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Abstract: Emissions from motor vehicles and industrial sources have contributed to air pollution
worldwide. The effect of chronic exposure to air pollution is associated with the severity of the
COVID-19 infection. This ecological investigation explored the relationship between meteorological
parameters, air pollutants, and COVID-19 cases among residents in Selangor and Kuala Lumpur
between 18 March and 1 June in the years 2019 and 2020. The air pollutants considered in this
study comprised particulate matter (PM2.5, PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2),
ozone (O3), and carbon monoxide (CO), whereas wind direction (WD), ambient temperature (AT),
relative humidity (RH), solar radiation (SR), and wind speed (WS) were analyzed for meteorological
information. On average, air pollutants demonstrated lower concentrations than in 2019 for both
locations except PM2.5 in Kuala Lumpur. The cumulative COVID-19 cases were negatively correlated
with SR and WS but positively correlated with O3, NO2, RH, PM10, and PM2.5. Overall, RH (r = 0.494;
p < 0.001) and PM2.5 (r = −0.396, p < 0.001) were identified as the most significant parameters that
correlated positively and negatively with the total cases of COVID-19 in Kuala Lumpur and Selangor,
respectively. Boosted Trees (BT) prediction showed that the optimal combination for achieving the
lowest Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error
(MAE) and a higher R-squared (R2) correlation between actual and predicted COVID-19 cases was
achieved with a learning rate of 0.2, a minimum leaf size of 7, and 30 learners. The model yielded
an R2 value of 0.81, a RMSE of 0.44, a MSE of 0.19, and a MAE of 0.35. Using the BT predictive
model, the number of COVID-19 cases in Selangor was projected with an R2 value of 0.77. This study
aligns with the existing notion of connecting meteorological factors and chronic exposure to airborne
pollutants with the incidence of COVID-19. Integrated governance for holistic approaches would be
needed for air quality management post-COVID-19 in Malaysia.

Keywords: air pollution; relative humidity; PM2.5; lockdown

1. Introduction

The novel Coronavirus Disease (COVID-19) was announced by the World Health
Organization (WHO) as a global health emergency on 11 March 2020. COVID-19 is a
SARS-CoV-2 virus infectious disease initially reported in Wuhan, China, on December 1,
2019 [1]. This virus is highly infectious and spreads rapidly to many countries. COVID-19
spreads internationally, affecting the world’s economy and ecology in many ways, not only
as a health problem [2]. There are four main structural proteins in SARS-CoV-2, namely the
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membrane (M), spike glycoprotein, nucleocapsid (N), and envelope (E) [3]. The spike of
SARS-CoV-2 prevents neutralizing antibodies from reacting [4].

Long-term air pollution exposure is dangerous for the reproductive, neurological,
and respiratory systems and could lead to cancer and even infrequent death [5]. It is
important to note that dysfunction and neuroinflammation in the immune system [6] are
associated with poor air quality. Increasing inflammation in more polluted areas could
increase death and disease expression. According to previous research, people who live
in polluted environments are more susceptible to SARS-CoV-2 infections and increased
mortality [7,8]. Moreover, the transmission of infectious diseases, including Severe Acute
Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and influenza,
is significantly influenced by meteorological parameters [9]. As a result, the rate of incidence
of infectious diseases is likely to be affected by the changes in weather. Chen et al. [10] also
suggested that weather has a vital role in transmitting SARS-CoV-2 worldwide. However,
meteorological factors in each country and region are different, and causal factors for each
parameter may vary. Hence, a few researchers have attempted to explore the effects of
dew point, ambient temperature (AT), rainfall, and wind speed (WS) on the spread of
COVID-19 [9,11–13].

The COVID-19 pandemic has impacted the world in numerous ways, including chang-
ing the patterns of human mobility and transportation. In Malaysia, the government
implemented various measures to control the spread of the virus, such as a series of move-
ment control orders (MCO) beginning on 18 March 2020, which resulted in reduced human
mobility and decreased transportation. This restriction led to a decrease in road traffic and
public transportation usage, resulting in reduced emissions from transportation sources,
including vehicles and factories. The decrease in human mobility also led to a decrease
in energy consumption, which further contributed to reducing emissions and pollution
levels. Other researchers had also investigated how the COVID-19 outbreak caused a
decrease in human mobility and transportation, leading to a decline in the concentration
of air pollutants in urban regions of Brazil and Krakow, Poland [14]. Rudke et al. (2022)
reported that the most significant reductions in air pollutant concentrations occurred for
CO, NO2, and PM10 during the first 30 days of restrictions. Similarly, Zaręba and Danek
(2022) [14,15] collected data during the early spring of 2021, when car transportation was
limited due to Poland’s COVID-19 lockdown, enabling them to observe air pollution levels
from solid fuel heating with minimal background pollution caused by traffic.

