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Abstract: The Qinghai–Tibet Plateau region has abundant solar energy, which presents enormous
potential for the development of solar power generation. Accurate prediction of solar radiation
is crucial for the safe and cost-effective operation of the power grid. Therefore, constructing a
suitable ultra-short-term prediction model for the Tibetan Plateau region holds significant importance.
This study was based on the autoregressive integrated moving average model (ARIMA), random
forest model (RF), and long short-term memory model (LSTM) to construct a prediction model for
forecasting the average irradiance for the next 10 min. By locally testing and optimizing the model
parameter, the study explored the applicability of each model in different seasons and investigates the
impact of factors such as training dataset and prediction time range on model accuracy. The results
showed that: (1) the accuracy of the ARIMA model was lower than the persistence model used as a
reference model, while both the RF model and LSTM model had higher accuracy than the persistence
model; (2) the sample size and distribution of the training dataset significantly affected the accuracy
of the models. When both the season (distribution) and sample size were the same, RF achieved
the highest accuracy. The optimal sample sizes for ARIMA, RF, and LSTM models in each season
were as follows: spring (3564, 1980, 4356), summer (2772, 4752, 2772), autumn (3564, 3564, 4752), and
winter (3168, 3168, 4752). (3) The prediction forecast horizon had a significant impact on the model
accuracy. As the forecast horizon increased, the errors of all models gradually increased, reaching a
peak between 80 and 100 min before slightly decreasing and then continuing to rise. When both the
season and forecast horizon were the same, RF had the highest accuracy, with an RMSE lower than
ARIMA by 65.6–258.3 W/m2 and lower than LSTM by 3.7–83.3 W/m2. Therefore, machine learning
can be used for ultra-short-term forecasting of solar irradiance in the Qinghai–Tibet Plateau region to
meet the forecast requirements for solar power generation, providing a reference for similar studies.

Keywords: solar irradiance; ultra-short term forecasting; machine learning; training set; forecast horizon

1. Introduction

Solar energy, as one of the most promising renewable energy sources [1], is abundant,
green, and clean. Solar power generation is bound to experience significant develop-
ment [2]. The Qinghai–Tibet Plateau region is exceptionally rich in solar energy, with
annual sunshine duration ranging from approximately 1500 to 3400 h. The region holds
tremendous potential for solar power generation. However, there are significant fluctua-
tions in power generation, and sudden changes in power output can have adverse effects
on the stability of the grid [3]. Accurate prediction of solar power generation provides
a suitable means for the safe and efficient operation of the grid [4], which is crucial for
reducing the impact of integrating solar power systems into the power grid [5]. Therefore,
precise forecasting of power generation is of utmost importance. Solar irradiance is a
primary determining factor affecting power output [6], making irradiance prediction one of
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the most challenging focal points currently. Therefore, in the context of China’s dual carbon
strategy goals, establishing a suitable solar irradiance prediction model for the Tibetan
Plateau holds great significance.

Solar radiation series, as a type of time series, can be predicted using time series
analysis methods [7,8], with autoregressive integrated moving average (ARIMA) being
widely applied. In the study by Zhang [9], a hybrid model combining ARIMA and artificial
neural networks (ANN) was constructed, and the results showed that the model effectively
improved prediction accuracy. In the study by Reikard [10], multiple radiation datasets
with resolutions of 5, 15, 30, and 60 min were used to build ARIMA models for predicting
solar irradiance from the next 5 min to several hours ahead. The ARIMA model with
time-varying coefficients (logs) obtained the best results. Ferrari [11] conducted a study on
solar irradiance time series and predicted it using AR, ARMA, and ARIMA models. They
compared these models with persistence models, k-nearest neighbors models, and support
vector machine models. The results indicated that the ARIMA model provided the best
fit. In the study by Yang [12], ARIMA models were constructed using different types of
meteorological data as input variables to predict solar radiation for the next 1 h. It was
found that utilizing cloud information for prediction could improve accuracy. The ARIMA
model constructed by Das [13] provided reliable predictions for solar radiation and solar
photovoltaic power output. It is flexible enough to incorporate more information and its
performance improves with an increasing number of data points.

In recent years, machine learning became one of the main methods for irradiance
prediction, with random forest (RF) being widely employed by researchers due to its
high performance, low overfitting risk, and fast training speed [14]. In the study by
Sun [15], multiple meteorological, solar radiation, and air pollution index data from various
stations were utilized to construct an RF model for irradiance prediction. The results
demonstrated that the RF model outperformed empirical methods in terms of fitting
accuracy. Fouilloy [16] analyzed 11 statistical and machine learning methods used for solar
irradiance prediction and compared their performance across three different meteorological
stations. For sites with high variability, the reliability of predictions was lower, but RF
demonstrated the best predictive performance. In the study by Benali [17], an RF-based
radiation prediction model was found to outperform intelligent persistence and artificial
neural network models. In the study by Zeng [18], the simulated results of a high-density
daily solar radiation network constructed based on the RF model showed good agreement
with measured values in China. Hou [19] utilized Himawari-8 AHI data and constructed
a prediction model based on random forest (RF) to estimate the downward shortwave
radiation at the surface in China. They achieved promising results with this approach.
Villegas-Mier [20] proposed a RF-based solar radiation prediction model. The results
showed an accuracy improvement of 95.98% compared to traditional linear regression
methods, and it exhibited strong robustness.

