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Abstract: The coexistence of temperature changes and air pollution poses a severe global environ-
mental issue, exacerbating health burdens. The aim of this study was to clarify the combined effects
of ambient PM2.5 and cold exposure on the development of metabolic disorders. Male C57BL/6 mice
were randomly divided into four groups: TN-FA, TN-PM, TC-FA and TC-PM. The mice were then
exposed to concentrated PM2.5 or filtered air (FA) under normal (22 ◦C) or cold (4 ◦C) environment
conditions for 4 weeks. Metabolic-disorder-related indicators, blood pressure, serous lipids, fasting
blood glucose and insulin, energy metabolism, mitochondria and protein expression in tissues were
detected for comprehensively assessing metabolic disorder. The results showed that, compared to
being exposed to PM2.5 only, when mice were exposed to both PM2.5 and the cold (non-optimal),
they exhibited more significant metabolic disorders regarding glucose tolerance (p < 0.05), insulin
resistance (p < 0.05), lipid metabolism, adipocytes (p < 0.01) and mitochondrial function. This study
suggested that a cold environment might substantially exacerbate PM2.5-induced metabolic disor-
der. The interaction between temperature changes and air pollution implied that implementing the
necessary environment-related policies is a critical and complex challenge.

Keywords: PM2.5; cold; metabolic disorder; non-optimal temperature

1. Introduction

The acceleration of modernization has allowed for more convenience and comfort
within life experiences but is also accompanied by serious ecological environmental pol-
lution and temperature changes. Severe environmental issues, such as the greenhouse
effect, and heat waves and cold waves occur frequently, raising alarms for human beings.
The World Health Organization (WHO) has identified air pollution as the single largest
environmental health risk factor [1]. Ambient particulate matter (PM) with an aerodynamic
diameter of ≤2.5 µm (fine particulate matter, PM2.5) is known to significantly contribute
to many health problems. The Global Burden of Disease (GBD) Study (2019) has shown
that PM is still one of the top ten contributing factors to the global burden of diseases [2].
Meanwhile, temperature changes are associated with a series of health problems such as af-
fecting the risk of morbidity and mortality of cardiovascular diseases and infant health [3,4].
Non-optimal temperature has been found to be the main risk factor in GBD (2019), and
low temperature accounted for 0.946 million deaths in females [2]. In a realistic context,
heavy PM2.5 pollution is often accompanied by extreme temperature changes. Cold waves
especially occur alongside high PM2.5 pollution in winter because of the heating supplies.
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Therefore, the coexistence of temperature changes and air pollution not only exacerbates
the health burden but also reinforces higher health-protection-related requirements.

Noncommunicable diseases are still the largest and fastest-growing global health
burden, even more strongly linked to air pollution and temperature changes. In most
noncommunicable diseases, metabolic syndrome is a generic term for the risk factors of
type 2 diabetes mellitus (T2DM) and cardiovascular diseases [5]. In the survey analyzing
the prevalence of metabolic syndrome in housewives, it has been suggested that household
PM2.5 is closely related to the prevalence of metabolic syndrome in females [6]. Animal
experiments have found that long-term exposure to PM2.5 impaired glucose tolerance,
induced insulin resistance, decreased energy expenditure and induced the development
of liver inflammation accompanied by elevated triglycerides [7–9]. Transcriptome anal-
ysis of cold-stimulated mice also found that up-regulated genes were enriched in lipid
metabolism, fatty acid metabolism, lipid oxidation and fatty acid oxidation [10–12]. How-
ever, in most PM2.5-related epidemiological studies, temperature is always controlled as a
confounding factor in statistical analysis [13,14], and vice versa. Consequently, there are
few studies elucidating the combined effects of PM2.5 and cold, excluding some epidemio-
logical investigations focusing on premature mortality [15–18], and hospital admissions for
cardiovascular disease or respiratory outcomes [19]. Similarly, there are few corresponding
animal studies linking air pollution and cold exposure, and metabolic disorders. Although
some animal studies have reported that PM2.5 or cold exposure alone was associated with
metabolic disorders, the effects and potential mechanisms induced by the combination of
the two are still unclear. At the same time, few studies have described metabolic disorders
(blood pressure, energy homeostasis, glucose tolerance, insulin resistance, lipids, adipocy-
tokines, inflammation, mitochondria and energy-related protein expression) induced by
air pollution and temperature changes comprehensively. Instead, most only observed
morbidity, mortality, hospital admissions, insulin, glucose or blood pressure. As such,
this study intended to mimic the general population exposed to ambient PM2.5 and cold
simultaneously through the use of healthy C57BL/6 mice, and explore the combined effects
and potential mechanism of these factors on metabolic disorders by measuring various
relevant indicators.

