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Abstract: In the context of carbon neutralization and carbon peak, carbon reduction in key industries
has become a central topic in our country. As an important part of technological progress, it is
necessary to study the effect of technology import on carbon emission reduction in key industries.
Based on the panel data of 30 provinces. from 2011 to 2020, this paper used the fixed-effect model
to analyze the emission reduction effect in key industries on the development status of technology
import. The spatial econometric model was used to analyze the spatial characteristics of carbon
emissions of technology import and key industries. Then, the mediating effect model was used to
bring industrial technological innovations into the research category to analyze the mediating role of
technology imports on the carbon emissions of key industries. Finally, a robustness test proved the
reliability of the model. The findings were as follows: (1) Technology import significantly promoted
carbon emission reduction in key industries; (2) In terms of the spatial relationship, technology import
and carbon dioxide emissions had significant spillover effects, and there were trends of high and high
aggregation and low and low aggregation, with the impact of technology import on carbon dioxide
emissions having a siphon effect; (3) Industrial technological innovation played an intermediary
role in this path, but it was a negative role, which was not, in general, conducive to the reduction of
carbon emissions of key industries. On this basis, the paper puts forward several policy suggestions.

Keywords: technology import; key industries; carbon emission; industrial technological innovation

1. Introduction

Responding to global climate change is one of the great challenges facing human
societies in the 21st century, and, in the face of increasingly severe climate change, the Paris
Agreement proposes limiting the global average temperature increase to 2 ◦C and to do
its best to limit it to about 1.5 ◦C. In response to the call for low carbon, General Secretary
Xi Jinping made a commitment, as early as the 75th session of the United Nations General
Assembly, to strive to achieve carbon peak in 2030 and carbon neutrality before 2060. To
achieve this vision, technological innovation is an important driver. Technological innova-
tion can contribute to reducing carbon emissions in several ways, such as the following:
improving energy efficiency [1], developing low-carbon production transformations [2],
and promoting renewable energy [3]. In China, the situation of carbon emission reduction
is severe, and technological innovation is a key factor in reducing carbon emissions. Some
scholars have found that, in China, from 2009 to 2019, technological innovations signifi-
cantly improved the environmental performance of energy firms, increasing environmental
strengths by 0.056% and decreasing the intensity of carbon emissions by 0.015% [4].

To further implement the “dual carbon” policy, China’s Ministry of Industry and
Information Technology, the National Development and Reform Commission and the
Ministry of Ecology and Environment jointly issued the Implementation Plan for Peaking
Carbon Emissions in the Industrial Sector. The plan points out that the current key tasks
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need to focus on energy conservation and emission reduction in four key industries:
steel, building materials, non-ferrous metals, and petrochemical chemicals. While key
industries are helping the economy, high-intensity carbon dioxide emissions are causing
serious damage to the environment and even to the ozone layer [5]. About 70% of China’s
carbon dioxide emissions come from industry and these key industries dominate industrial
emissions. As typical energy-intensive industries, carbon emissions from the steel, non-
ferrous metal, building material and petrochemical industries affect national development.
The steel industry is one of the main carbon emission industries in China, accounting
for about 15% of the country’s emissions [6]. At the same time, China is the world’s
largest producer and consumer of non-ferrous metals, accounting for more than 40% of
the world’s total output, and the carbon emissions of the non-ferrous metal industry
accounts for 4.41% of the national emissions [7]. Building constructions consume a lot of
building materials, resulting in huge carbon emissions for China, which is undergoing rapid
development. The carbon emissions from China’s building materials industry account
for 16% of the total national carbon emissions [8]. The petrochemical industry is also one
of the most energy-intensive and high-emission industries, accounting for about 10% of
the carbon emissions of the industrial sector [9]. Studies have shown that key industries,
such as iron and steel, non-ferrous metals, building materials, and petrochemical chemicals.
are important pillars of China’s national economic development and major factors in
China’s decarbonization.

As an important way to save energy and reduce emissions [10], the importance of
technological progress to key industries is self-evident. Many scholars have shown that tech-
nological progress can promote carbon emission reduction in key industries by reducing the
cost of pollution control per unit [11], optimizing energy-consuming structures [12], reduc-
ing energy intensity per unit [13,14] and improving energy efficiency [15,16]. Technological
progress includes independent innovation and technological imports. The importance of
independent innovation as a catalyst for productivity growth was proposed by Griliches
in 1964 [17]. Combined with Romer’s research, it can be seen that, as an important source
of technological progress, independent research and development capabilities are largely
related to supply and demand in the domestic market [18]. At present, China’s capacity for
domestic innovation is weak, in comparison with the levels of developed countries, and it is
difficult to achieve carbon emission reduction in key industries by relying on independent
innovation alone [19]. Technological imports refer to the activities of obtaining advanced
technology from abroad in a planned, focused and selective manner through international
technology exchanges and transfers, which not only include the import of new products
and new processes, but also of new processes and new management technologies. Scholars,
such as Gerchenkron (1962) [20] and Rachel and Vân Elkan (1996) [21], demonstrated that
developing countries can narrow the gap with developed countries through the absorption
and use of technology. It can be found that for developing countries, importing technology
is one of the more effective ways by which to achieve technological progress [22].

From the perspective of mechanism analysis, technological imports can add impetus
to carbon emission reduction in key industries by optimizing resource allocation [23]. By
bringing in more efficient technology and providing greater convenience for enterprises
in key industries, technological imports can save a large amount of R&D investment and
eliminate risks brought by internal R&D. On the one hand, enterprises in key industries
can optimize production processes based on technological imports and can optimize
resource allocation and energy use structures. They can also mine market demand and
consumer demand preferences with more high-end technology, formulating production
plans, continuously improving resource utilization efficiency, and then optimizing the
energy structure. On the other hand, through the importing of advanced management
modes, the production structures of key industries can be optimized [24], and, with the
improvement of industrial structure, production factors can gradually flow from sectors
with low marginal benefits to sectors with high marginal benefits, and, in this way, the
industrial structure develops in the direction of environmental protection. Through the
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reallocation of labor, capital and other resources, enterprises in key industries promote the
development of the industrial structure towards the high-end of the industrial chain, which
is conducive to improving energy efficiency and resource allocation efficiency, optimizing
energy structure, and promoting the development of carbon emission reduction.

However, from the perspective of the energy rebound effect of technology import,
technological imports may lead to an increase in carbon emissions. The rebound effect of
technology import refers to the phenomenon that the importing of high-end technology
brings about an increase in energy efficiency, but, at the same time, the consumption of
energy increases [25]. Technological imports can, indeed, introduce high-end technologies
to improve the energy utilization efficiency of key industries, but. under the assumption of
profit maximization and the concept of the “broker”, an improvement of efficiency means
an expansion of production. At present, the domestic industrial foundation is weak, and
the existing organizational structure and production equipment cannot bear the rapid
all-round industrialization innovations brought by technological imports. Inappropriate
technological matching tends to lead to “disruptive innovation” and increase the use of
resources [26]. At the same time, due to the law of diminishing marginal benefits of
technological imports, the carbon emission reduction that can result from relying only
on technology import is limited, and enterprises are likely to switch to high-polluting
technologies in pursuit of high returns, resulting in an increase in carbon emissions. The
mechanism analysis diagram of technology import and industrial technology innovation is
shown in Figure 1.
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The difficulty of technology import is lower than that of independent innovation, but,
as a developing country, most of the technologies introduced by China are mainly sub-core
technologies, with the top core technologies having long been monopolized by developed
countries, and China’s “stuck neck” problem is increasingly prominent. In this situation,
it is debatable whether the import of technology can promote the emission reduction of
key industries.