With the rapid development of deep learning, researchers extended its application to
the field of solar radiation prediction, particularly the widespread use of the long short-term
memory (LSTM) model due to its strong suitability for time series forecasting. In the study
by Srivastava and Lessmann [21], an LSTM-based irradiance prediction model was con-
structed, validating its robustness and demonstrating that the optimally configured LSTM
model outperformed other methods. Qing and Niu [22] utilized two years of radiation data
collected in Cape Verde to train and predict using an LSTM model. Their results showed
a 18.34% lower RMSE compared to multilayered feedforward neural networks. Wen [23]
developed a deep recursive neural network with long short-term memory (DRNN-LSTM)
for solar power generation and load forecasting. Their performance surpassed that of mul-
tilayer perceptron (MLP) and support vector machine (SVM). Lan Huynh [24] developed
an LSTM-based model for radiation prediction in Vietnam, forecasting radiation for 1, 5,
10, 15, and 30 min into the future. Their results indicated superiority over other models.
In the study by Huang [25], an LSTM-based irradiance prediction model was developed,
analyzing the influence of different lag time parameters, primary inputs, and auxiliary
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inputs on the model’s predictive performance. The results showed that the accuracy was
superior to that of the BPNN model. Sorkun [26] proposed an LSTM-based solar radiation
prediction model and investigated the impact of various meteorological variables. The
research results demonstrated that the multivariate model outperformed the previous
univariate models. Liu [27] conducted solar radiation prediction and evaluation using
seven years of radiation data from the U.S. Department of Energy’s Atmospheric Radiation
Measurement (ARM) center. Their results demonstrated that LSTM had the best overall
performance, outperforming XGBoost and ARIMA models. Gao [28] developed a deep
generative model based on LSTM for multi-step solar irradiance prediction. The results
showed that the model effectively avoids the issue of error accumulation. Compared to
the traditional regression LSTM model, it achieved an accuracy improvement of 7.7%.
Bou-Rabee [29] proposed a solar radiation prediction model based on attention mechanism
and bidirectional long short-term memory (BiLSTM). The model was designed separately
for sunny and cloudy weather conditions. The results showed that its performance was
superior to other deep learning networks. Alizamir [30] constructed multiple solar radia-
tion prediction models, and the results indicated that the combination of LSTM model and
wavelet transform technique can enhance the accuracy of radiation prediction based on
climatic parameters.

The Qinghai–Tibet Plateau region has abundant solar energy resources. In the context
of China’s dual-carbon strategy goals, it is of great significance to establish a solar short-
wave radiation prediction model suitable for this region. Previous studies showed that
using statistical models, machine learning, and deep learning to establish solar radiation
prediction models is an advanced and effective research approach. However, based on
the radiation characteristics of different regions, it is necessary to perform local testing
and optimization of model parameters. Therefore, in this study, utilizing ground solar
shortwave radiation flux observation data, representative methods including ARIMA, RF,
and LSTM algorithms were employed to construct models for predicting the average solar
shortwave radiation for the next 10 min. Sensitivity testing and optimization of key param-
eters were conducted, and a comparative analysis was carried out to reveal the advantages
and limitations of these methods in irradiance prediction, aiming to establish a radiation
prediction model suitable for the Qinghai–Tibet Plateau region. These data-driven predic-
tion methods heavily rely on the training dataset [15], and the sample size of the training set
is a determining factor for the model’s generalization ability [31]. The sample size affects
the learning and training effectiveness of the model, and the accuracy of the model can
also be influenced by the numerical distribution of the training set [32], which is influenced
by seasonal variations in irradiance. Therefore, it is necessary to conduct research by
classifying seasons when predicting irradiance. However, there is limited research on the
impact of factors such as sample size and numerical distribution of the training set on the
prediction accuracy of the model, highlighting the need for relevant studies. Additionally,
the prediction forecast horizon has a significant impact on the model’s accuracy, and a
quantitative study on the accurate prediction forecast horizon of each model in different
seasons can provide reference for the construction of prediction models in this region.

The structure of this paper is as follows: In Section 2, the research area, data prepro-
cessing, dataset configuration, and data features are introduced. In Section 3, the research
methods are presented, including the principles and construction of the ARIMA, RF, and
LSTM models. In Sections 4 and 5, the experimental results are showcased and discussed.

2. Data

Constructing a solar radiation prediction model requires data-driven approaches and
validation. Analyzing the differences in the training set and the impact of the prediction
time range on model accuracy necessitates an examination of the data’s characteristics.
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2.1. Overview of the Study Area

Yangbajing (90◦33′ E,30◦05′ N) is located 90 km northwest of Lhasa, Tibet. It has an
average elevation of 4300 m and features a flat terrain surrounded by mountains. The area
experiences short spring and autumn seasons, with warm and humid summers and long,
cold winters. It enjoys abundant sunshine throughout the year, with an annual sunshine
duration of over 2800 h. A solar photovoltaic power station was built in this area. The Yang-
bajing Atmospheric Observatory, operated by the Institute of Atmospheric Physics, Chinese
Academy of Sciences, conducted comprehensive atmospheric observations since 2018. The
observatory covers a wide range of detection wavelengths, from ultraviolet to infrared,
terahertz, and millimeter waves. It enables high vertical resolution (10–100 m), high tempo-
ral resolution (1 min to 1 h), and continuous simultaneous quantitative measurements of
multiple atmospheric variables throughout the entire atmospheric column.