2. Materials and Methods
2.1. Animals and Exposure Design

Six-week-old male C57BL/6 mice were purchased from the Experimental Animal
Center of the College of Medicine, Fudan University (Shanghai, China). After one-week
acclimation at 22 ± 2 ◦C the mice were randomly divided into four groups, with 10 in
each group: TN-FA, TN-PM, TC-FA and TC-PM. In these groups, TN and TC proceeded
at a normal (optimal) temperature (22 ◦C) and cold (non-optimal temperature, 4 ◦C),
respectively. Under the different (TN and TC) temperatures, the mice were separately
exposed to concentrated PM2.5 (PM) or filtered air (FA). The PM and FA exposure were per-
formed using the “Shanghai Meteorological and Environmental Animal Exposure System
(Shanghai-METAS)”, which can concentrate or filter outdoor PM2.5. Then, the concentrated
PM2.5 or FA entered the chambers, in which the temperature was simultaneously adjusted
to TN or TC, according to the study design (Figure 1a). We performed several studies
linking PM2.5 and metabolic disorder/atherosclerosis using Shanghai-METAS [20–22]. In
detail, the mice were treated with PM2.5/FA under normal (optimal) or cold (optimal)
temperature conditions, using METAS for 8 h/day, for a total of 4 weeks. The mice were
provided with free access to water and food during the exposure. All of the experiments
were approved by the Animal Care and Use Committee of Fudan University and followed
appropriate protocols.
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Figure 1. Exposure schematic (a–d), PM2.5 concentrations (e), body weight (f), and blood pressure of
different groups during exposure (g,h).

2.2. Blood Pressure Measurement

At the beginning and the end of the entire exposure, the blood pressure of the mice
was measured using the non-invasive blood pressure acquisition system (CODA, Kent, WA,
USA). Before testing, the mice were placed on a heated animal stand by an animal binder
for 10 min. Then, a volume pressure recording (VPR) sensor and an O-cuff kit were placed
on the tail to measure the systolic blood pressure (SBP) and diastolic blood pressure (DBP).
The measurement interval was set to 10 s and every was mouse tested 10 consecutive times.

2.3. Metabolic Cage

At the end of exposure, the mice were placed in metabolic cages (Shanghai Research
Center of the Southern model organisms) for 24 h to determine the respiratory exchange
ratio (RER), carbon dioxide production (VCO2), oxygen consumption (VO2) and heat
production in a resting state, at 22 ◦C. Water and food were freely available. Data were
normalized to the body weight.

2.4. Blood Glucose Tolerance and Insulin Sensitivity Measurement

At the end of the 4-week exposure, the mice were fasted for 12 h for intraperitoneal
glucose tolerance testing (IPGTT). Blood samples were collected from the vena caudalis to
measure the level of blood glucose at 0, 30, 60, 90 and 120 min after the dextrose (2 mg/g
body weight) injection, respectively.

For the insulin tolerance test (ITT), insulin (0.5 U/kg) was administered via an in-
traperitoneal injection after 4.5 h of fasting. The homeostasis model assessment (HOMA-IR)
was calculated according to the following equation: [fasting insulin concentration (mU/L)
× fasting glucose concentration (mmol/L)]/22.5.

2.5. Blood Biomarkers

After the mice were sacrificed, the blood samples were collected and centrifuged at
1500 rpm for 20 min. The levels of insulin, interleukin (IL)-6, tumor necrosis factor (TNF)-α,
leptin and adiponectin were measured using an enzyme-linked immunosorbent assay
(ELISA) kit (Biosource International, Camarillo, CA, USA).
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2.6. Serous Lipid Determination

Blood samples were also collected for analyzing serous triglyceride (TG), total choles-
terol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein choles-
terol (HDL-C) (NanJing KeyGen Biotech. Inc., Nanjing, Jiangsu, China).