The present study investigates the role of meteorological parameters and air pollutants
in the transmission of COVID-19 in Selangor and Kuala Lumpur, Malaysia. Earlier studies
found that respiratory infections were predicted by meteorological parameters and air
pollution [10,16]. Atmospheric PM, both in the short and long term, is widely recognized
for its contribution towards suppressing the respiratory system’s protective mechanisms.
Consequently, it is a significant aggravating factor for susceptibility to SARS-CoV-2 infection
and the severity and fatality of COVID-19 through multiple mechanisms. Furthermore,
SARS-CoV-2 was found to stay longer in the air by attaching to air particles. Determining
the risk factors or factors influencing the spread of COVID-19 is vital for the effective
prevention and control of the novel virus. Thus, this research attempts to elucidate the
association between air pollutants, meteorological parameters, air pollutants, and the
transmission of COVID-19 in Malaysia.

Machine learning is gaining popularity owing to its ability to enable automated
decision-making, reduce human labor, and increase efficiency. It has numerous applications
in a variety of industries, including the following: (1) healthcare, where it aids in diagnosis,
drug discovery, and medical imaging analysis [17]; (2) marketing, where it aids in cus-
tomer segmentation, personalization, and recommendation systems [18,19]; (3) transporta-
tion, where it aids in autonomous vehicles, route optimization, and traffic prediction [20];
(4) manufacturing, where it aids in predictive maintenance and quality control [21,22];
(5) energy: predictive modeling of renewable energy supplies and demand forecasts [23,24];
and (6) security: facial recognition, intrusion detection, and biometric authentication [25,26].
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In air quality monitoring, machine learning algorithms can analyze large amounts of air
quality data to identify patterns and predict air pollution levels, helping cities and gov-
ernments take proactive measures to reduce air pollution [27,28]. This study employs a
machine learning technique called Boosted Trees (BT) to assess the influence of air quality
parameters and meteorological factors on COVID-19 cases in Kuala Lumpur. Subsequently,
the Selangor cases are predicted using the model. BT utilizes an ensemble of decision trees
to make predictions, creating a sequence of trees where each successive tree is tailored to
the negative gradient of the loss function concerning the current predictions. The ultimate
prediction is generated by amalgamating the predictions of all trees in the sequence.

2. Materials and Methods
2.1. COVID-19 Incidence Data

Data on COVID-19 cases in Selangor and Kuala Lumpur were retrieved from the
official website of Malaysia’s Ministry of Health available at http://COVID-19.moh.gov.my
(accessed on 31 May 2020). The duration of the cumulative daily cases of COVID-19 was
taken from 18 March to 26 May 2020.

2.2. Environmental Condition Data

Meteorological and air pollution data were obtained from the Department of En-
vironment (DOE), Ministry of Environment and Water, Malaysia. Specifically, the data
were sourced from two stations: Petaling Jaya Station in Selangor (coordinate: 3.1094◦ N
101.6388◦ E) and Batu Muda Station in Kuala Lumpur (coordinate: 3.2124◦ N 101.6822◦ E).
The locations of these monitoring stations are visualized in Figure 1. Batu Muda Station in
Kuala Lumpur was selected because it represented an urban area and is within proximity to
the populous city of Kuala Lumpur, which has high COVID-19 cases. As for Petaling Jaya
Station in Selangor, it was chosen because it covers the industrial area and highly populated
zone in Selangor. The duration of the data was from 4 March 2019 to 26 May 2020 and
the data was averaged over 24 h each day. Meteorological parameters included relative
humidity (RH), wind direction (WD), wind speed (WS), solar radiation (SR), and AT data.
The air pollutants components were PM2.5 (particulate matter with ≤10 µm diameter),
PM10 (particulate matter with ≤2.5 µm diameter), sulfur dioxide (SO2), nitrogen dioxide
(NO2), ozone (O3), and carbon monoxide (CO).

The hourly air pollution dataset recorded at the Continuous Air Quality Monitoring
Station (CAQMS) was obtained from the Malaysian Department of Environment (DOE). The
instrument used for the measurements of PM10 and PM2.5 was a Thermo Scientific Model
TEOM 1450-DF, while for SO2, NO2, CO, and O3, the instruments were Thermo Scientific
Models 43 i, 42 i, 48 i, and 49 i, respectively. Each instrument was calibrated monthly
to ensure accuracy and precision. The concentration of each pollutant was determined
at 10-min intervals and then calculated for 1-h averages. The instrument used for the
measurements of PM10 and PM2.5 was a Thermo Scientific Model TEOM 1450-DF [29,30].
Meanwhile, NO2 concentrations were detected using the NO2 analyzer Model 200A based
on chemiluminescence detection principles. The Teledyne API Model 400/400E instrument,
via a UV absorption (Beer–Lambert) technique with a precision level of 0.5% and a detection
limit of 0.4 ppb, was utilized in measuring the O3 concentrations [31,32]. Measurements of
SO2 concentrations were conducted using the Teledyne API Model 100A/100E with the
lowest detection level at 0.04 ppb by the UV fluorescence approach, while the Teledyne
API Model 300/300E was employed to determine CO concentrations with a 0.04 ppm
detection limit and 0.5% precision level by the non-dispersive and infrared absorption
(Beer–Lambert) method [32]. Meanwhile, the meteorological parameters were measured
using the Met One 062 sensor, the Met One 083D sensor, and the Met One 010C sensor
for measurements of AT, RH, and WS, respectively [33]. Consequently, all monitoring
instruments were calibrated daily using zero air and standard gas concentrations to certify
and validate the monitored data, which were reviewed before they were handed to the
DOE [34].