At present, the mechanism of technology import on carbon emission reduction in
key domestic industries is still in the exploratory stage and has not completely risen from
the theoretical level to the practical level. In addition, carbon emission reduction is an
extremely long-term process and the energy consumption of China’s key industries is also
dependent on paths. It is of strong practical significance to explore the carbon emissions of
key industries from the perspective of technology import. Based on the above background,
in order to provide feasible policy suggestions for China’s future carbon emission reduction
from the perspective of “innovation”, this paper deeply discusses the mechanisms involved
and takes the indicators of industrial technological innovation into consideration, so as
to discuss their indirect roles in technology import and in promoting carbon emission
reduction in China’s key industries.
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2. Materials and Methods
2.1. Indicator Selection and Data Sources

The data of this study derived from the 2011 to 2020 China Statistical Yearbook, China
Science and Technology Statistical Yearbook, China Environment Statistical Yearbook,
China Industrial Statistical Yearbook, China Energy Statistical Yearbook, etc. The soft-
ware involved was data processing, storage, and visualization software, such as Stata17.0,
MATLAB and ArcGIS.

2.1.1. Core Variables

1. Explanatory variable: technology import

Most academic circles use the contractual amount of technology import and the
expenditure of technology import funds as the measurement of technology import. In order
to prevent this indicator from being affected by price fluctuations, this paper selects the
actual value of the stock of foreign technology import expenditure of large- and medium-
sized industrial enterprises in various provinces to characterize the technology import
index, and record it as tech. The specific calculation method is as follows:

First of all, using the price index data of each province and region in the corresponding
year, the nominal value of the foreign technology import expenditure of large- and medium-
sized industrial enterprises in each province, and the deflation of the fixed asset investment
price index of each province, are converted into the actual value, and the formula for the
stock of technology import in the base period is as follows:

Ktech
1 = Etech

1
(1 + g)/(1 + δ) (1)

In the Formula (1), Ktech indicates the stock of foreign technology imports and Etech

indicates the expenditure of foreign technology import funds. The value g is the average
growth rate of technology import expenditure, which was set to 5% in this paper, by
referring to existing literature. The rate δ is the depreciation rate, which was set as 15% in
this paper. The values i and t represent the province and year, respectively.

Secondly, the technology import stock of each province can be obtained by using the
perpetual inventory method. The calculation formula is as follows:

Ktech = Etech
it + (1 − δ)Ktech

i,t−1 (2)

2. Intermediate variable: industrial technological innovation

For industrial technological innovation, the number of patent applications, the output
value of new products and other indicators are generally used. Considering that the number
of patent applications can more directly reflect the innovation abilities of enterprises,
this study selected the number of patent applications from industrial enterprises in the
provincial and municipal regulations to measure the industrial technological innovation
index, which was denoted as ino.

3. Explained variables: overall carbon emissions and carbon emissions of key industries

First, combined with the relevant energy consumption data from the China Energy
Statistical Yearbook, this paper calculated the carbon emissions of China’s overall key
industries. The specific calculation methods are as described below.

In this paper, direct carbon emission and indirect carbon emission were used to
calculate the total carbon emission. The carbon emissions from direct energy consumption
(such as coal, oil, etc.) of the provinces were calculated using the relevant conversion factors
provided by IPCC2006. The carbon emissions generated by electric energy consumption in
different provinces were calculated by the electric energy emission factors in the different
regions. The energy carbon emissions of transportation consumption in various provinces
were assumed to be proportional to the energy consumption intensity and carbon emission
intensity among various modes of transportation, and energy consumption of passenger
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and freight traffic was used as the standard. The carbon emission of heat energy in each
province was calculated by converting the amount of heat supply, thermal efficiency and
raw coal into the quantity of quasi coal. These direct and indirect emissions were added
together to find the total carbon emissions of each province, referred to as ce.

Secondly, the carbon emissions of China’s four key industries were measured. For
the iron and steel industry, this paper referred to the principle of carbon balance, used the
terminal energy consumption data of “ferrous metal smelting and calendaring industry” in
the China Energy Statistical Yearbook, deducted the carbon removal amounts of products
and by-products, and calculated the carbon emission factor provided by IPCC2006. Since
the energy consumption data related to industry classification is only collected at the
national level, this paper multiplied the ratio of industrial terminal energy consumption of
ferrous metal smelting and calendar processing industries to the total energy consumption
at the national level by the industrial terminal energy consumption at the provincial level,
and, finally, obtained the carbon dioxide emissions of China’s steel industry at the provincial
level, which was recorded as ce1.

To make the measurement consistent, the carbon emission Accounting Guide of
building materials, non-ferrous metals and petrochemical and chemical industries was
used for reference, and the building materials industry was classified as “non-metallic
mining and selection industry and non-metallic mineral products industry”. The non-
ferrous metal industry was classified as “non-ferrous metal smelting and rolling industry”.
The petrochemical and chemical industry was classified as “oil and gas mining industry,
oil coal and other fuel processing industry, oil coal and other fuel processing industry
and organic chemical raw material manufacturing industry in chemical raw materials and
chemical products manufacturing industry”, and its carbon emissions were calculated
using similar methods, combined with the data of the China Energy Statistical Yearbook,
all of which were, respectively, recorded as ce2, ce3 and ce4.

2.1.2. Control Variables

The following indicators were selected as control variables in this paper:

1. Level of economic development (gdp). The per capita GDP of a regionwas used as a
measure of the level of economic development.

2. Industrial structure (ind). The proportion of regional tertiary industry in GDP was
used to measure the industrial structure.

3. Energy intensity (ei). The ratio of energy consumption to GDP within a region was
used as an indicator of energy intensity.

4. Trade openness (tra). The ratio of gross import and export value to GDP of each
province and city was used as the index of trade openness.

5. Educational level (edu). The average number of years of schooling per capita was
used to represent the level of education.

6. Financial strength (fin). The proportion of local budget expenditure to GDP was used
as an indicator to measure the degree of regional government intervention.

2.2. Statistical Analysis of Data
2.2.1. Descriptive Statistics

To avoid the impact of extreme values on the regression results of the data in this
paper, in the processing of variable data, this paper carried out 1% Winsor tail reduction
treatment. At the same time, because the value of some data was huge and fluctuated
violently, this paper performed logarithmic processing on some data to improve its stability.
The specific descriptive statistical analysis is provided in Table 1:
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Table 1. Main variable definitions and descriptive analysis.