2.7. Histological Analysis and Transmission Electron Microscopy Observation

The inguinal white adipose tissue (WAT) and brown adipose tissue (BAT) were har-
vested. Part of the WAT and BAT were fixed with 10% neutral buffered formalin for
histological morphology analysis (H&E staining). The ultra-structure of BAT was examined
via transmission electron microscopy (CM120, Philips, Amsterdam, Holland) to investigate
mitochondrial changes. The total mitochondria in 10 micrographs per group were counted,
and mitochondrial size and number were analyzed using ImageJ software.

2.8. Western Blot Analysis

The WAT and BAT of mice were homogenized in the lysis buffer (Thermo Fisher Sci-
entific, Waltham, MA, USA) with protease and phosphatase inhibitors (Kangchen Biotech,
Beijing, China). The same amounts of proteins were separated by a sodium dodecyl sulfate-
polyacrylamide gel, then transferred to PVDF membranes (Bio-Rad, Hercules, CA, USA).
The membranes were incubated with primary antibody UCP-1 and HSP90 (Cell Signaling
Technology, Boston, MA, USA) overnight at 4 ◦C, respectively. After being washed, the
membranes were incubated with HRP-conjugated secondary antibody (Cell Signaling
Technology, Boston, MA, USA). Last, the membranes were detected with enhanced chemi-
luminescence followed by exposure to X-ray film. The density of the protein bands was
calculated using ImageQuant TL8.1 software.

2.9. Statistical Analysis

The results were expressed as the mean ± standard deviation (SD). The data were
statistically analyzed using IBM SPSS Statistics 22.0. The normality of each group was
tested using the Shapiro–Wilk method and the homogeneity of variance was tested us-
ing the Levene method. Pairwise comparisons were performed using the least signif-
icance difference (LSD) test. The differences between FA and PM, as well as normal
temperature and cold, were analyzed through t-tests, and a p-value < 0.05 was considered
statistically significant.

3. Results
3.1. PM2.5 Concentrations and Body Weight of the Mice

The PM2.5 concentrations in PM and FA chambers during exposure are shown in
Figure 1e. The average concentrations of PM2.5 in the TN-FA, TN-PM, TC-FA and TC-PM
groups during the exposure were 9.28 ± 1.04, 155.47 ± 8.10, 9.50 ± 1.01 and
145.07 ± 8.95 µg/m3, respectively.

As shown in Figure 1f, the average body weights of the mice in the TN-FA, TN-PM,
TC-FA and TC-PM groups were 23.52 ± 0.84, 23.87 ±1.00, 23.72 ± 1.19 and 23.01 ± 1.18 g
before exposure. The baseline body weights of the mice had no significant difference among
the four groups. At the end of the 4-week exposure, the average body weights of the mice
in the four groups were 24.73 ± 1.22, 24.27 ± 1.55, 26.72 ± 1.54 and 26.81 ± 0.68 g. The
PM2.5-exposed mice displayed a reduction in the body weight increment.

3.2. Combined Effects of PM2.5 and Cold Exposure on Blood Pressure

The baseline, the SBP and DBP among the four groups showed no significant difference.
Similarly, after the 4-week exposure, there were also no significant differences in the SBP
and DBP between the FA and PM groups, as well as the TN and TC groups (Figure 1g,h).
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3.3. Cold Exacerbates PM2.5-Induced Glucose Tolerance and Insulin Resistance

In both the normal and cold environments, PM exposure significantly increased the
level of fasting blood glucose when compared with FA (p < 0.01). Meanwhile, the fasting
blood glucose in TC-PM mice was higher than that in the TN-PM mice (Figure 2a). There
was no difference in the fasting insulin among the four groups (Figure 2b). The trends of
the HOMA-IR index in these groups were similar to the trends of the fasting blood glucose.
PM exposure increased HOMA-IR at normal and cold temperatures (Figure 2c).
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Figure 2. Glucose tolerance and insulin resistance in mice after combined exposure to PM2.5 and the
cold. (a,b) Fasting blood glucose and insulin of mice. (c) HOMA-IR. (d) IPGTT. (e) ITT. * p < 0.05,
** p < 0.01, FA vs. PM; # p < 0.05, TC vs. TN.