http://COVID-19.moh.gov.my
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Figure 1. Selected continuous air monitoring stations.

2.3. Statistical Analysis

Statistical analysis was performed using the Statistical Package for Social Science (SPSS)
software version 25. The paired-samples t-test was performed to analyze a statistically
significant difference between two related samples that were normally distributed. Data
not conforming to normality assumptions were analyzed using the Wilcoxon signed-rank
test. Furthermore, a Spearman’s correlation test was employed to determine the bivariate
level relationship (correlation coefficient; r) between the cumulative number of COVID-19
cases, air pollutants, and meteorological parameters. Statistically significant relationships
were considered when p < 0.05.

The data on air pollutants in 2019 were analyzed against the data on cumulative
COVID-19 cases in 2020 to investigate the long-term effect of air pollutants. On the other
hand, data on meteorological factors in 2020 were analyzed against the data on cumulative
COVID-19 cases in 2020. After that, multiple linear regression was applied to investigate
the relationship between cumulative COVID-19 cases and predictor variables.

2.4. Machine Learning Approach

During the period 18 March to 1 June 2020, BT regression was trained to assess the
influence of air quality and meteorological data on COVID-19 cases. BT is opted for due
to its numerous benefits, such as the capability to fine-tune the model using errors from
preceding trees, enhanced effectiveness in handling imbalanced datasets, shorter training
time since trees are trained one at a time, and implicit feature selection by assigning greater
significance to features that are more informative for prediction. The training and validation
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of the model were performed using the Matlab software R2020a. The MATLAB software
R2020a was developed and released by MathWorks. The predictors were months, PM10,
PM2.5, SO2, NO2, O3, CO, and meteorological parameters WD, WS, RH, SR, and AT. Other
parameters are shown in Table 1. The operational flow of the machine learning algorithm
is depicted in Figure 2.

Table 1. Parameters for the development of the BT model.

Parameter Value

Predictors Month, PM10, PM2.5, SO2, NO2, O3, CO, WD, WS, RH, SR, AT
Response COVID-19 cases
Number of observations 76
Validation method Cross-Validation 10-fold
Number of learners 50
Minimum leaf size 4
Learning rate 0.2
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Figure 2. Flow chart for machine learning workflow.

The process of BT prediction began with the collection and preparation of data for
the algorithm. The data was then normalized using Equation (1), which rescaled it to a
range between 0 and 1. Data normalization is an important preprocessing step in machine
learning because it scales the features to a similar range, which helps reduce the influence
of some features that might have significantly larger values than others. This helps pre-
vent some features from dominating the objective function and improves the training of
the model.

Xnormalized = (X − Xmin)/(Xmax − Xmin) (1)

where X is a data point, Xmin is the minimum value in the dataset, and Xmax is the maxi-
mum value in the dataset. Then, the missing values were investigated. Many statistical
and machine learning methods require complete datasets to generate good predictions;
therefore, dealing with missing data is a required step. The BT model was chosen, and an
ensemble of decision trees was generated using a boosting algorithm to combine multiple
weak learners, which were decision trees in this case, into a strong learner. After training
the model, its performance was evaluated before being employed to predict the response
variable for new data. The performances of machine learning models were evaluated and
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compared using statistical error metrics such as Root Mean Square Error (RMSE), Mean
Square Error (MSE), Mean Absolute Error (MAE), and R-squared (R2). The RMSE measures
the difference between the predicted and true values of the response variable, with lower
values indicating better model performance. It is calculated by taking the square root of
the mean of the squared differences between the predicted and true values. Unlike RMSE,
MAE calculates the average of the absolute differences between predicted and actual values,
as shown in Equation (2).

RMSE =
√

(MSE) = √( 1
n∑n

i=1 (x− y)2)

MAE =
1
n∑n

i=1|x− y|
(2)

where x is the actual value, y is the predicted value, and n is the number of samples in
the dataset.

The R2 is utilized to show how well the regression model fits the data, where a
higher R2 implies that a larger proportion of the variance in the dependent variable can be
accounted for by the independent variable(s). In this study, the dependent and independent
variables are actual and predicted values. The R2 value ranges from 0 to 1, where a value
of 0 indicates that none of the variation in the dependent variable is explained by the
independent variable(s), and a value of 1 indicates that all of the variation in the dependent
variable is explained by the independent variable(s). Equation (3) shows how the R2

is calculated.