Variable Variable Meaning Obs Min Max Mean Std.dev.

ce Overall CO2 emissions 300 8.493 11.926 10.428 0.729
ce1 Carbon emissions from steel industry 300 5.506 10.206 8.377 0.968
ce2 Carbon emissions from building materials industry 300 4.935 8.596 7.275 0.791
ce3 Carbon emissions from non-ferrous metal industry 300 5.012 8.82 7.306 0.797
ce4 Carbon emissions from petrochemical and chemical industries 300 5.739 9.336 8.035 0.768
tech Technology import 300 −0.027 5.748 3.056 1.56
gdp Level of economic development 300 2.023 15.417 5.379 2.674
ind Industrial structure 300 0.322 0.807 0.471 0.097
ei Energy intensity 300 0.035 0.392 0.106 0.072
tra Trade openness 300 0.007 1.498 0.275 0.291
edu Educational level 300 7.626 12.458 9.206 0.881
fin Financial strength 300 0.12 0.758 0.264 0.114

2.2.2. Analysis of the Development Status of Technology Import in China

As can be seen from Figures 2–4, from 2011 to 2016 the total amount of technology
import in China showed a rising trend, and the coverage of technology import also gradu-
ally expanded. From the point of view of the speed of improvement, the rate of increase
of technology import in China’s provinces, from 2011 to 2016, was much higher than that
from 2016 to 2020, because, in recent years, China has implemented the “middle- and
high-end talent introduction Plan” and “Young Thousand Talents Plan” to encourage over-
seas talents to find employment in China. At the same time, the “National Independent
Innovation Demonstration Zone” and “National Intellectual Property Strategy” have been
implemented to protect intellectual property rights and enhance the enthusiasm of domes-
tic technology import. From the perspective of specific distribution, the provinces with a
large amount of technology import are mostly concentrated in the eastern coastal cities,
and there was no significant change in the three time periods, such as in Jiangsu, Zhejiang,
Guangzhou and other places. In terms of specific values, the amount of technology import
in the three periods indicates leapfrog development, and the amount of technology import
in all provinces increased compared with the previous period, which indicates that China
gradually started to establish a technology import system for the coordinated development
of enterprises, market and government.
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2.3. Model Setting
2.3.1. Panel Fixed-Effect Model

Based on the theoretical elaboration of the former and the review of relevant literature,
this paper established a benchmark model between technology import and carbon emis-
sions in general and key industries, and explores the correlation between them. To select the
appropriate econometric model, the Haussmann test was used and it was concluded that
the fixed-effect model was superior to the random-effects model. The specific expression of
the baseline model is shown in Equations (3)–(7).

ceit = α0 + β0techit + α1gdpit + α2indit + α3eiit + α4trait + α5eduit + α5 f init + δi + γt + εit (3)
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Among them, i represents region, t represents time, α0 represents constant term,
δi represents individual fixed effect, γt represents time fixed effect. εit represents error
terms in the model and other factors that affect carbon emissions and are not factored into
the model.

2.3.2. Spatial Econometric Model

In the selection of spatial econometric models, there are currently three main types,
namely the spatial error model (SEM), the spatial lag model (SAR) and the spatial Dubin
model (SEM). Among them, the spatial error model focuses on the spatial correlation
between variables, that is, it considers the influence of unknown spatial autocorrelation
error terms on the model. The spatial lag model introduces its own spatial lag variable to
reflect the interaction between a variable in a region and the same variable in a neighboring
area, so as to explore the spatial dependence nature of the variable. The spatial Dubin
model combines the characteristics of the spatial lag model and the spatial error model
and considers the influence of its own spatial lag and the spatial autocorrelation error term,
for itself and its neighboring regions, on the dependent variable. In view of the relative
advantages of the spatial Dubin model (SDM), this paper intended to use it as the basic
model for the empirical analysis of space, and then to judge whether it was the optimal
model through the LM test, the LR test and the Wald test. The spatial Dubin Model (SDM)
can be expressed as in Equation (4):

ceit = α0 + ρ∑n
j=1 cejt + βxit + ϕ∑n

j=1 w
jt

xjt + ε (4)

When ρ = 0, the spatial Dubin model can be converted to a spatial lag model (SAR).
When ϕ = −ρβ, the spatial Dubin model could be transformed into a spatial error model
(SEM), such as in Formulas (5) and (6):

ceit = α0 + βxit + ϕ∑n
j=1 w

jt
xjt + ε (5)

ceit = α0 + βxit + µ
µ = λWµ + ε

(6)

2.3.3. Mediation Effect Model

This paper drew on the practice of Baron and Kenny [27] to build a mediation effect
model, based on the baseline model (3)–(7), as shown in Equations (7) and (8):

inoit = β1techit + α0 + α1gdpit + α2indit + α3eiit + α4trait + α5eduit + α6 f init + εit (7)

ceit = β2techit + λinoit + α0 + α1gdpit + α2indit + α3eiit + α4trait + α5eduit + α6 f init + εit (8)

In the equation, i represents region, t represents time, εit represents a random per-
turbation term. The total effect in model (3) β0 equal to the sum of indirect effects λ ∗ β2
and direct effects β1. To test whether the mediation effect exists, the first step is to test the
significance of the coefficient β0 and if the coefficient is not significant, you need to stop the
mediation effect test. The second step is to test the significance of the coefficients, λ and
β2, and if both are significant, the third step can be tested, and if one is not significant, the
fourth step can be performed. The third step is to test the significance of the coefficient β1,
and if it is significant, it is a partial mediation effect, otherwise it is a complete mediation
effect; The fourth step, on the basis of the second step, is carried out by the Sobel test, and
if the test is passed, the mediation effect is established, otherwise the mediation effect does
not exist. Considering that, in recent years, some scholars have suggested that the Sobel
test has insufficient efficacy and that its use cease, this paper tested the model according to
the Bootstrap test method.
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3. Results and Discussion

This section is divided by subheadings to provide concise and precise descriptions of
the experimental results, and their interpretations, as well as the experimental conclusions
that can be drawn.

3.1. Benchmark Model Regression Analysis
3.1.1. Normality Test of Data

The data stationarity test can avoid the occurrence of false regression, and three tests
were used to detect the stationarity of the main variables: LLC, Fisher–pp and Fisher–ADF.
Before the detection, the Husman test was performed on the panel data, and the results
showed that the model strongly rejected the random-effects model at a significance level of
1%, so this paper used a fixed-effect model for the stationary test, and the results are shown
in Table 2.

Table 2. Unit root test for major variables.

Model LLC Fisher-PP Fisher-ADF

Variable T Value p Value
Chi-

Square
Value

p Value
Chi-

Square
Value

p Value

ce −5.927 0.000 2.068 0.019 3.199 0.001
tech −5.565 0.000 37.466 0.000 170.293 0.000

Smooth or not Yes Yes Yes
Note: The values reported by the LLC test are the values of the T-test, and the values reported by the Fisher–pp
test and the Fisher–ADF test are the values of the Chi-square test.

In Table 2, ce represents the total CO2 emissions of the explanatory variable (the carbon
emission test results of the remaining four key industries were roughly the same as the
overall carbon emissions, so they are not shown), and tech represents the introduction of
the explanatory variable technology.

The results show that both the explanatory variables and the core explanatory variables
strongly rejected the null hypothesis of the existence of a unit root, and the data were robust
and could undergo further regression analysis.

3.1.2. Model Benchmark Regression and Heterogeneity Analysis

In this study, the fixed-effect model was used to regress the data, and it can be seen
from Table 3 that, for the core explanatory variable technology import, the relationship
between technology import and carbon emissions without control variables was signif-
icantly positive, which was contrary to the policy orientation, so this paper tested the
multicollinearity in the model. The average VIF value was 3.29, which was much less
than 10, so this paper believes that the model did not have a multicollinearity problem,
and that this positive relationship was likely due to the lack of control variables and time
effects, so that most provinces in the sample period had not yet formed emission reduction
effects, resulting in the overall sample technology import not only not reducing emis-
sions but actually increasing emissions. This also indicated that China may be subject
to a certain energy rebound effect. With the continuous improvement of the model, the
overall R side began to gradually increase, and the regression results were corrected from
positive to negative, which verified the promotional effect of technology import on carbon
emission reduction.