As shown in Figure 2d, in IPGTT, the trends of blood glucose at 30 min, from the
highest to the lowest, were TC-FA, TC-PM, TN-PM and TN-FA mice after a glucose injection.
Thirty minutes later, the blood glucose in each group showed a downward trend, but the
blood glucose in the TC-FA and TC-PM groups remainder at a higher level until 120 min
than that in the other groups. In ITT, the blood glucose reached the lowest value at 60 min
in the mice after insulin injection (Figure 2e). The trends of blood glucose at 60 min, from
the highest to the lowest, were TC-PM, TN-FA, TC-FA and TN-PM groups. After 60 min, the
blood glucose was gradually restored.

3.4. Cold Exacerbates PM2.5-Induced Energy Imbalance

As shown in Figure 3, cold exposure could induce an increase in VO2, VCO2, RER and
heat production, regardless of whether the mice were exposed to PM2.5 or not. At a normal
temperature, PM exposure could only induce a significant change in heat production,
but not the VO2, VCO2 and RER. However, at cold temperatures, PM exposure could
significantly induce an increase in the VO2, VCO2 and RER, and decrease in heat production
when compared with the FA exposure (p < 0.05). The results indicated that cold exposure
absolutely influenced the effects of PM2.5 on energy metabolism.
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3.5. Cold Exacerbates PM2.5-Induced Pathological and Mitochondria Alteration

A histopathological evaluation of WAT and BAT in each group is shown in Figure 4a
and b. Compared with TN mice, TC mice displayed severe adipose cell hypertrophy in
WAT, regardless of whether the mice were exposed to concentrated PM2.5 or not. Cold
significantly exacerbated PM2.5-induced white adipose cell hypertrophy (Figure 4a). There
was no fat accumulation at cold temperatures when compared with normal temperatures,
which even displayed smaller brown adipocytes (Figure 4b).

Figure 4c shows that PM2.5 could induce a decrease in BAT weight when compared
with FA at a normal temperature. Similarly, cold exposure could induce a decrease in BAT
weight in both the PM2.5 and FA groups. Figure 4d shows the number and morphology of
mitochondria in BAT. Figure 4e shows that the mitochondrial area of BAT in PM groups
was significantly smaller than that in FA under TN or TC conditions (p < 0.01). Meanwhile,
compared with TN groups, the area of BAT mitochondria in the TC groups was signifi-
cantly reduced (p < 0.01). Neither cold nor PM2.5 could induce changes in the number of
mitochondria (Figure 4f).

3.6. Cold Influences PM2.5-Induced Abnormal Lipid Metabolism

The serum lipid profiles were detected to observe lipid metabolism. As shown in
Figure 5, at a normal temperature, PM2.5 exposure could induce an increase in the serous
TC and LDL, but not in TG and HDL when compared with FA. Most notably, there were no
differences in these lipid indicators between TC-PM mice and TC-FA mice.
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3.7. Cold Exacerbates PM2.5-Induced Inflammation and Energy Expenditure Inhibition

At a normal temperature, PM2.5 exposure had no significant influence on serous TNF-
α and IL-6 (Figure 6a,b). However, at a cold temperature, PM2.5 exposure could induce an
increase in the TNF-α when compared with FA. Therefore, there was a significant difference
between TC-FA and TC-PM mice.



Atmosphere 2023, 14, 1157 8 of 14

Atmosphere 2023, 14, x FOR PEER REVIEW 8 of 15 
 

 

3.7. Cold Exacerbates PM2.5-Induced Inflammation and Energy Expenditure Inhibition 
At a normal temperature, PM2.5 exposure had no significant influence on serous TNF-

α and IL-6 (Figure 6a,b). However, at a cold temperature, PM2.5 exposure could induce an 
increase in the TNF-α when compared with FA. Therefore, there was a significant differ-
ence between TC-FA and TC-PM mice. 

PM2.5 did not change the level of leptin at a normal temperature, but it induced a 
significant decrease in leptin at a cold temperature (Figure 6c). The results suggested that 
PM2.5 markedly inhibited leptin-related energy consumption. PM2.5 exposure reduced ad-
iponectin at a normal temperature. However, at a cold temperature, PM2.5 exposure had 
no significant influence on adiponectin (Figure 6d). 