R2 =

 n ∗ (Σx ∗ y)− (Σx ∗ Σy)√[
n ∗ Σx2 − Σx2] ∗ [n ∗ Σy 2 − Σy2

]


2

(3)

3. Results and Discussion
3.1. Status of the COVID-19 Outbreak Situation in Malaysia

The trend of cumulative COVID-19 cases in Kuala Lumpur and Selangor during the
study duration is shown in Figure 3. MCO in Malaysia began on 18 March 2020. On the
first day, 119 cases and 192 cases were reported in Kuala Lumpur and Selangor, respectively.
At the beginning of this study, Selangor recorded a higher number of cases compared to
Kuala Lumpur. Several months later, as of 1 June 2020, 7857 cumulative cases of COVID-19
were reported in Malaysia. Kuala Lumpur recorded the highest number of cases, with
2039 cases, while Selangor had 1920 cases.
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Figure 4 shows the daily COVID-19 cases in Kuala Lumpur and Selangor. The highest
number of cases in Kuala Lumpur was 177 on 26 May 2020, whereas in Selangor, there
were 75 cases on 26 March 2020. In contrast, the lowest number of cases was one for both
states. Based on Figure 3, the cases in Kuala Lumpur increased drastically from 24 May
to 26 May 2020 and dropped to five cases on 27 May 2020. Due to the increasing cases on
those days, the cumulative cases in Kuala Lumpur became higher than those in Selangor,
making Kuala Lumpur the state with the highest number of COVID-19 cases in Malaysia.
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A total of 115 COVID-19-related deaths were reported in the country between
18 March 2020 and 1 June 2020 during the study. As highlighted by Malaysia’s Min-
istry of Health, some of the patients that succumbed to COVID-19 had a minimum of two
chronic illnesses, such as heart disease, diabetes, asthma, stroke, dementia, and kidney dis-
ease [35]. Exposure to poor air quality can lead to various health issues, especially among
vulnerable populations such as immunocompromised patients. Moreover, air pollution can
enhance the likelihood of COVID-19 infection due to comorbidities or other respiratory
illnesses [36]. When a person has comorbidities, their immune system may be impaired or
require extra care, which may expose them to other infections.

Cilia and upper airway defenses could have been weakened by persistent exposure
to air pollution, which may have encouraged viral invasion by allowing viruses to invade
lower airways, increasing COVID-19 occurrence and lethality [7]. The immune system
could be severely compromised by a highly infectious virus, such as the novel SARS-CoV-2.
This is particularly evident among people residing in locations with extreme levels of air
pollution. Zhu et al. [8] reported a statistically significant association between COVID-
19 infection and air pollution. Likewise, Liu et al. [37] demonstrated that COVID-19
community spread could be favored by low temperatures, low humidity, and mild diurnal
temperature ranges.

3.2. Concentrations of Air Pollutants and Meteorological Parameters before and during MCO

Many processes contribute to causing air pollution in automobiles (aircraft, trucks,
automobiles, and other engines), power plants, industries, and household heating systems.
The release of chemicals and harmful gases interacts with sunlight to increase the toxicity of
the material [38]. As predicted, the lockdown, better known as MCO in Malaysia, improved
the air quality in the country. During MCO, there were restricted social interactions and
the closure of non-essential industries; hence, particular air contaminants, primarily those
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controlled by primary sources, were temporarily reduced. Several studies also reported
a significant reduction in air pollution and improved air quality in their regions during
lockdown [16,39–41].

Tables 1 and 2 depict the descriptive statistics (mean, standard deviation, median,
interquartile range, maximum, and minimum) of daily parameters and air pollutants
parameters between 18 March and 1 June in 2019 and 2020 in the study locations. This
11-week period represents MCO in Malaysia, with MCO starting on 18 March 2020. A
pair-sample t-test (effect size, d) was employed in comparing the mean concentrations
of all parameters that were normally distributed. In contrast, non-normally distributed
parameters were appropriately interpreted using a Wilcoxon signed-rank test (effect size, r)
during these two years.

Table 2. Descriptive statistics and differences analysis of air pollutants and meteorological data in
Kuala Lumpur.