From the results of the control variables, the per capita GDP gdp was significantly
positive at the level of 1% of the individual fixed-effect model, indicating that the current
increase in China’s GDP mainly depends on industries with high carbon dioxide emissions,
but, with the addition of the time effect, the impact coefficient was not significant but
began to change from positive to negative, so it can be understood that, in the future, GDP
growth will not increase carbon emissions, and China’s carbon emission reduction project
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may undergo benign changes From the regression results of industrial structure ind, the
regression coefficient also moved from positive to negative, and it was significant at a
level of 1%, indicating that the upgrading of China’s industrial structure for many years
has achieved initial results, and the development of the tertiary industry has effectively
curbed the carbon emissions of the overall industry in the country. The regression results of
energy intensity ei were significantly positive for both individual and double fixed effects,
reflecting the general law of increasing energy intensity and increasing carbon emissions.
Trade openness was also significantly positive under both models, indicating that China’s
trade imports and exports are still concentrated in high-carbon industries, which is the
essence of the difference between developing and developed countries in trade types. The
financial strength of fin in the two types of models moved from positive to negative but not
significantly, indicating that, in the early stage, in order to seek more fiscal revenue, the
government introduced too many backward production capacity enterprises, triggering
“bottom-to-bottom competition”, and, with the implementation of the dual carbon policy,
the government’s financial investment began to gradually move closer to the low-carbon
industry, and may achieve real emission reduction in the future.

Table 3. Benchmark model regression results.

Explained Variable CO2 Emissions

tech 0.062 *** −0.102 *** −0.308 *** −0.337 ***
(3.67) (−3.14) (−7.35) (−8.43)

gdp 0.041 *** −0.017
(4.17) (−1.45)

ind 0.529 *** −0.677 ***
(2.85) (−3.05)

ei 0.968 ** 2.180 ***
(2.55) (6.31)

tra 0.340 *** 0.227 ***
(3.73) (2.77)

edu 0.062 * −0.007
(1.65) (−0.22)

fin 0.133 −0.381
(0.45) (−1.45)

Constant 10.237 *** 9.464 *** 11.098 *** 11.317 ***
(196.27) (28.74) (110.42) (33.75)

Individual fixed effect Yes Yes Yes Yes
Time fixation effect No No Yes Yes

Observations 300 300 300 300
R-squared 0.048 0.226 0.350 0.477

Number of id 30 30 30 30
Note: The numbers in parentheses are t values, *, **, *** indicate significant at the 10%, 5% and 1% levels,
respectively, the same table below.

According to the above regression analysis, technology import does not immediately
promote carbon emission reduction, but, rather, increases carbon emissions, which is related
to the general energy rebound effect in China, so it requires a certain amount of time and
joint efforts from all walks of life. However, in general, with reference to the individual
fixed-effect and double fixed-effect model regression results, the impact of technology
import on carbon dioxide emissions showed a significant negative linear relationship, so
this paper argues that the carbon emission reduction effect of technology import on China
as a whole is real.

Based on the benchmark regression, in order to further investigate the industry het-
erogeneity of carbon emissions, this paper further refined the overall carbon emissions
to the carbon emissions of four key industries in the following industrial fields: iron and
steel, building materials, non-ferrous metals and petrochemical chemicals. The specific
regression results are provided in Table 4.



Atmosphere 2023, 14, 1146 11 of 23

Table 4. Industry heterogeneity of carbon emissions.

Variable Steel Building
Materials

Nonferrous
Metal

Petrochemical
Chemicals

tech −0.432 *** −0.637 *** −0.506 *** −0.630 ***
(−7.18) (−10.86) (−7.36) (−9.98)

gdp −0.020 −0.016 −0.014 0.003
(−1.14) (−0.97) (−0.70) (0.14)

ind −0.429 −0.609 * −0.783 ** −0.319
(−1.29) (−1.87) (−2.06) (−0.91)

ei 1.738 *** 3.154 *** 4.431 *** 2.585 ***
(3.35) (6.22) (7.47) (4.74)

tra 0.439 *** 0.339 *** 0.457 *** 0.435 ***
(3.57) (2.83) (3.25) (3.36)

edu −0.011 −0.024 −0.064 −0.008
(−0.21) (−0.47) (−1.09) (−0.15)

fin −0.251 −0.636 * −1.101 ** −0.996 **
(−0.64) (−1.65) (−2.44) (−2.40)

Constant 9.375 *** 9.031 *** 8.667 *** 9.426 ***
(18.61) (18.37) (15.07) (17.81)

Observations 300 300 300 300
R-squared 0.331 0.489 0.779 0.407

Number of id 30 30 30 30
Note: *; **; *** indicate significant at the 10%, 5% and 1% levels

It can be seen from Table 4 that under the heterogeneity analysis of subdivided key
industries, the import of technologies can significantly promote carbon emission reduction,
thanks to the “market-for-technology” strategy adopted by China since the reform and
opening, that is, the exchange of foreign advanced technologies through the domestic
market. Although in the early stage of exchange, there are difficulties in the “grafting”
of foreign technology to benefit from its technological advantages, over time, China’s
absorption and digestion capacities for technology have greatly improved, so that the
import of technology has achieved a real sense of carbon emission reduction. From the
comparison of the size of the coefficient, the emission reduction coefficient of the building
materials industry is greater than that of the petrochemical industry and that of the non-
ferrous metal industry is greater than that of the steel industry. The reason may be that the
building materials industry has a higher energy utilization rate in the production process
and has more high-quality technology, while the other three types of key industries need
to consume more energy than the building materials industry, so the emission reduction
effect of technology import is weakened to a certain extent.

Further, in terms of control variables, the energy intensity ei and trade openness tra
indicators under the four key industries increase significantly. The former is the inevitable
result of the positive correlation between energy intensity and carbon emissions, and
the latter is due to the fact that the import of technology in key industries is mostly raw
material-oriented. When a country’s trade openness increases, in order to maintain their
own competitiveness enterprises may take some means to reduce costs, such as the use
of low-cost or even excessive raw materials, reducing the governance of the production
environment and other ways to reduce costs to a minimum, which lead to an increase in
carbon emissions. The impact of per capita national income level gdp and education level
edu were not significant under the four types of key industries, which may be due to the fact
that China’s current key industries have formed a path dependence on the production tech-
nology level and production mode. The iron and steel, building material, non-ferrous metal
and petrochemical chemical industries are traditionally heavy industries, their production
methods and technical foundations have been formed, the introduction of new technologies
takes time and processes, and the current per capita national income and education level
factors are not enough to have a significant impact. Industrial structure ind and financial
strength fin only have significant negative effects on some key industries, which may be
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related to the policy orientation of national or regional governments, such as some local
governments helping certain types of enterprises obtain policy and financial support, while
restricting the development space of other enterprises. This type of intervention indirectly
leads to an increase in carbon emissions of some enterprises, which, in turn, biases the
forecast results of industrial structure and financial strength indicators.

3.2. Spatial Econometric Model Regression Analysis
3.2.1. Construction of Spatial Weight Matrix and Spatial Autocorrelation Test

In terms of the construction of the weight matrix, this paper first used the Arcgis
software(ESRI, Redlands, CA, USA) to extract the latitude and longitude of each province
in China, converted it to the distance between provinces, and constructed the reciprocal ge-
ographic distance matrix W1 and the reciprocal square matrix W2 of geographical distance.
Secondly, the adjacency matrix W3 was constructed based on whether the provinces were
adjacent or not, and they were imported into STATA one by one and saved as a dta File.
Finally, the spw matrix was constructed using the spw matrix command in STATA, and the
obtained matrix standardized for subsequent spatial econometric analysis. The expressions
for the three matrices are:

W1 =

{
1/dij when dij ≥ d

0 when dij < d
W2 =

{
1/d2

ij when dij ≥ d
0 when dij < d

W3 =

{
1 i f dij < d
0 i f dij ≥ d

Note: It indicates the distance dij between provinces. If, then, i = j W1 = 0 and
W2 = 0 W3 = 0.