2.2. Data Sources

This study focused on the analysis of shortwave solar radiation data obtained from the
four-component radiometer MR-60 at the Yangbajing Atmospheric Observatory. The spec-
tral range of the data was 285–3000 nm, and the unit was W/m2. The data were sampled at
a frequency of 1 min. A total of 366 days of data, from 1 June 2019 to 31 May 2020, were
selected for analysis. Samples with zero radiation during the nighttime were excluded [33],
and only data collected between 8:00 and 19:00 during the day were retained. The data
were then resampled to calculate the average radiation values over 10 min intervals. Thus,
there were 66 samples per day.

Since the accuracy of the models can be influenced by the distribution of the dataset, the
distribution of radiation data is related to seasonal variations. Therefore, in this experiment,
the data were divided into four datasets based on seasons: spring (March–May), summer
(June–August), autumn (September–November), and winter (December–February). Each
season had a similar number of samples. The training and testing datasets were split in a
6:1 ratio, and the models were trained to predict the 10 min average radiation for different
seasons. This study used historical time series data of solar radiation as input variables
for the models. By conducting sensitivity experiments to determine the optimal parame-
ters of each model, the study performed training, prediction, and evaluation to develop
short-term radiation prediction models suitable for different seasons in the Qinghai–Tibet
Plateau region.

2.3. Data Characteristics

Different datasets require testing and optimization of model parameters based on
their respective data characteristics. Previous research results showed significant seasonal
variations in solar irradiance, and so, it is important to understand the seasonal characteris-
tics of the dataset. Since only daytime data were retained, the training dataset consisted
of multiple samples from different quantities of daytime periods, necessitating analysis
of this time period. Additionally, understanding the diurnal variations in the data helps
determine the input features of the model.

2.3.1. Seasonal Characteristics

According to Table 1, the solar radiation in the Yangbajing region exhibited significant
seasonal variations. The peak occurred in summer, reaching 1713 W/m2, which was much
higher than the solar constant. This may be attributed to the influence of clouds [34]
and terrain [35]. The standard deviation of radiation was higher in spring and summer,
and lower in winter, indicating greater fluctuations in solar radiation during spring and
summer, and relatively stable conditions during winter. This can be attributed to the higher
rainfall and frequent weather changes in spring and summer, while winter experienced
more stable weather conditions.
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Table 1. Seasonal variation of solar irradiance in Yangbajing area (W/m2). The ‘max’ column
represents the maximum value of one-minute average irradiance, the ‘mean’ column represents the
seasonal average irradiance, and the ‘std’ column represents the standard deviation. The maximum
values are highlighted in bold (The peak, mean, and standard deviation of irradiance are highest
in summer).

Spring Summer Autumn Winter

max 1687 1713 1487 1292
mean 551 579 457 413

std 360 376 325 293

2.3.2. Diurnal Variation Characteristics

According to Figure 1 and Table 2, the diurnal variations of solar radiation in the
Yangbajing region exhibited similar patterns in different seasons, showing a single-peak
inverted “U” shape. Due to the rotation of the Earth and the variation of the solar zenith
angle, the radiation showed a clear periodic variation with a peak around 11–15 o’clock.
The standard deviation of radiation in all four seasons is highest around 14–15 o’clock and
lowest at 8 o’clock, indicating greater fluctuation at noon and relatively stable conditions in
the morning. Additionally, in spring, autumn, and winter, there were often instances in the
morning (8–10 o’clock) and evening (17–18 o’clock) where the instantaneous radiation was
much higher than the average value in the low radiation zone.
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Based on the comprehensive analysis, it can be concluded that solar radiation exhibits
significant variations across different seasons. Therefore, the numerical distribution of
the training datasets used by the models will differ greatly among the seasons. Each
dataset representing a specific season corresponds to a distinct numerical distribution of
the training set. Solar radiation historical data were utilized as input for statistical methods
and machine learning models. Ignoring the prominent characteristics of solar radiation
would result in suboptimal predictions [36]. Hence, it is necessary to classify the datasets
according to the seasonal variations of solar radiation and develop separate prediction
models for each season to improve accuracy. Additionally, exploring the impact of the
numerical distribution differences in the training sets caused by seasonal factors on model
accuracy can also be investigated.
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Table 2. Diurnal variations of solar shortwave radiance in Yangbajing region (W/m2). The ‘max’
column represents the maximum value of 1 min average, the ‘mean’ column represents the hourly
average, and the ‘std’ column represents the standard deviation. The maximum values are highlighted
in bold (The peak, mean, and standard deviation of irradiance are highest in summer, lowest in
winter, and the maximum values for each quantity occur between 13:00 and 15:00).

Sping Summer Autumn Winter

Max Mean Std Max Mean Std Max Mean Std Max Mean Std

8 569 123 110 569 143 108 355 42 58 56 0.1 7
9 970 339 154 909 315 179 699 211 113 418 103 83

10 1167 565 201 1198 525 245 1093 432 161 625 335 102
11 1592 750 235 1377 684 283 1316 616 195 831 537 117
12 1151 816 308 1584 787 344 1452 725 253 1138 683 146
13 1538 852 351 1713 863 357 1452 770 288 1161 730 195
14 1687 781 379 1710 857 386 1487 691 311 1292 696 216
15 1544 657 362 1598 769 389 1421 630 290 1174 599 232
16 1465 559 320 1436 609 346 1291 480 245 1104 453 201
17 1212 387 237 1180 508 281 1091 308 177 985 293 151
18 792 230 149 887 314 203 720 124 114 557 115 99

3. Methodology

Each prediction method will be briefly described in this section: persistence model,
ARIMA, random forest, and LSTM model. The persistence model is a simple model that
is easy to implement and does not require any training steps or historical dataset. It is
typically used as a reference model for comparison in terms of accuracy against the other
three more complex models.