 
Figure 6. Inflammatory cytokines and adipocytokines in the serum of mice. (a–d) IL-6, TNF-α, leptin 
and adiponectin in the serum of mice. * p < 0.05, ** p < 0.01, FA vs. PM; # p < 0.05, ## p < 0.01, TC vs. 
TN. 

3.8. Combined Exposure to PM2.5 and the Cold Inhibits Thermogenesis and Energy Expenditure 
As shown in Figure 7a,b, compared with that in TN-FA and TC-FA, the expression of 

UCP-1 and HSP90 proteins in the WAT of mice in both the TN-PM and TC-PM groups was 
significantly decreased, indicating that PM2.5 could induce a decrease in the UCP-1 and 
HSP90 proteins in mice. However, the expression of UCP-1 and HSP90 proteins was sig-
nificantly increased in both TC-FA and TC-PM groups compared with the corresponding 
TN-FA and TN-PM, suggesting that cold exposure seemed to induce an increase in UCP-1 
and HSP90 expression. The trends of UCP-1 and HSP90 protein expression in BAT were 
the same as those in WAT (Figure 7c,d). 

 
Figure 7. Protein expression of UCP-1 and HSP90 in the WAT (a,b) and BAT (c,d) of mice after 
combined exposure to PM2.5 and the cold. * p < 0.05, ** p < 0.01, FA vs. PM; # p < 0.05, ## p < 0.01, TC 
vs. TN. 
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PM2.5 did not change the level of leptin at a normal temperature, but it induced a
significant decrease in leptin at a cold temperature (Figure 6c). The results suggested that
PM2.5 markedly inhibited leptin-related energy consumption. PM2.5 exposure reduced
adiponectin at a normal temperature. However, at a cold temperature, PM2.5 exposure had
no significant influence on adiponectin (Figure 6d).

3.8. Combined Exposure to PM2.5 and the Cold Inhibits Thermogenesis and Energy Expenditure

As shown in Figure 7a,b, compared with that in TN-FA and TC-FA, the expression
of UCP-1 and HSP90 proteins in the WAT of mice in both the TN-PM and TC-PM groups
was significantly decreased, indicating that PM2.5 could induce a decrease in the UCP-1
and HSP90 proteins in mice. However, the expression of UCP-1 and HSP90 proteins was
significantly increased in both TC-FA and TC-PM groups compared with the corresponding
TN-FA and TN-PM, suggesting that cold exposure seemed to induce an increase in UCP-1
and HSP90 expression. The trends of UCP-1 and HSP90 protein expression in BAT were
the same as those in WAT (Figure 7c,d).
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4. Discussion

Temperature changes, air pollution and noncommunicable diseases have become the
most serious threats to global health [23,24]. As one of the risk factors for T2DM and
cardiovascular diseases, metabolic disorder poses a huge threat to human health. A large
number of epidemiological and experimental studies have found that ambient PM2.5 ex-
posure played an important role in the occurrence and development of diabetes [25–29].
Although previous studies have shown that both ambient PM2.5 and temperature changes
could affect blood glucose, blood lipids and blood pressure [30–32], there are few studies
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observing the combined effects of air pollution and temperature changes on the develop-
ment of metabolic disorder, excluding the studies related to asthma and atherosclerotic
heart disease mortality [33–35]. Previous studies have reported that temperature changes
could not only alter the dispersion of particulate matter but also intensify the formation
of secondary pollutants [36]. In order to identify the combined effects of PM2.5 and the
cold on the development of metabolic disorders, we performed the current animal study.
To the best of our knowledge, this study is the first to provide direct evidence related to
the combined exposure to PM2.5 and the cold exacerbating metabolic disorder within the
normal healthy population.

In this study, the average concentration of PM2.5 in PM-exposed groups was about
150 µg/m3, which was much higher than the upper limit stipulated by the Chinese Air
Quality Standard (AQS, GB3095-2012). In addition, the exposure concentration of PM2.5
in this study represents the common weather condition in autumn and winter, especially
in northern Chinese cities such as Beijing [37,38], which is 10 times the WHO 24 average
recommended level. In recent years, our repeated determination of PM2.5 components in
exposure and control chambers of METAS indicated that the types of chemical components
have not changed regardless of the concentration [20–22], and traffic exhausts and industrial
emissions are the predominant sources of ambient PM around the exposure system [39].
Therefore, the PM2.5 concentration in this study could represent the air pollution condition
in most cities in China. In addition, in terms of the temperature setting, this study chose
22 ◦C and 4 ◦C to represent the normal temperature and the cold, and there were fewer
temperature points. In the future, temperature points can be added to explore the further
impact of temperature change curves.