Before using a spatial econometric model, it is first necessary to examine whether there
is a spatial dependence between the data, that is, a spatial autocorrelation test is necessary.
In this paper, the global Moran index and the local Moran index were used to investigate
the spatial autocorrelation of the main indicators. The difference between the two is that
the global Moran index is calculated by analyzing the correlation of all observations for an
entire geographic area. If positive, similar observations in a geographic area are clustered
together and have a positive correlation. If the value is negative, similar observations are
scattered across a geographic area and have a negative correlation. However, the global
Moran index does not accurately indicate the specific location of deviation, which requires
the local Moran index to calculate specific indicators for the correlation of each observation
point in its vicinity, so as to more accurately assess the correlation near each observation
point. Based on this, this paper first used the global Moran index, and then used the local
Moran index to test the autocorrelation test of the spatial econometric regression model.
The Moran index values for the main variables are provided in the following Tables 5–7.

Table 5. Global Moran index under the reciprocal matrix of geographic distances.

Year

Carbon Emissions Technology Import

Moran
Value Z Value p Value Moran

Value Z Value p Value

2011 0.046 2.097 0.036 0.090 3.161 0.002
2012 0.041 1.946 0.052 0.095 3.302 0.001
2013 0.039 1.893 0.058 0.095 3.315 0.001
2014 0.039 1.891 0.059 0.096 3.341 0.001
2015 0.043 1.994 0.046 0.096 3.337 0.001
2016 0.039 1.877 0.060 0.096 3.341 0.001
2017 0.038 1.868 0.062 0.095 3.319 0.001
2018 0.040 1.916 0.055 0.094 3.308 0.001
2019 0.038 1.859 0.063 0.093 3.291 0.001
2020 0.350 1.785 0.074 0.093 3.285 0.001
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Table 6. Global Moran index under the reciprocal square matrix of geographic distances.

Year

Carbon Emissions Technology Import

Moran
Value Z Value p Value Moran

Value Z Value p Value

2011 0.204 1.676 0.094 0.242 1.908 0.056
2012 0.203 1.660 0.097 0.252 1.982 0.048
2013 0.204 1.671 0.095 0.248 1.954 0.051
2014 0.209 1.699 0.089 0.248 1.961 0.050
2015 0.219 1.772 0.076 0.246 1.949 0.051
2016 0.223 1.795 0.073 0..245 1.941 0.052
2017 0.232 1.857 0.063 0.241 1.914 0.056
2018 0.231 1.850 0.064 0.239 1.900 0.057
2019 0.230 1.849 0.064 0.236 1.882 0.060
2020 0.228 1.835 0.067 0.234 1.872 0.061

Table 7. Global Moran index under adjacency matrix.

Year

Carbon Emissions Technology Import

Moran
Value Z value p Value Moran

Value Z value p Value

2011 0.228 2.379 0.017 0.207 2.143 0.032
2012 0.217 2.271 0.023 0.216 2.230 0.026
2013 0.207 2.178 0.029 0.217 2.246 0.025
2014 0.203 2.141 0.032 0.220 2.276 0.023
2015 0.210 2.206 0.027 0.220 2.274 0.023
2016 0.205 2.145 0.032 0.220 2.282 0.022
2017 0.202 2.127 0.033 0.219 2.268 0.023
2018 0.220 2.287 0.022 0.218 2.263 0.024
2019 0.205 2.158 0.031 0.216 2.251 0.024
2020 0.189 2.009 0.044 0.217 2.255 0.024

According to the results of Tables 5–7, whether it was a reciprocal geographic distance
matrix, a reciprocal square matrix of geographic distances, or an adjacency matrix, the
global Moran index of technology import and CO2 emissions from 2011 to 2020 were
significant, which meant that there was a global spatial correlation between the two and
they were similar in spatial distribution. Specifically, the Moran index of technology import
and carbon dioxide emissions was positive, indicating a significant spillover effect, and
there was a trend of agglomeration; that is, the neighboring provinces in areas with high
technology import or large carbon emissions also had the same characteristics. This was
because of the unbalanced development of China’s current situation. The gap between
the levels of development between regions is large, and regions with good economic
development more easily receive foreign advanced technology, resulting in the level of
introduction of technology also being uneven. In summary, according to the local Moran
index analysis, it was found that the distribution trend of spatial autocorrelation in China’s
technology import and carbon emission level made it necessary to carry out further analysis
in the subsequent spatial measurement regression.

3.2.2. Spatial Model Selection and Empirical Analysis

In the selection of spatial econometric models, this paper drew on Elhorst’s research
methods [28], using the LM, LR, and WALD tests to compare models. Among them, the LM
test was used to test whether the spatial autocorrelation of all variables in the whole model
was significant, and if the results showed that there was spatial autocorrelation, a spatial
autocorrelation model was required. The LR test was used to compare the goodness-of-fit
between different spatial econometric models, in which case the LR statistics of the models
could be compared to determine which model better explained the spatial autocorrelation
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in the data. WALD was also used to test the existence of spatial autocorrelation and to
explore the strength and direction of spatial autocorrelation, which was complementary
to the first two types of tests. The results of the above three types of tests are provided in
Table 8.

Table 8. LM, LR, WALD test results.

Type of
Test Test Method Statistical

Values p Value Test Results

LM test

LM-lag 6.326 0.012
The presence of spatial hysteresis terms and

spatial error terms is rejected, and the
robustness test is all passed

Robust LM-lag 10.304 0.001
LM-error 110.821 0.000
Robust

LM-error 114.798 0.000

LR test
LR-lag 17.39 0.015 Rejecting the null hypothesis, the SDM model

cannot degenerate into a SAR model

LR-error 16.93 0.018 Rejecting the null hypothesis, the SDM model
cannot degenerate into an SEM model

Wald test
Test for SAR 17.87 0.013 Rejecting the null hypothesis, SAR models

cannot be used

Test for SEM 9.21 0.027 Rejecting the null hypothesis and not using the
SEM model

According to the results of the spatial model test in Table 8, the statistical values of
all tests rejected the null hypothesis at the level of 1–5%, which indicated that the spatial
effect of technology import on carbon emissions was not suitable for SEM (spatial error
model) and SAR (spatial lag model), so SDM (spatial Dubin model) was finally selected for
analysis. In the selection of specific fixed effects and random effects, the Hausman test was
used to conclude that the spatial Dubin model, based on fixed effects, should be used. The
specific regression results are provided in Table 9.

Table 9. Empirical results of spatial Dubin model of various spatial weight matrices.