3.1. Persistence Model

The persistence model, the simplest forecasting model, assumes that the future value
is identical to the previous one [17]. The formula is as follows:

ŷt+h = yt (1)

ŷt and yt represent the predicted value and the measured value of irradiance at time t,
respectively, the h represent the forecast horizon.

3.2. ARIMA Prediction Model

ARIMA is a regression equation that is based on the linear relationship between the
future values of a variable and its historical values, as well as the historical values and
current value of the random error term. It consists of three components: autoregressive
(AR), differencing (I), and moving average (MA), denoted by the parameters p, d, and q,
respectively [37]. The ARIMA model can be represented as follows:

Xk = ϕ1Xk−1 + ϕ2Xk−2 + · · ·+ ϕpXk−p + εk − θ1εk−1 − θ2εk−2 − · · · − θqεk−q (2)

ϕi(i = 1, 2, . . . , p) represents the autoregressive coefficients, θi(i = 1, 2, . . . , q) represents
the moving average coefficients, p and q are the orders of the model, and εk represents
the error term [38]. The modeling steps are as follows: (1) Stationarity Test: Perform a
statistical test for unit root, such as the augmented Dickey–Fuller test, on the irradiance
time series. If the series fails the test, apply methods like differencing, moving average,
or logarithmic transformation to transform it into a stationary series. (2) Test for Pure
Randomness: Conduct a test for white noise, such as using the Ljung–Box statistic, on the
irradiance time series to assess the presence of serial correlation. (3) Model Identification:
Determine the order of the model by estimating the autoregressive order (p) and the moving
average order (q) based on the autocorrelation function (ACF) and partial autocorrelation
function (PACF) estimates [39]. (4) Parameter Estimation: Use the method of least squares
or maximum likelihood estimation to estimate the unknown parameter values in the model.
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(5) Model Validation: Perform significance tests for the estimated parameters and assess
the overall significance of the model. (6) Model Optimization: Optimize the model by
comparing the values of information criteria functions such as the Akaike information
criterion (AIC), Bayesian information criterion (BIC), Hannan–Quinn information criterion
(HQIC), etc. Choose the model with the minimum values of these criteria as the optimal
model [24].

3.3. RF Prediction Model

RF (random forest) is an ensemble learning method in machine learning, where each
tree is constructed from a random subset of the original data during the training process [40].
A randomly selected set of features is used to fit each tree. The random selection of data and
features helps to prevent any correlation between the trees and the results of a large number
of trees are averaged to address overfitting issues associated with individual decision
trees [41]. The steps for building the RF model are as follows.

3.3.1. Data Transformation and Feature Extraction

Transform the solar irradiance time series data into supervised learning data suitable
for machine learning by using a sliding window. Use historical time ranges Xt−1, Xt−2,
Xt−3, . . . , Xt−m as input variables and use future time ranges Xt+1, Xt+2, Xt+3, . . . , Xt+n
as output variables. Reconstruct the data to transform it from one-dimensional to multi-
dimensional format. The primary objective is to determine the input feature quantity m,
which represents the dimensionality of the input matrix [17]. Split the solar irradiance time
series dataset into training, validation, and testing sets. Then, using 1, 2, 3, . . . , M (m < M)
steps of time series data as model input variables and training the model with default
parameters on the training set, validate it on the validation set to obtain the optimal input
feature quantity m.

3.3.2. Model Optimization

Due to the nature of time series data, cross-validation methods were not used for
parameter tuning. In this experiment, the rolling origin prediction method was employed
to optimize the model [42]. The steps are as follows: (1) The dataset was redivided into
training and test sets in a 6:1 ratio. The first step involved training the models on the
training set, followed by predicting and evaluating the test set. (2) The actual value of
the first step in the testing set was added back to the training set. (3) With the updated
training set, the model was retrained and used to predict the second step of the testing
set. (4) This process was repeated for the entire testing set. By continuously updating
the prediction origin and training set, multiple prediction errors for the time series were
obtained. During this process, a grid search was performed to continuously adjust the
hyperparameters, achieving the functionality of cross-validation to ensure model stability
and avoid overfitting.

3.4. LSTM Prediction Model

As an improved model of recurrent neural networks (RNN) in deep learning, LSTM not
only possesses powerful capabilities to uncover complex nonlinear relationships in neural
networks [43], but also addresses the issue of vanishing gradients commonly encountered
in traditional RNN training. The LSTM unit consists of input gates, output gates, and forget
gates, which enable the LSTM unit to ‘forget’ or ‘remember’ information in the memory [44].
Σ represents the sigmoid activation function, and tanh represents the hyperbolic tangent
activation function. The specific computation process from input to output is as follows [21]:

ft = σ
(

W f · [ht−1, xt] + b f

)
(3)

it = σ(Wi · [ht−1, xt] + bi) (4)
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ot = σ(Wo · [ht−1, xt] + bo) (5)

ct = tanh(Wc · [ht−1, xt] + bc) (6)

ct = ft · ct−1 + it · ct (7)

ht = ot · tanh(ct) (8)

The symbol “·” Represents the dot product operation between two vectors, “+” repre-
sents the addition operation between two vectors, W f , Wi, Wo, and Wc, respectively, denote
the weight matrices for the forget gate, input gate, output gate and memory unit, b f , bi,
bo, and bc, respectively, denote the bias vectors for the forget gate, input gate, output gate,
and memory cell. The input data for each gate are the element-wise product of the previ-
ous timestep’s output ht−1 and the current timestep’s input xt, represented as the vector
[ht−1, xt], with their corresponding weight vectors. ft, it, and ot represent the outputs of
the σ function at time t, while ct represents the output of the tanh function at time t. The
long-term memory ct and the short-term memory ht at time t are passed to the next LSTM
unit [24,25].

