MWR-D-19-0174.1
https://doi.org/10.1175/WAF-D-19-0247.1
https://doi.org/10.1002/qj.3882
https://doi.org/10.2151/jmsj.2022-029
https://doi.org/10.46267/j.1006-8775.2022.011
https://doi.org/10.1175/WAF-D-18-0007.1
https://doi.org/10.1007/s00376-007-0700-y

	Introduction 
	Data and Methods 
	Data 
	Methods 

	Experimental Design 
	Results 
	Simulation Experiments 
	Forecast Experiments 
	Analysis of Typical Cases 

	Conclusions and Discussion 
	References