Variable
W1 W2 W3

Main Wx Main Wx Main Wx

rho 0.084 ** 0.211 ** 0.242 ***
(0.42) (2.06) (2.87)

sigma2_e 0.005 *** 0.005 *** 0.006 ***
(12.24) (12.19) (12.15)

lntech −0.333 *** 0.185 *** −0.298 *** 0.200 *** −0.206 *** 0.123 **
(−8.82) (2.79) (−7.91) (3.93) (−4.57) (2.09)

gdp −0.032 *** 0.140 *** −0.035 *** 0.083 *** 0.005 0.023
(−2.75) (4.54) (−2.72) (4.60) (0.37) (1.20)

ind −0.875 *** −0.788 −0.808 *** 0.443 −0.042 0.374
(−4.31) (−1.31) (−4.17) (1.47) (−0.21) (1.29)

ei 2.107 *** −4.470 ** 2.326 *** −3.172
*** 1.566 *** −1.257 *

(6.70) (−2.42) (7.19) (−3.92) (4.20) (−1.83)
tra 0.180 ** 0.394 0.156 * 0.349 ** 0.268 *** 0.144

(2.30) (1.22) (1.90) (2.31) (2.93) (0.84)
edu 0.010 0.172 * 0.016 0.122 * 0.054 0.050

(0.35) (1.79) (0.55) (1.95) (1.59) (0.82)
fin −0.389 3.085 *** −0.556 ** 2.002 *** −0.234 1.386 **

(−1.63) (3.19) (−2.28) (3.67) (−0.87) (2.39)
Observations 300 300 300 300 300 300

R-squared 0.650 0.650 0.480 0.480 0.520 0.520
Number of id 30 30 30 30 30 30

Note: *; **; *** indicate significant at the 10%, 5% and 1% levels
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Theoretically, when the reciprocal geographic distance matrix is used, the degree of
correlation between neighboring areas is stronger, indicating greater spatial proximity.
When using the reciprocal square matrix of geographical distances, the connection between
distant regions is emphasized, indicating that the degree of spatial correlation is more
balanced. In the case of adjacency matrices, spatial proximity is calculated based on the
adjacencies of administrative regions. According to the results shown in Table 9 the import
of technology in all three types of matrices was reflected in significant emission reduction
effect on the province, while there was a significant negative effect on the surrounding
areas. This shows that technology import can reduce overall carbon emission levels by
improving industrial and energy efficiencies, while, for the province, due to relatively
close spatial ties with other regions, technology import formed a siphon effect in some
areas, promoting its own carbon emission reduction, while hindering the carbon emission
reduction of neighboring provinces. From the results of the control variables, the per capita
national income level gdp had a certain inhibitory effect on the carbon emissions of the
province, but, at the same time, it was not conducive to the carbon emission reduction
of neighboring provinces. Due to China’s uneven development and huge differences in
economic development between different provinces, high-income provinces are more likely
to introduce technology and innovation than low-income provinces, forming a spatial
spillover effect of carbon emissions; Energy intensity EI is the opposite, that is, it leads
to a province’s increased emissions, and promotes the emission reduction of neighboring
provinces. The increase in energy intensity means the province produces more economic
value but it also means that more fossil energy is used and carbon dioxide emissions
increase. After achieving a certain level of production efficiency and competitive advantage,
similar industries in other provinces gradually decline or shift, thereby reducing their
carbon dioxide emissions, and this “carbon leakage” phenomenon also proves that China’s
energy production has high carbon characteristics. Fundamentally changing China’s energy
production methods through technological innovation is an important path to achieve
carbon emission reduction.

3.3. Analysis of the Mediating Effect of Industrial Technological Innovation

It can be seen from the above that the import of technology can effectively reduce a
province’s carbon dioxide emissions, but it does not fundamentally change the province’s
energy production methods. At the same time, combined with the literature review, it
was found that industrial technological innovation is an important intermediate factor
in reducing carbon emission intensity, which mainly improves production efficiency and
reduces pollutant emissions through the introduction and application of new technologies;
thereby, promoting the reduction of carbon emissions. In order to deeply study the carbon
emission reduction mechanism of technology import, this paper introduces the variables
of industrial technological innovation and discusses the mechanism between technology
import, industrial technological innovation and carbon emissions, so as to refine the
research results. The intermediary mechanism of carbon emissions at the overall level is
shown in Table 10.

According to the results of Table 10, the core test coefficients all passed the signifi-
cance test of 1%, indicating that there was a mediating effect of industrial technological
innovation between technology import and carbon emissions. Through the test of the
intermediary effect, the mediation effect of industrial technological innovation was esti-
mated to account for about 6.19% (0.294*0.071/0.337). From the numerical point of view,
the total effect of technology import on carbon emissions was −0.337, and the emission
reduction effect was stronger than the direct effect −0.317. Combined with the indirect
effect coefficient, it was found that there was a negative correlation between technology im-
port and industrial technological innovation, and there was a positive correlation between
industrial technological innovation and carbon emissions, which indicated that industrial
technological innovation currently has an energy rebound effect that is not conducive to
carbon emission reduction in China, and technology import can curb it to a certain extent.
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Due to the incentives for technological innovation in China, companies blindly implement
innovation projects in order to obtain government subsidies. These low-quality innovations
are almost useless for low-carbon development, and also occupy too many social resources,
which eventually leads to an increase in carbon emissions. From the results of the control
variables, the increase of energy intensity ei significantly reduces the coefficient of industrial
technological innovation, which is the result of the continuous game between traditional
energy production methods and low-carbon innovative technologies. Trade openness tra
significantly improves the level of industrial technology innovation and the improvement
of trade openness more closely links China with the international market. In order to meet
the international market, it is often necessary to increase product output and improve
product quality; thereby, increasing the technological innovation needs of enterprises.

Table 10. The intermediary effect of carbon emission reduction in industrial technology innovation.

Explained Variable ce ino ce

tech −0.337 *** −0.294 *** −0.317 ***
(−8.43) (−2.83) (−7.91)

ino 0.071 ***
(2.96)

gdp −0.017 −0.001 −0.017
(−1.45) (−0.02) (−1.47)

ind −0.677 *** −0.506 −0.641 ***
(−3.05) (−0.88) (−2.93)

ei 2.180 *** −2.797 *** 2.378 ***
(6.31) (−3.12) (6.85)

tra 0.227 *** 0.725 *** 0.176 **
(2.77) (3.41) (2.13)

edu −0.007 −0.110 0.001
(−0.22) (−1.24) (0.01)

fin −0.381 −0.515 −0.344
(−1.45) (−0.75) (−1.33)

cons 11.317 *** 10.619 *** 10.568 ***
(33.75) (12.20) (25.41)

Observations 300 300 300
R-squared 0.477 0.805 0.495

Number of id 30 30 30
Note: **; *** indicate significant at the 5% and 1% levels.

According to the above analysis, it can be found that industrial technological inno-
vation itself increases carbon emissions, which is related to the blind development of
low-quality innovations by enterprises, coupled with the fact that, as scholars [29] have
demonstrated, there is an “inverted U-shaped” relationship between technological innova-
tion and carbon emissions. It can be seen that the current level of China’s overall industrial
technological innovation is still at the left end of the “inverted U-shaped” inflection point,
and the carbon emission reduction effect is not obvious. In previous studies, industrial
technological innovation has been regarded as one of the most important driving factors
for emission reduction, but this study found that its emission reduction effect is not ideal,
and even leads to an increase in carbon emissions. On the one hand, China’s internal
self-innovation ability is weak, and breakthrough innovation is difficult to achieve. On
the other hand, technological innovation is a high-risk emission reduction path, which is
highly difficult, has a long cycle and has uncertain returns. However, it is gratifying that
the rational introduction of foreign advanced technology can curb domestic technological
innovation to a certain extent, so as to achieve indirect emission reduction effects.