A more advanced LSTM architecture involves stacking multiple hidden layers, each
consisting of multiple LSTM units, which enables the model to go deeper and achieve
higher accuracy [45]. However, when the number of hidden layers is too small, the training
performance may be suboptimal, but adding a large number of layers significantly increases
the number of trainable parameters [46], leading to reduced model generalization and
increased errors. Therefore, we adopted a model architecture with two hidden layers. The
construction process was as follows: (1) We used the same data transformation method
as RF to convert the original one-dimensional time series of solar irradiance into multidi-
mensional data with m-dimensional input variables and n-dimensional output variables.
(2) The rolling origin prediction method was used to optimize the model. The LSTM input
layer had m-dimensional input vectors, and the output layer was configured with n neu-
rons corresponding to the prediction time range. The maximum number of neurons in the
hidden layer was set to 100. A dropout layer was added after the hidden layer, randomly
ignoring neurons and their connections [47]. The rectified linear unit (ReLU) activation
function was used, and the optimizer was set to adaptive moment estimation (Adam). The
maximum training epochs were limited to 100 to reduce the risk of overfitting [10]. The
optimal hyperparameters of the model were obtained through grid search by minimizing
the root mean squared error (RMSE) on the validation dataset. Deep learning models were
randomly initialized with weights, so each set of parameters was run 20 times, and the
average of the experimental results was taken as the performance evaluation metric [22,48].
By following the above-mentioned methods, we can effectively avoid overfitting issues,
improve model generalization, and enhance model robustness.

3.5. Model Evaluation

The RMSE is more sensitive to significant deviations in model predictions, and when
predicting solar radiation based on historical time series data, it often encounters multiple
large errors [49]. Therefore, RMSE is more suitable than other metrics for model evaluation.
The formula is as follows:

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)
2 (9)

yt, ŷt and yt represent the measured value, predicted value, and measured average
value of irradiance at time t, respectively. N is the number of samples in the data set.

4. Results and Analysis

By utilizing the constructed solar irradiance prediction models, single-step forecasting
can be conducted to investigate the impact of training set differences on each model. The
RMSE of the persistence model in spring, summer, autumn, and winter were 92.1, 111.2,



Atmosphere 2023, 14, 1150 9 of 19

77, and 44.5 W/m2, respectively. By comparing (Table 3), it can be observed that across
all seasons, the persistence model exhibited higher accuracy than ARIMA. However, the
RMSE for the persistence model was significantly larger than that of the RF and LSTM
models. Additionally, multiple-step forecasting can be performed to study the influence
of the prediction time range on each model, thereby exploring the forecast horizon within
which each model can accurately predict.

Table 3. Comparison of RMSE (W/m2) of models with different training sets, where 1 d represents a
sample size of one day. The best performance of the metrics is highlighted in bold (Under the same
conditions, ARIMA has the highest RMSE, RF has the lowest RMSE, and the RMSE values for all
models are lowest in winter).

ARIMA RF LSTM

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

6 d 160.9 208.6 133.0 125.3 32.4 27.2 13.4 9.3 53.5 49.5 35.4 12.7
12 d 148.7 181.9 133.7 87.1 22.8 21.1 10.6 5.6 41.8 37.5 20.4 10.3
18 d 127.0 171.0 111.0 97.0 22.9 21.4 8.1 4.5 34.2 30.2 16.1 7.9
24 d 166.9 154.7 103.9 81.1 24.7 15.1 11.5 5.0 35.5 24.2 15.9 7.0
30 d 157.1 178.1 127.2 96.0 20.3 17.5 9.0 6.2 35.1 30.8 16.2 10.8
36 d 141.6 170.1 95.9 89.6 24.7 23.6 8.4 5.0 33.7 29.6 13.5 9.8
42 d 133.3 138.5 105.5 101.4 26.2 11.8 8.3 4.8 32.1 17.6 11.8 10.0
48 d 134.5 162.4 95.7 68.8 21.2 16.2 10.3 3.2 34.4 26.0 16.1 11.6
54 d 114.4 190.4 84.6 71.5 22.7 17.6 6.3 5.7 29.9 28.4 11.9 9.7
60 d 161.0 176.4 101.6 101.6 22.3 14.5 7.6 6.9 33.1 24.6 10.9 10.1
66 d 133.8 144.1 134.5 77.3 20.6 11.6 10.1 5.2 29.5 17.9 11.7 8.3
72 d 150.3 160.9 88.9 119.5 31.7 11.5 8.8 4.4 38.3 17.8 10.6 6.9

4.1. Impact of Training Set on Model

Each model selects the data collected over 6–72 days as the training set for fitting and
predicting the irradiance for the next 10 min. The study investigated the influence of the
numerical distribution and sample size of the training set on the various models.