Variables Year Min Max Mean SD Median IQR t or Z p d or r

PM10 (µg m−3) b 2019 24.38 100.1 52.05 14.89 50.23 18.55 −2.449 0.014 * 0.282020 18.93 94.06 44.69 15.67 41.73 22.74

PM2.5 (µg m−3) b 2019 16.91 75.69 39.80 12.23 38.29 15.90 −1.558 0.119 0.182020 15.45 309.1 40.02 34.26 35.33 16.81

SO2 (ppb) b 2019 0.500 17.10 2.084 2.306 1.550 0.800 −5.867 <0.001 * 0.672020 0.300 2.500 1.042 0.411 0.950 0.700

NO2 (ppb) b 2019 13.80 37.30 30.35 9.756 28.35 12.97 −7.181 <0.001 * 0.822020 5.200 56.60 13.97 6.366 12.00 9.300

O3 (ppb) a 2019 12.10 79.20 45.16 16.68 45.55 24.90
0.975 0.332 0.162020 1.400 75.80 42.62 15.63 44.45 22.32

CO (ppm) b 2019 1.140 2.915 1.747 0.380 1.664 0.585 −6.762 <0.001 * 0.782020 0.620 2.500 1.152 0.307 1.113 0.300

WD (◦) b 2019 218.3 359.8 328.4 27.69 331.6 33.51 −2.107 0.035 * 0.242020 92.52 358.9 307.3 58.63 329.0 49.06

WS (m s−1) b 2019 1.240 8.620 5.070 2.160 5.348 3.660 −3.666 <0.001 * 0.422020 0.870 8.530 3.702 2.043 3.112 3.550

RH (%)b 2019 79.07 98.00 92.03 5.337 92.68 9.100 −3.071 0.002 * 0.352020 86.52 98.40 94.09 3.600 94.55 5.320

SR (W m−2) b 2019 378.5 886.8 705.0 112.4 716.2 148.9 −5.954 <0.001 * 0.682020 138.6 784.4 564.5 124.8 597.7 149.1

AT (◦C) b 2019 32.35 36.37 34.48 1.065 34.60 1.700 −0.958 0.338 0.112020 28.77 36.94 34.60 1.347 34.81 1.360
a = paired t-test; b = Wilcoxon signed rank test; * significant at p < 0.05.

In 2020, all studied air pollutants in Kuala Lumpur showed lower concentrations than
in 2019, except for PM2.5, as shown in Table 2. The average of PM2.5 in 2020 was higher
than in 2019 at 0.22 µg/m3, and the results were statistically different (t or Z) at p < 0.05.
In other words, the MCO was influential in reducing toxic air levels. The effect size of
NO2 was large (d ≥ 0.80 or r ≥ 0.80), whereas CO and SO2 recorded a medium effect size
(r ≥ 0.50). Nevertheless, all meteorological parameters were statistically significant (t or Z)
at p < 0.05, following the removal of AT. SR had the highest effect size compared to other
variables, which was a medium effect size at r = 0.68.

On average, all air quality parameters in 2020 showed lower concentrations than in
2019, as shown in Table 3. These results were statistically significant at p < 0.05, reflecting
the impact of the MCO on enhancing air quality. Whereas PM2.5 and PM10 recorded
a medium effect size (r ≥ 0.50), a large effect size was observed for NO2, O3, and CO
(d ≥ 0.80 or r ≥ 0.80). The exclusion of SR resulted in all meteorological parameters
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exhibiting non-statistically significant differences (t or Z) at p < 0.05. SR had the highest
effect size compared to other variables, which had a medium effect size at r = 0.70.

Table 3. Descriptive statistics and differences analysis of air pollutants and meteorological data
in Selangor.

Variables Year Min Max Mean SD Median IQR t or Z p d or r

PM10 (µg m−3) b 2019 32.51 125.2 55.44 17.60 50.67 13.35 −6.441 <0.001 * 0.742020 21.45 76.71 37.23 10.79 35.88 12.29

PM2.5 (µg m−3) b 2019 24.43 107.3 41.84 16.21 36.62 13.38 −5.633 <0.001 * 0.652020 16.71 63.32 29.79 8.903 28.12 8.355

SO2 (ppb) b 2019 0.900 14.40 2.424 2.235 1.900 0.800 −2.748 0.006 * 0.322020 0.400 19.30 1.950 2.417 1.200 1.480

NO2 (ppb) b 2019 22.00 59.20 38.50 9.308 38.25 14.20
13.078 <0.001 * 2.022020 5.600 60.70 19.63 9.409 17.25 10.18

O3 (ppb) a 2019 17.70 90.60 49.46 16.60 50.35 22.80
5.629 <0.001 * 0.902020 2.200 55.80 37.37 10.15 38.45 13.55

CO (ppm) b 2019 1.232 3.213 2.125 0.452 2.101 0.625
14.212 <0.001 * 2.332020 0.483 3.264 1.099 0.428 0.960 0.445

WD (◦) b 2019 209.8 359.2 308.9 40.36 320.1 69.28 −0.502 0.616 0.062020 204.2 358.4 300.6 42.55 307.1 66.33

WS (m s−1) b 2019 1.029 5.954 1.854 0.796 1.737 0.686 −0.241 0.810 0.032020 0.636 3.512 1.817 0.581 1.733 0.805

RH (%) b 2019 76.84 98.00 92.86 4.185 93.65 7.093 −0.767 0.443 0.092020 82.58 98.00 93.55 4.077 94.46 6.592

SR (W m−2) b 2019 298.8 829.6 655.2 112.5 680.6 144.0 −6.14 <0.001 * 0.702020 128.9 661.8 514.0 107.5 536.4 132.9

AT (◦C) b 2019 31.42 37.09 34.42 1.181 34.54 1.600 −0.465 0.643 0.072020 29.21 36.76 34.51 1.435 34.76 1.886
a = paired t-test; b = Wilcoxon signed rank test; * significant at p < 0.05.