In order to further observe the impact mechanism of technology import and industrial
carbon dioxide emissions, this paper measured the carbon emissions of four key industries,
namely, iron and steel, building materials, non-ferrous metals and petrochemical chemicals,
and analyzed the intermediary mechanism of industry heterogeneity, as shown in Table 11
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Table 11. Intermediary mechanism for carbon emission reduction of industrial technological innova-
tions in different key industries.

Explained
Variable ce1 ino ce1 ce2 ino ce2

tech −0.432 *** −0.294 *** −0.409 *** −0.637 *** −0.294 *** −0.607 ***
(−7.18) (−2.83) (−6.75) (−10.86) (−2.83) (−10.34)

ino 0.077 ** 0.100 ***
(2.14) (2.87)

Observations 300 300 300 300 300 300
R-squared 0.331 0.805 0.343 0.489 0.805 0.505

Number of id 30 30 30 30 30 30

Explained
variable ce3 ino ce3 ce4 ino ce4

tech −0.506 *** −0.294 *** −0.465 *** −0.630 *** −0.294 *** −0.577 ***
(−7.36) (−2.83) (−6.81) (−9.98) (−2.83) (−9.40)

ino 0.137 *** 0.180 ***
(3.38) (4.92)

Observations 300 300 300 300 300 300
R-squared 0.779 0.805 0.789 0.407 0.805 0.459

Number of id 30 30 30 30 30 30
Note: **; *** indicate significant at the 5% and 1% levels. Since the regression results of the control variables are
basically consistent with the overall carbon emissions, they are not shown here.

Table 11 shows that the four types of key industries had partial intermediary effects in
regard to industrial technological innovation [30], and the intermediary effects accounted
for 5.24% (0.294*0.077/0.432) in the steel industry, 4.62% (0.294*) in the building materials
industry 0.100/0.637), 7.96% (0.294*0.137/0.506) non-ferrous metal industry, and 8.4%
(0.294*0.18/0.630) petrochemical industry. It is worth noting that the above four types of
key industries in China have the same energy rebound effects of reverse emission reduction
of industrial technological innovation as at the national level, but technology import can
effectively suppress these, so as to achieve indirect emission reduction. This is because,
compared with other industries, under the dual pressure of implementing national envi-
ronmental protection policies and ensuring the production efficiency of enterprises, key
industries rely more on high-end technological innovation and equipment in the produc-
tion process, so relevant enterprises are more willing to research and invest in industrial
technological innovation. It is undeniable that some innovative technologies can indeed
significantly reduce carbon emissions, but, due to the existence of energy rebound effects
and blind innovation under the incentives of Chinese policies, industrial technological
innovation has directly increased many unnecessary carbon emissions. Further, in terms
of the sensitivity of the four types of industries to the intermediate variable of industrial
technological innovation, the empirical results show that the indirect emission reduction co-
efficient of industrial technological innovation in the iron and steel industry < the building
materials industry < non-ferrous metal industry < the petrochemical industry. The import
of technology had the strongest emission reduction effect by curbing industrial technologi-
cal innovation in the petrochemical industry. This was due to the fact that the petrochemical
industry, in the production process, needs to use a large number of technologies and equip-
ment for raw material processing, reaction control, separation and purification, such as
computer simulation to adjust reaction conditions to optimize product performance, and
the use of polymer materials to improve product performance, etc., and these lead to an
increase in emissions. However, if advanced production equipment and technology are
introduced directly through technology import, energy consumption and raw material
waste can be greatly reduced, and environmental pollution can be reduced [31].
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3.4. Basic Test

Robustness testing is a necessary step in empirical research and an important means
to ensure the quality and reliability of research. In this paper, the following methods were
used to test the robustness of the article’s model:

1. Replace the explanatory variables: To study the carbon reduction effects of technology
imports, the measurement of overall carbon emissions is narrowed down to a single
industrial sector.

2. Add a first-order lag term to the explanatory variable: Considering the possible lag of
technology import, and in order to alleviate the possible endogenous problems in this
paper, this variable was lagged by one stage and regressed.

3. Delete some provincial capitals: Provincial capitals are often political, economic,
cultural, and transportation centers, with more policy resources and public service
input. These special statuses and resources may make them significantly different
from other cities, interfering with the normal extrapolation of the regression equation.

The results of the regression, based on the above three basic robustness tests, are
shown in Table 12:

Table 12. Robustness test results.

Method Regression
Coefficient Confidence Robustness

Replace explanatory variables −0.590 99% Yes
Add a first-order lag term −0.286 99% Yes

Delete some cities −0.340 99% Yes

It can be seen from the test results in Table 12 that the positive and negative signs
of the test coefficients of the three basic test methods were consistent with the original
regression results and were strongly significant, indicating that the fixed-effect model used
in this paper was not sensitive to the influence of abnormal data points, and the regression
results are true and reliable.

3.5. Mediation Effect Model Test—Boostrap Test

Although the traditional stepwise regression test method can deal with the multi-
collinearity problem of large-scale variables, it ignores the complex relationship between
variables. The bootstrap method can simulate the entire overall data set by combining differ-
ent sample data sets, avoid the bias problem caused by insufficient sample data, and more
accurately evaluate the effect value and significance level of mediating effects [32].The
principle is as follows: random sampling is carried out from the sample data, a large
number of sampling data sets obeying the central limit theorem are generated, and the
confidence interval is estimated more accurately by calculating the random error of the
mediating effect obtained by different sample data sets. In this paper, a Bootstrap test with
a dataset of 500 was performed for five mediating effect models of industrial technological
innovation, technology import to promote overall carbon emission reduction and carbon
emission reduction in key industries, and the test results are provided in Table 13.

Table 13. Bootstrap test results.

bs_1 bs_2 Confidence

ce 0.063 0.136 0.05 0.201 99%
ce1 0.104 0.212 0.17 0.326 99%
ce2 0.099 0.197 0.077 0.185 99%
ce3 0.125 0.219 0.06 0.193 99%
ce4 0.104 0.203 0.082 0.189 99%
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In Table 13, the confidence interval for bs_1 represents the direct effect and bs_2
represents the confidence interval for the indirect effect, and if, and only if, the confidence
interval of the two does not contain 0, the Bootstrap test passes. It can be seen that among
the five mediation models, whether it was a direct effect or an indirect effect, the confidence
interval did not contain 0 and was strongly significant, so it can be inferred that the
mediation effect model in this paper is accurate and reliable.

3.6. Discussion

As an important part of technological progress, there is little literature on the mecha-
nism of technology import on carbon emission. Based on panel data from 30 provinces, from
2011 to 2020, this paper calculated the impact of technology import on carbon emissions
in four key industries and found that the building materials industry is most affected by
technology import, followed by the petrochemical chemical industry, and the non-ferrous
metal industry, with the steel industry being the least affected. The horizontal relationship
between industrial technological innovation and carbon emissions of the key industries
improves the theory of technological progress. In terms of spatial econometric analysis,
the spatial analysis of the impact of China’s provincial-level technology import on key
industries was carried out, not only on the carbon emissions of key industries in the region,
but also on the surrounding areas from a spatial perspective. It is not difficult to find from
the above research that technology import plays a significant role in promoting carbon
emission reduction in developing countries. In most of China’s provinces, technology
import can be seen as a powerful tool for achieving a low-carbon transition. This shows
that it is feasible to lead China’s key industries towards reducing carbon emissions through
the import of technology. In the industrial field, the import of technology can also promote
industrial enterprises to reduce unit energy consumption, while improving production
efficiency and achieving carbon emission reduction. However, although the importance
of industrial technological innovation as a means of internal spontaneous innovation is
beyond doubt, the research results show that the promotion of industrial technological
innovation only leads to an increase of carbon emissions in key industries. This is due to
China’s weak internal innovation capacity and insufficient innovation drivers, and many
low-quality and inefficient technological innovations not only failing to promote carbon
emission reduction in key industries, but also bringing research and development costs and
additional carbon emissions. However, technological innovation reduces carbon emissions
by inhibiting industrial technological innovation, which is one of the important factors for
the energy rebound effect in China’s industrial sector. Its emission reduction effect needs to
be further optimized.