4.1.1. ARIMA Model

According to Figure 2, when the ARIMA model was trained on training sets of equal
sample size, in most cases, the prediction error was highest in the summer, followed by the
spring, and lowest in the winter.
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When the seasons were the same, meaning the numerical distribution of the training
set was similar, the model’s prediction accuracy fluctuated without a clear trend as the
sample size of the training set increased from 6 days to 72 days of collected data. The
optimal sample size of the training set was determined when the RMSE was minimized.
Table 3 reveals that for the ARIMA model, the optimal sample sizes for the training sets in
spring, summer, autumn, and winter were 3564 (54 days), 2772 (42 days), 3564 (54 days),
and 3168 (48 days), respectively. The corresponding RMSE values were 114.4 W/m2,
138.5 W/m2, 84.6 W/m2, and 68.8 W/m2.

Table 4 shows that the ARIMA model’s optimal values for the autoregressive order (p)
and the moving average order (q) when selecting the optimal sample size for the training
set were as follows: spring (p = 4, q = 3), summer (p = 3, q = 2), autumn (p = 3, q = 3),
and winter (p = 5, q = 8). Based on this, a short-term irradiance forecasting model for the
Qinghai–Tibet Plateau region can be constructed using the ARIMA model that is suitable
for different seasons.

Table 4. Model parameters when the training set selects the optimal sample size. The p and q
are the order of autocorrelation and the order of partial autocorrelation of ARIMA, respectively.
The estimators and max-depth are the number of trees and maximum depth of trees in RF model,
respectively. The unit1 and unit2 denote the number of neurons in the first and the second hidden
layers of the LSTM model, respectively.

ARIMA RF LSTM

p q Estimators Max-Depth Unit1 Unit2

spring 4 3 19 13 40 60
summer 3 2 16 13 52 63
autumn 3 3 25 10 63 67
winter 5 8 25 14 40 40

4.1.2. RF Model

From Figure 3, it can be observed that when the random forest (RF) model was trained
on training sets of equal sample size, the prediction error was highest in the spring, followed
by the summer, and lowest in the winter.

When the seasons were the same, as the sample size of the training set increased from
6 days to 72 days of collected data, the model’s prediction accuracy fluctuates without a
clear trend in all seasons. Table 3 reveals that for the RF model, the optimal sample sizes for
the training sets in spring, summer, autumn, and winter were 1980 (30 days), 4752 (72 days),
3564 (54 days), and 3168 (48 days), respectively. The corresponding RMSE values were
20.3 W/m2, 11.5 W/m2, 6.3 W/m2, and 3.2 W/m2.

Table 4 shows that the RF model’s optimal values for the number of trees (estimators)
and the maximum depth of trees (max-depth) when training on the optimal sample size
of the training set were as follows: spring (estimators = 19, max-depth = 13), summer
(estimators = 16, max-depth = 13), autumn (estimators = 25, max-depth = 10), and winter
(estimators = 25, max-depth = 14). Based on this, a short-term irradiance forecasting model
for different seasons in the Qinghai–Tibet Plateau region can be constructed using the
RF model.

4.1.3. LSTM Model

From Figure 4, it can be observed that when the LSTM model was trained on training
sets of equal sample size, the prediction error was highest in the spring, followed by the
summer, and lowest in the winter.

When the seasons were the same, as the sample size of the training set increased
from 6 days to 72 days of collected data, the model’s prediction accuracy for each season
fluctuated without a clear trend. Table 3 reveals that for the LSTM model, the optimal
sample sizes for the training sets in spring, summer, autumn, and winter are 4356 (66 days),
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2772 (42 days), 4752 (72 days), and 4752 (72 days), respectively. The corresponding RMSE
values were 29.5 W/m2, 17.6 W/m2, 10.6 W/m2, and 6.9 W/m2.

Table 4 shows that the LSTM model’s optimal values for the number of neurons
in each hidden layer when training on the optimal sample size of the training set were
as follows: spring (unit1 = 40, unit2 = 60), summer (unit1 = 52, unit2 = 63), autumn
(unit1 = 63, unit2 = 67), and winter (unit1 = 40, unit2 = 40). Based on this, a short-term
irradiance forecasting model for different seasons in the Qinghai–Tibet Plateau region can
be constructed using the LSTM model.

4.1.4. Comparison between Models

According to Table 3, when the sample size was equal, there were significant differ-
ences in the accuracy of different models in reflecting the variations in data distribution
across different seasons. The ARIMA model exhibited the highest error in the summer
and the lowest error in the winter. In contrast, machine learning models such as RF and
LSTM showed the highest error in the spring and the lowest error in the winter, which was
noticeably different from the statistical model. The model accuracy was greatly influenced
by the seasons, which was attributed to the differences in the data distribution of the
training sets used for model learning and fitting. The spring and summer solar irradiance
exhibited larger standard deviations and greater fluctuations, making predictions more
challenging, while the winter solar irradiance had a smaller standard deviation and lower
fluctuation, resulting in smaller prediction errors.

From Table 5, it can be observed that when the seasons were the same, i.e., when
the data distribution of the training sets was identical, there were significant differences
in accuracy among the models at different sample sizes. In the spring, the LSTM model
required the largest sample size for training, while the RF model required the smallest. In
the summer, the RF model required the largest training set sample size. In the autumn
and winter, the LSTM model required the highest sample size. Overall, the LSTM model
required a larger sample size for training and fitting [22], while the RF and ARIMA models
required relatively smaller sample sizes.

Table 5. Displays the optimal sample sizes of the training sets for each model, where the values
represent the sample size of the data collected for the corresponding number of days.