The duration of the current study was 4 weeks, which made for a short-term study de-
sign. This study comprehensively detected metabolic-disorder-related indicators, including
blood pressure, insulin resistance (fasting insulin, HOMA-IR, ITT), glucose tolerance (fast-
ing blood glucose, IPGTT), energy consumption (VO2, VCO2, RER, and heat production),
serous lipids profile (TC, TG, LDL and HDL), inflammatory response (IL-6 and TNF-α),
leptin, adiponectin and mitochondria function (number and area of mitochondria in BAT),
in order to observe the combined effects of PM2.5 and cold exposure on the development
of metabolic disorders. In the future, we will also conduct long-term exposure studies in
order to obtain more comprehensive and reliable conclusions.

4.1. Cold Exacerbates PM2.5-Induced Glucose Metabolism Disorders

The present study found that PM and cold exposure had no significant effects on SBP
and DBP, which might be associated with the fact that short-term exposure cannot influence
blood pressure homeostasis. It was also found that PM2.5 could induce an increase in fasting
blood glucose under both normal and cold temperatures. The fasting blood glucose in
TC-PM mice was higher than that in the TN-PM mice, suggesting that the effect of PM2.5 on
glucose metabolism was exacerbated by cold exposure. Insulin resistance was an important
criterion for diagnosing MetS and T2DM. Blood glucose tolerance and insulin sensitivity
were often used to determine whether insulin resistance was occurring or not [27,40,41]. The
maintenance of blood glucose homeostasis in vivo mainly depends on the insulin reactivity
in target tissues. In this study, TN-PM mice displayed an increase in the HOMA-IR in
comparison with TN-FA mice, indicating the occurrence of insulin resistance. Meanwhile,
cold exposure could induce an increase in the HOMA-IR in PM-exposed mice, but not in
FA-exposed mice when compared with those at a normal temperature, suggesting that
cold exposure might exacerbate the PM-induced insulin resistance. Similarly, IPGTT and
ITT showed that PM2.5 along with cold exposure could induce serious glucose tolerance
and insulin resistance when compared with PM2.5 or cold exposure alone, which further
confirmed that the cold exacerbates the effects of PM2.5.

In the metabolic cage experiment, PM2.5 increased heat production under a normal
temperature, which was contrary to the long-term PM2.5-induced decrease in heat pro-
duction in our previous study [22]. The reason might be associated with the difference
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between long-term and short-term exposure [42,43], and the potential mechanism should
be explored in our future study. Importantly, TC-PM exposure could induce a higher VCO2
and RER in comparison with TC-FA, suggesting that there was a higher energy metabolism
in PM-exposed mice under cold environment conditions. The higher energy metabolism
was consistent with the higher body weight and fasting blood glucose in PM-exposed mice.

4.2. Cold Exacerbates PM2.5-Induced Lipid Metabolism Disorders

Circulatory lipids are closely related to the risk of cardiovascular disease. Studies had
found that a decrease in LDL and an increase in HDL were associated with a reduction in
the incidence of myocardial infarction, unstable angina and sudden cardiac death as early as
1996 [44,45]. Exposure to ultrafine particles could inhibit the protective effects of HDL [46].
A retrospective cohort study also found that intermediate-term exposure to PM10 resulted
in an increase in LDL and TG and a decrease in HDL [47]. The present study found that
PM2.5 exposure could induce an increase in TC under normal temperature conditions
when compared with FA exposure, but not in the cold-exposed groups. Cold exposure
could induce a lower TC and LDL when compared with that within a normal environment,
which might be associated with shivering thermogenesis, increased activity, promoted
function of BAT and enhanced plasma metabolism under short-term cold exposure [48,49].
The results might be explained by the function of BAT in regulating triglycerides [11,50].
Interestingly, PM2.5 could induce an increase in TC and LDL within a normal environment
when compared with FA. Similarly, previous studies, including ours, indicated that PM2.5
exposure increased TG and LDL in both ApoE-/- mice [51] and healthy C57BL/6 mice [22].
Curiously, there was no difference in TC and LDL between the PM2.5 and FA groups under
cold environment conditions, suggesting that cold exposure substantially influenced the
effects of PM2.5.