4. Conclusions

Based on the empirical results above, the specific conclusions of the study are as follows.
First, we calculated the total carbon emissions by calculating the total amount of

direct carbon emissions and indirect carbon emissions and analyzing the development
status of China’s technology import and carbon emission levels. The analysis shows that
China’s technology imports are intensively distributed in the eastern coastal areas, carbon
emissions are mainly concentrated in the central and eastern regions, and the development
level is positively correlated. From the perspective of emission reduction effects, due to
the lagging policy, the emission reduction effects of relevant provinces in 2020 is relatively
obvious, with the central and eastern provinces of China having the most obvious effects.
Some provinces in southern and western China also cut emissions. This shows that China’s
relevant emission reduction policies have achieved initial results through the introduction
of foreign advanced technology to promote technological progress in industry, eliminate
backward technology, and improve energy efficiency.

Secondly, in order to explore the relationship between technology imports and carbon
emissions of key industries, this paper conducted an empirical analysis based on the panel
fixed effect model and spatial econometric model and found that the influence coefficients
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of technology imports were building materials industry > petrochemical industry > non-
ferrous metal industry > iron and steel industry. This shows that the carbon emissions
of the building materials industry are the most sensitive to changes in the import of
technology, which may be because foreign advanced technology is more prominent in
the building materials industry, and can greatly reduce the carbon emissions of China’s
building materials industry. The coefficient of the steel industry is lower than that of
other industries because the relevant technology in China’s steel industry is relatively
mature, and the gap with international advanced technology is not large. The results of
the spatial economization model show that technology import and CO2 emission have
significant spillover effects, and there are high and high agglomeration and low and low
agglomeration trends; that is, provinces with high technology import level and high CO2
emission level have high technology import level and high CO2 emission level in the
neighboring provinces. The results of the spatial Dubin model show that technology
import can reduce the overall carbon emission level by improving industrial and energy
efficiency, and the impact of technology import on carbon emission has a siphon effect. In
the provinces where technology is introduced, due to the introduction of high-end and
advanced technology, production efficiency has improved and the competitiveness of local
enterprises has enhanced, while backward and eliminated enterprises only develop in
the surrounding areas. Higher profits bring more technology, which promotes carbon
reduction and impedes that of neighboring provinces.

Finally, considering that industrial technological innovation may play an intermediary
role in the impact of technology import on carbon emissions in key industries, this paper
constructed a mediating effect model to verify this path, and the results showed that
industrial technological innovation can indirectly promote technology import to achieve
carbon emission reduction, but its emission reduction path is deformed, manifested in
the energy rebound effect of industrial technology innovation, and increasing its value
would increase total carbon emissions. Technology import mainly achieves carbon emission
reduction by curbing an increase in the amount of industrial technological innovation. In
the subdivision of key industries, the indirect impact coefficient of industrial technological
innovation in the petrochemical industry > non-ferrous metal industry> building materials
industry > steel industry. Technology import works best by curbing the emission reduction
of industrial technological innovation in the petrochemical industry.

5. Policy Recommendations

Technology import is an important part of technological progress, and an important
driver for promoting technological progress and leading economic development. The
results show that technology import is conducive to promoting carbon emission reduction
in key industries, and industrial technological innovation plays a negative intermediary
role in this path. Based on the research results, this paper puts forward the following
policy recommendations:

First, we should give full play to the role of technology import in reducing emis-
sions in key industries. Local governments should attach importance to the promotion of
technology import. Due to the possible energy rebound effect of technology import, the
government should firmly implement and apply any introduced advanced technology,
and strictly monitor the change of carbon emissions after the import of technology. Full
play should be given to the adjustment ability of the industrial structure of technology
import, optimizing the industrial structure of key industries through technology import,
building the linkage mechanism, and improving the efficiency of digestion, absorption and
re-innovation of introduced technology. The government should actively build the relevant
introduction coordination mechanism and set up the relevant information platform. Enter-
prises in key industries should upload the technical information they need to introduce and
should gather a group of enterprises that need the same or similar technologies for joint
introduction, reduce the cost of technology imports, and strengthen the absorption capacity
of key industries for technology import. To make full use of the leading role of technology
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import, at present, our country’s domestic innovation ability is insufficient, relying on
technology import to a great extent, so the government should actively guide key industries
to promote their own innovation ability by introducing advanced technology. They should
not be too heavy on either. To avoid a passive situation of “introduction–imitation–re-
introduction–re-imitation”, technology import should feed domestic technology innovation.
The two should develop together to lead the technological progress of key industries. At the
same time, due to the siphon effect of technology import, the central government should
make moderate policy preferences and system innovations and give certain financial subsi-
dies and tax exemptions to provinces with low levels of technology import which reduce
local carbon emissions and hinder carbon emission reduction in the surrounding areas. We
can adopt one-to-one and one-to-many assistance policies to guide the implementation of
technology import and promote carbon emission reduction in local key industries.

Second, attach importance to the mediating role of industrial technological innovation.
From the empirical results, industrial technological innovation is a high-risk activity with
a long-term time span, unpredictable process, high failure rate and high uncertainty of
input–output. At present, industrial technological innovation cannot play a positive role in
carbon emission reduction in key industries and may still be on the left side of the inflection
point of the inverted “U” shaped curve. However, industrial technological innovation is
an important way to promote carbon emission reduction in key industries, and emerging
and groundbreaking new technologies greatly promote carbon emission reduction in key
industries. The government should vigorously promote technological innovation in key
industries, speed up technological breakthroughs in smelting technology, purification
technology and industrial digitization, and step over the inflection point as soon as possible
to help key industries reduce carbon emissions.

Third, appropriate emission reduction policies need to be formulated by industry. The
four key industries of iron and steel, non-ferrous metals, building materials and petrochem-
ical chemicals have different characteristics, different development levels, and different
status quos of technology import, and the government should evaluate the characteristics
of different industries and formulate differentiated policies. For the building materials in-
dustry, green buildings are an important way to reduce carbon emissions. The government
should vigorously promote the popularity of green buildings, attach importance to cultivat-
ing residents’ green concept, encourage residents to choose green building materials, adopt
modern energy standards for some types of new buildings, use green building evaluation
standards, and review the green buildings that have passed the audit. Developers and
builders should be encouraged to design and construct green buildings to promote carbon
reduction in the building materials industry. For the iron and steel industry, non-ferrous
metal industry and petrochemical and chemical industry, carbon dioxide emissions mainly
come from calcination and smelting processes, and the existing process flow need to be
improved to reduce waste. Material utilization should be improved and energy efficiency
increased by deploying breakthrough technologies and innovative solutions. Expanding
the electrification of industry and transitioning to low-carbon and carbon-free fuels is
also advocated. Advance pilot demonstrations of transformative technologies, such as
hydrogen steel production, iron ore electrolysis, carbon capture, storage and utilization to
drive carbon reduction across key industries are all advisable.
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