Spring/Day Summer/Day Autumn/Day Winter/Day

ARIMA 54 42 54 48
RF 30 72 54 48

LSTM 66 42 72 72

The above results indicate that the accuracy of the models did not necessarily improve
with an increase in sample size, as it was also influenced by the data distribution of the
training set. The quantity and structure of the training set may have a greater impact on
accuracy than the model architecture [50], as model parameters, such as connection weights
in neural networks, were estimated from this data [21]. Therefore, it is important to select
an appropriate model based on the sample size and data distribution of the training set.

From Figure 5, it can be observed that when each model was trained on the same
season and equal sample size training set, regardless of the season, the ARIMA model
consistently exhibited the largest prediction error, while the RF model showed the smallest
prediction error. The LSTM model’s prediction error was very close to that of the RF model.
Time series analysis methods are generally not suitable for short-term forecasting because
the prediction error for the next value in a sequence can be large [51]. This may be due to
ARIMA neglecting the connections between samples in the training set, while LSTM and
RF can leverage all samples for training, resulting in higher information utilization [27].
The output of the ARIMA model depends on a linear combination of historical values,
implying that the prediction error is linearly correlated with the historical errors. On the
other hand, LSTM and RF can better handle the nonlinear relationships present in the
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temporal residuals compared to ARIMA [52]. These results indicate that machine learning
algorithms are more suitable than ARIMA for short-term forecasting of solar irradiance in
the Qinghai–Tibet Plateau region.

4.2. Impact of Forecast Horizon on Model

The optimal training sets and parameters were selected for each model to perform
learning and fitting, predicting the 10 min average solar irradiance for the next 2 h. This
study investigated the influence of the forecast horizon on the performance of each model.
Additionally, a quantitative analysis through multiple-step forecasting will be conducted
to explore the time range within which each model can accurately predict.

4.2.1. ARIMA Model

Based on Table 6 and Figure 6, when the forecast horizon was the same, the ARIMA
model generally exhibited the largest prediction errors in summer, followed by spring,
and the smallest errors in winter. This indicates that the variations in training set data
distribution caused by seasonal factors had a significant impact on the model’s accuracy.

Table 6. Compares the RMSE (W/m2) of models for different forecast horizon, with the first peak
value highlighted in bold font (As the forecast horizon increases, the RMSE values for all models
gradually increase, reaching the first peak between 80 and 100 min).

ARIMA RF LSTM

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

10 min 114.4 138.5 84.6 68.8 20.3 11.5 6.3 3.2 29.5 17.6 10.6 6.9
20 min 138.6 154.6 100.8 89.7 23.6 24.5 13.4 5.4 38.9 31.0 15.9 11.0
30 min 192.1 184.0 146.1 127.0 34.2 39.4 17.4 7.5 46.5 58.3 43.8 21.4
40 min 249.4 215.0 198.5 179.7 44.8 48.8 30.5 9.0 57.8 90.3 53.3 24.6
50 min 285.4 253.9 241.7 242.4 59.3 62.1 43.3 14.0 68.9 112.9 70.0 28.7
60 min 311.5 301.6 277.5 278.3 77.7 68.6 52.3 26.4 75.7 132.6 73.6 30.6
70 min 328.7 334.6 288.6 292.9 88.9 86.2 58.5 29.7 94.9 141.0 83.1 37.7
80 min 335.3 346.0 295.0 303.0 90.8 93.3 69.1 36.0 102.6 157.2 88.7 48.1
90 min 337.2 343.3 293.4 298.4 91.1 99.5 73.0 39.7 110.0 182.8 94.6 50.3
100 min 333.4 336.5 291.6 292.5 88.5 98.3 70.8 39.2 113.8 157.5 99.1 52.9
110 min 334 335.4 299.9 290.2 85.6 97.5 67.7 38.0 103.4 152.6 87.2 48.8
120 min 343.8 346.8 311.3 294.8 85.6 94.0 65.3 36.5 102.6 174.2 104.0 44.0
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When the seasons were the same, i.e., when the training set data distribution was
identical, as the forecast horizon gradually increased from 10 min to 2 h, the ARIMA
model’s prediction errors also increased for all seasons, reflecting the accumulation of
errors. Within the 10–60 min horizon, the errors of the model in all seasons increased
rapidly. After around 70 min, the error trends stabilized gradually. Additionally, the
RMSE for each season reached its first peak at 80–90 min (spring: 337.2 W/m2; summer:
346.0 W/m2; autumn: 295.0 W/m2; winter: 303.0 W/m2), followed by a slight decrease
before continuing to rise.

4.2.2. RF Model

Based on Table 6 and Figure 7, when the forecast horizon was the same, in most cases,
the RF model exhibited the largest prediction errors in summer, followed by spring, and
the smallest errors in winter.
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Figure 7. Comparison of RMSE for RF model with different forecast horizon.

When the seasons were the same, as the forecast horizon gradually increased from
10 min to 2 h, the RF model’s prediction errors also increased gradually. Within the
10–70 min horizon, the errors of the model in all seasons increased rapidly. After around
80 min, the error trends stabilized gradually. Additionally, the RF model reached a peak
RMSE for each season at 90 min (spring: 91.1 W/m2; summer: 99.5 W/m2; autumn:
73.0 W/m2; winter: 39.7 W/m2), followed by a slight decrease.