The new Malaysia Ambient Air Quality Standard for 2020 from the DOE (2020) was
compared with all six air pollutant parameters. None of these air pollution parame-
ters exceeded the standards (PM10 = 100 µg m−3 for 24 h, PM2.5 = 35 µg m−3 for 24 h,
SO2 = 95 ppb for 1 h, NO2 = 149 ppb for 1 h, O3 = 92 ppb for 1 h, and CO = 26.19 ppm for
1 h) except for PM2.5 for both states.

Figures 5 and 6 indicate the weekly average levels of air pollutants and meteorological
factors beginning from 4 March to 1 June 2020 (13 weeks) in Kuala Lumpur and Selangor,
respectively. The measurements were categorized into two periods: (1) before the MCO
(4 March 2020 to 17 March 2020, also Week 1–Week 2), and (2) during the MCO
(18 March to 1 June 2020, also Week 3–Week 13). The 13-week duration was designated
as (1) Week 1 from 4 March to 10 March, (2) Week 2 from 11 March to 17 March, (3) Week
3 from 18 March to 24 March, (4) Week 4 from 25 March to 31 March, (5) Week 5 from
1 April to 7 April, (6) Week 6 from 8 April to 14 April, (7) Week 7 from 15 April to 21 April,
(8) Week 8 from 22 April to 28 April, (9) Week 9 from 29 April to 5 May, (10) Week 10 from
6 May to 12 May, (11) Week 11 from 13 May to 19 May, (12) Week 12 from 20 May to 26 May,
and (13) Week 13 from 27 May to 1 June.
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All air pollutants were significantly reduced, excluding O3 in Selangor and PM2.5 and
O3 in Kuala Lumpur and O3 in Selangor, during the third and fourth weeks of the MCO.
PM10 and PM2.5 concentrations in Kuala Lumpur did not decrease after MCO from Week
3 until Week 5, but the concentrations increased drastically in Week 10. In contrast, PM10
in Selangor showed decreasing trends, which were from the range of 120.9–151 µg m−3

before MCO to the range of 29.2–53.1 µg m−3 during MCO; PM2.5 in Selangor exhibited
declining trends, which were from the range of 58.2–62.8 µg m−3 before MCO to the range
of 22.3–41.8 µg m−3 during MCO.

There are industrial areas and heavy road traffic around the monitoring station,
so when MCO was implemented, the restriction of movement and operation of indus-
tries also stopped, decreasing the production of particulate matter in the atmosphere.
However, trucks used to transport foods and other essential goods during the MCO
were operating as usual. Consequently, the concentrations of PM2.5 and PM10 in Kuala
Lumpur did not reduce during MCO due to the ongoing essential activities in the
region [30].

As a result of reduced manufacturing operations in Malaysia throughout MCO, SO2
concentrations also decreased. Nevertheless, the SO2 concentration increased drastically
in Week 13 in Selangor. This finding could be due to the reopening of many economic
sectors and activities when MCO moved to a new phase, the Conditional Movement
Control Order (CMCO). Apart from this finding, concentrations of CO2 and NO2 in Kuala
Lumpur and Selangor had recorded higher concentrations before MCO than during MCO.
A decreased number of vehicles on the road caused fewer emissions from motor vehicles,
which explained the significant reductions in NO2 and CO emissions. Previous studies
reported on CO reduction in the megacity of Delhi, India, and a decline in NO2 levels in
the city of Rio de Janeiro, Brazil, due to a reduction in vehicle movement and the closure of
industrial complexes and power plants during the COVID-19 lockdown [42,43]. Therefore,
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shutting down transport and industrial sectors mainly explains why these pollutants
declined sharply during the lockdown phase.
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Furthermore, Lefohn et al. [44] and Paoletti et al. [45] indicated that the reduction of
nitrogen oxide (NOx) concentrations had an inverse relationship with O3 concentrations.
Contrastingly, concentrations of O3 fell rapidly at higher concentrations of NOx [46,47].
In the presence of sunlight, photolysis of NOx and volatile organic compounds (VOCs)
produces O3 [48]. As a result of restricted movements and operations during the lockdown
phase, decreased NO2 emissions increased O3 concentrations [49,50].