In this study, there was no significant difference in serous IL-6 and TNF-α between PM
and FA mice under normal temperature conditions. However, at a cold temperature, PM2.5
could induce an increase in the TNF-α, suggesting that cold exposure definitely promoted
PM2.5-induced systemic inflammation. Adipose tissue can secrete fatty acids, leptin and
adiponectin. In this study, PM2.5 exposure could induce a decrease in adiponectin, but not
leptin at a normal temperature. In contrast, at a cold temperature, PM2.5 exposure could in-
duce a decrease in leptin and had no significant effects on adiponectin. The results signified
that PM2.5 combined with cold exposure could induce a reduction in energy consumption
and promotion of adipocyte synthesis. Adiponectin is an important thermogenic regulator,
which is necessary to maintain the body temperature at low temperatures [52]. Thus, TC
mice secreted higher adiponectin than TN mice. Adiponectin decreased in obese and T2D
patients and the reduction in adiponectin was related to a decrease in insulin sensitivity and
glucose tolerance [53]. In the current study, TN-PM mice had a lower level of adiponectin
compared with TN-FA mice, which indicated that PM2.5 might impair glucose metabolism
and insulin sensitivity.

Mitochondria are important organelles in energy metabolism. In BAT, PM2.5 exposure
had no significant effect on mitochondrial quantity under both normal and cold temperature
conditions. In the TN and TC groups, PM2.5 significantly reduced the mitochondrial area. A
previous study found that long-term PM2.5 exposure decreased mitochondrial counts in
visceral adipose and mitochondrial size in interscapular adipose depots [54], which was
consistent with the decrease in these indicators in TN-PM mice in our study. According to
the metabolism of mice, VO2, VCO2, RER and heat production in TC mice were significantly
higher than those in TN mice, and VO2, VCO2, RER and heat production in TC-PM mice
were significantly higher than those in TC-FA mice. The results suggested that the changes
in the area of mitochondria in BAT would be a compensatory change in order to maintain
physical function when short-term-exposed to a combination of the cold and PM2.5.
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4.3. Cold Exacerbates PM2.5-Induced Protein Metabolism Disorders

UCP-1 is a specific expression protein in BAT. Under cold conditions, it can uncouple
mitochondrial oxidation and phosphorylation, metabolize fatty acids and generate energy,
thereby maintaining the body temperature. A previous study found that cold exposure
could induce the expression of BAT thermogenesis genes and increase the protein levels
of UCP1 and PGC1α [49]. HSP90 is one of the proteins in the heat shock protein family,
and its main function is to maintain the structure of intracellular proteins [55]. HSP90
plays a critical role in both the regulation of normal cellular homeostasis and the stress
response [56,57]. Previous studies indicated that Hsp90 genes performed a vital role in cold
acclimation [58,59] and ambient PM2.5 exposure [60]. In the present study, the expression
of UCP-1 and HSP90 was increased in both WAT and BAT during cold exposure when
compared with the corresponding normal temperature. More importantly, PM2.5 exposure
could induce the down-regulation of UCP-1 and HSP90 expression, regardless of whether
the mice were exposed to a normal or cold temperature. The UCP-1 alteration might in
turn impair the BAT structure and function [61,62].

5. Conclusions

This study showed that the combined exposure to PM2.5 and the cold might contribute
to the development of metabolic disorders within the healthy population. During short-
term exposure, cold exposure might exacerbate PM2.5-related metabolic disorders, which
are potentially associated with changes in energy homeostasis, glucose metabolism, insulin
resistance and mitochondrial function. In the future, we will explore the mechanism of
metabolic disorders induced by co-exposure to PM2.5 and cold temperatures. The results
demonstrated that the combined effects of PM2.5 pollution and temperature changes could
be a great threat to people’s health. Due to the combined effects of air pollution and
temperature changes, and the health issue of noncommunicable diseases, a study focusing
on air pollution and temperature changes is critical. The government and health authorities
have taken into account estimating both the temperature- and air-pollution-related health
problems in order to set up an adequate policy to face the temperature and pollution
challenges.
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