4.2.3. LSTM Model

Based on Table 6 and Figure 8, if the forecast horizon was the same, when the horizon
was between 10 and 20 min, the LSTM model exhibited the largest prediction errors in
spring, followed by summer, and the smallest errors in winter. However, when the forecast
horizon exceeded 20 min, the model’s prediction errors were largest in summer, followed
by spring, and winter still had the smallest errors.
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When the seasons were the same, as the forecast horizon gradually increased from
10 min to 2 h, the LSTM model’s prediction errors also increased gradually. Within the
10–70 min horizon, the errors of the model in all seasons increased rapidly, followed by
significant fluctuations. Additionally, the LSTM model reached a peak RMSE for each
season at 90–100 min (spring: 113.8 W/m2; summer: 182.8 W/m2; autumn: 99.1 W/m2;
winter: 52.9 W/m2), followed by a slight decrease before continuing to rise.

4.2.4. Comparison between Models

From Table 6, it can be observed that when the forecast horizon was the same, there
was a significant difference in accuracy among the models for different seasons. However,
in most cases, the models exhibited the highest prediction error in summer and the lowest in
winter. This was because the training sets used for learning and fitting varied significantly
across seasons, with larger variations in solar irradiance during summer, making the
prediction more challenging and leading to higher errors. Conversely, during winter, the
standard deviation of solar irradiance was smaller, resulting in lower errors.

From Table 6 and Figure 9, it can be observed that when the season was the same, the
prediction errors of all models gradually increased as the forecast horizon extended from
10 min to 2 h. This finding was consistent with the conclusion in the literature [53], suggest-
ing that longer forecast horizon lead to a loss of more meteorological information [12]. The
sky undergoes significant changes due to factors like clouds [54]. However, after reaching a
peak in the horizon of 80–100 min, the errors of the models all experienced a slight decrease.

If the models are evaluated with the same season and the same forecast horizon,
regardless of the season, the ARIMA model exhibits the highest prediction error, while the
RF model shows the lowest prediction error. The LSTM model’s prediction error is very
close to that of the RF model. Although it is possible to improve the accuracy of the LSTM
model by increasing the number of hidden layers and neurons, the computational cost is
an important consideration in the learning process [24]. Given the higher computational
requirements, longer processing time, and larger sample size needed for the LSTM model,
the marginal improvement in accuracy does not necessarily demonstrate its superiority,
especially when the LSTM model is much more complex than traditional machine learning
models [55]. Therefore, the RF model is more suitable for ultra-short-term solar irradiance
prediction in the Qinghai–Tibet Plateau region among the selected models.
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5. Conclusions

This study first analyzed the radiation characteristics using the monitored shortwave
solar radiation data in the Yangbajing area of the Qinghai–Tibet Plateau. Then, prediction
models based on ARIMA, RF, and LSTM were constructed to forecast the ultra-short-term
solar irradiance at 10 min intervals. The effects of factors such as the sample size and
distribution of the training set and the prediction time range on the prediction performance
of different models were investigated, leading to the following conclusions:

1. Using the persistence model as a reference model, radiation forecasting was performed
based on the ARIMA, RF, and LSTM models. Across all seasons, the accuracy of the
ARIMA model was lower than that of the persistence model, but the RF and LSTM
models exhibited higher accuracy than the persistence model.

2. The prediction accuracy of the ARIMA, RF, and LSTM models for solar irradiance
was significantly influenced by the sample size and distribution of the training set.
When the sample size was the same, the accuracy of each model varied greatly across
different seasons with different numerical distributions. Spring and summer had
larger errors, while winter had the smallest errors. When the seasons were the same,
i.e., when the numerical distributions of the training set were the same, the accuracy
of each model differed significantly under different sample sizes. Overall, the LSTM
model required a larger training set sample for learning and fitting compared to the
RF and ARIMA models. When selecting training sets with equal sample sizes for the
same season, the RF model exhibited the smallest prediction error, while the ARIMA
model had the largest error.

3. In the prediction of solar irradiance, the forecast horizon has a significant impact
on the prediction accuracy of each model. When the horizon was the same, the
accuracy of each model varied greatly across different seasons, with overall prediction
errors being the largest in summer and the smallest in winter. When the seasons
were the same, as the forecast horizon increased, the prediction errors of all models
gradually increased, reaching a peak at 80–100 min and then experiencing a slight
decrease. When both the season and forecast horizon were the same, RF had the
highest accuracy, with an RMSE lower than ARIMA by 65.6–258.3 W/m2 and lower
than LSTM by 3.7–83.3 W/m2.
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This study validated the feasibility of machine learning models, including ARIMA,
RF, and LSTM, for ultra-short-term prediction of shortwave solar irradiance in the Qinghai–
Tibet Plateau region. The study explored the influence of factors such as the training set and
forecast horizon on each model, providing reference for future studies on ultra-short-term
solar irradiance prediction based on these three models in the region. In this study, it
was observed that as the forecast horizon increases, the prediction errors of all models
reached a peak at 80–100 min and then experienced a slight decrease. This is a topic that
warrants further investigation. In the radiative budget process of the Earth-atmosphere
system, components such as clouds, aerosols, air molecules, water vapor, ozone, and
carbon dioxide directly affect the solar radiation flux received at the Earth’s surface. For
downward shortwave solar radiation flux in the Qinghai–Tibet Plateau region, clouds were
the primary influencing factor in solar radiation prediction [56,57]. Since this study did
not consider the impact of clouds, the results showed that the prediction errors increased
rapidly as the prediction time range extended. Therefore, there were limitations to the time
range that can be accurately predicted using this method. Future research will consider
integrating ground-based cloud images for cloud detection and incorporating clouds as
input parameters to further improve the prediction accuracy of the models.
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