The climate of Malaysia is categorized as hot and humid throughout the year because
its location is just north of the equator, with average temperatures around 28 degrees on
the mainland. There are two monsoon wind seasons: the southwest monsoon from May to
September and the northeast monsoon from October to March. These monsoon seasons
bring in more rainfall with a higher RH, lower SR, and lower AT on average than hot
seasons. Kuala Lumpur experienced the transitional period of the inter-monsoon season
during the study period, March–April. For meteorological parameters, excluding WD and
RH, the concentrations of all the variables were reduced during the first week of the MCO.
The RH increase was expected to continue until May 2020 due to the monsoon season,
which can cause frequent rain. Malaysia experienced an inter-monsoon season between
March and April throughout the research period. In early May, we experienced the early
stage of the Southwest monsoon; hence, more rainfall will happen as a result of increasing
RH and decreasing SR and AT.

Nonetheless, on average, WS showed a slightly decreasing trend at the end of the
MCO for Kuala Lumpur (2.65 to 2.17 m s−1) and Selangor (1.11 to 2.33 m s−1), where the
WS might be attributed to seasonal change. The RH value was slightly higher during the
MCO compared to the pre-MCO period, ranging from 88.40% to 97.47% and from 89.87%
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to 97.40% in Selangor and Kuala Lumpur, respectively. In comparison, the AT during MCO
presented similar trends for both states, which were higher trends at the beginning of MCO
but lower trends at the end of MCO.

In a broader context, these movement restrictions are not just to control the outbreak of
COVID-19 but also to minimize the air pollution problem in Malaysia. The restrictions on
pollution-generating activities and human mobility during the lockdown period resulted
in an overall improvement in air quality throughout the world, including Malaysia. The
present results are consistent with earlier reports [51], in which low levels of contaminants
(CO, PM2.5, and PM10) were documented in the Klang Valley during the MCO. In the
same manner, studies from other countries such as India (Delhi) and Spain (Barcelona) also
reported on the reduction of PM2.5, PM10, CO, and NO2 but the increment of O3 during the
lockdown period in Delhi, India [43] and Barcelona, Spain [50]. In addition, studies from
major cities in China and Morocco also showed a significant reduction in concentrations of
PM2.5, PM10, NO2, SO2, and CO during the lockdown phase [8,52].

3.3. Relationship between Air Quality, Meteorological Factors, and COVID-19 Cases

COVID-19 has a 1–14-day incubation period [53], and the impact of meteorological
parameters could last for a few days [4]. Another study evaluated the correlations be-
tween COVID-19 cases, related mortality, and the concentrations of air pollutants between
the years in which COVID-19 cases occurred and the years before the pandemic [54]. In
line with their findings, applying the lag effect of various air quality and meteorological
variables was reasonable in this study. Assuming that the usual duration from virus trans-
mission to infection is 7 days, the average daily air quality and meteorological parameters
of 7 days ago were compared with the total reported cases during MCO. For instance,
COVID-19 cases on 18 March 2020, were analyzed against the average air pollution param-
eters on 11 March 2019, and meteorological factors on 11 March 2020, as applied previously
in a local study by Suhaimi et al. [55]. Table 4 depicts the correlations of meteorological
parameters and air pollutant variables in the cumulative cases of COVID-19 in Selangor
and Kuala Lumpur. Only NO2, O3, PM10, and PM2.5 were associated with the cumula-
tive COVID-19 cases among air pollutant variables. Meanwhile, RH, WS, and SR were
the only meteorological parameters that demonstrated significant correlations with the
outcome variable. Conversely, WD, O3, SO2, and AT reflected no significant correlations
with COVID-19 cases. Besides, weak positive correlations were observed for cumulative
COVID-19 cases and NO2, O3, PM2.5, and PM10, while RH exhibited a strong positive
correlation. However, WS and SR had negative correlations with COVID-19 cases. Up
to this point, the impact of outdoor air pollution levels and meteorological conditions on
COVID-19 infections was statistically significant.

Table 4. Spearman’s correlation tests between daily air pollutants and meteorological factors data
and cumulative COVID-19 cases in Kuala Lumpur and Selangor.

Kuala Lumpur Selangor

Variables r p r p
PM10 (µg m−3) 0.281 0.014 * 0.354 0.002 *
PM2.5 (µg m−3) 0.352 0.002 * 0.396 <0.001 **

SO2 (ppb) 0.086 0.462 0.070 0.550
NO2 (ppb) 0.245 0.033 * 0.263 0.022 *
O3 (ppb) 0.182 0.115 0.306 0.007 *

CO (ppm) 0.116 0.320 0.067 0.563
WD (◦) −0.151 0.192 −0.191 0.099

WS (m s−1) −0.311 0.006 * 0.037 0.748
RH (%) 0.494 <0.001 ** 0.030 0.798

SR (W m−2) −0.368 0.001 * −0.249 0.030 *
AT (◦C) −0.021 0.857 −0.175 0.131

* Significant at p < 0.05; ** Significant at p < 0.001.
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Moving on, the variables that were statistically significant at the bivariate level were
analyzed at the multivariate level by applying multiple linear regression. Kuala Lumpur
had six predictor variables (PM10, PM2.5, NO2, WS, RH, and SR), whereas Selangor had
five predictor variables (PM10, PM2.5, NO2, O3, and SR). Only variables with a significant
p < 0.05 were selected from this model when the model was fitted with the stepwise method.
Tables 5 and 6 show variables for each region representing air quality and meteorological
factor variables that were strongly linked to cumulative COVID-19 cases in Kuala Lumpur
and Selangor. From the analysis, results revealed that RH was the most contributing
meteorological indicator that significantly influenced the incidence of COVID-19 in Kuala
Lumpur, followed by Equation (4).

Total COVID-19 cases = 2547.83 + 47.84 (RH) (4)

Table 5. Multiple linear regression for associations between relative humidity and cumulative
COVID-19 cases in Kuala Lumpur.

Independent
Variables B (SE) Standardized

Coefficients p 95% CI VIF

Constant 2547.83
(1157.54) - 0.031 * 239.19 to

4856.48 -

Relative Humidity (%) 47.84 (11.29) 0.424 <0.001 * 25.31 to 70.36 1.129
* Significant at p < 0.05.

Table 6. Multiple linear regression for associations between PM2.5 and cumulative COVID-19 cases
in Selangor.

Independent
Variables B (SE) Standardized

Coefficients p 95% CI VIF

Constant 1885.261
(325.31) - <0.001 * 1236.61 to

2533.91 -

PM2.5 (µg/m3) 13.246 (3.61) 0.471 <0.001 * 6.058 to 20.43 1.541
* Significant at p < 0.05.

For every unit (1%) increase in RH, COVID-19 cases will increase by 47.84. Beta values
were significant at 0.05. VIF readings were less than five, which showed no multicollinearity
concern. Additionally, 33.4% of the variance in COVID-19 cases could be explained by
RH, R2 = 0.379, F (5, 70) = 8.54, p < 0.001. These findings can be presumed to have a large
combined effect (f2 = 0.61), thus showing RH has a large contribution to COVID-19 cases.

As for Selangor, PM2.5 was strongly linked to cumulative COVID-19 cases. The
equation is portrayed in Equation (5).

Total COVID-19 cases = 1885.26 + 13.25 (PM2.5) (5)

For every unit (1 µg m−3) increase in PM2.5, COVID-19 cases will increase by 13.25.
Beta values were significant at 0.05. VIF readings were less than five, which showed
no multicollinearity concern. Moreover, 20.1% of the variance in COVID-19 cases can
be explained by PM2.5, R2 = 0.244, F (4, 71) = 5.72, p < 0.001. A combined effect of this
magnitude can be considered large (f2 = 0.73); hence, PM2.5 has a huge influence on COVID-
19 cases. However, several factors that were not considered in this study might influence
the incidence of COVID-19.

Our findings demonstrated a link between COVID-19 cumulative cases, air contam-
inants, meteorological factors, and their relationships. This scientific study supports the
evidence that chronic illnesses are linked to environmental pollution, particularly in urban
areas. Air pollution is a well-known contributor to chronic inflammation, resulting in
an overactive innate immune system [7]. Long-term air pollution exposure can lead to
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persistent immune system disturbances [56]. It may result in a weakened circulatory and
respiratory viral invasion, thus increasing the risk of the severe outcome of COVID-19 [7].

In our study, the correlation test showed that air pollutant parameters PM10, PM2.5,
NO2, and O3 had positively significant correlations with COVID-19 cumulative cases.
Results from our study are comparable with those from a prior investigation that revealed
a positive relationship between cumulative COVID-19 cases and O3 in China [9]. Moreover,
a study discovered that a rise in the long-term O3 average is linked to COVID-19 mortality
and morbidity [54].

On the other hand, our findings were contrasted with findings from previous studies
by Sahoo et al. [57] in India, Zhu et al. [8] in China, and Bashir et al. [58] in California, who
reported that the air pollutants (PM10, PM2.5, and NO2) were negatively and significantly
correlated with COVID-19 cases; another study reported that O3 was negatively correlated
with daily COVID-19 cases [59].

PM2.5 and PM10 have been related to several health effects, including inflammatory
responses, oxidative damage, DNA damage, and respiratory, cardiovascular, and nervous
system problems [60]. PM2.5 impairs bronchial immunity and affects the integrity of the
epithelial cells [61], and these events reduce the capacity of the antibodies to combat viruses
and increase susceptibility to respiratory diseases. Hence, the current findings regarding
the positive correlation between cumulative COVID-19 cases and both particulate matter
components (PM2.5 and PM10) are consistent with the report in Millan, Italy [60]. The
researchers also found a positive correlation between PM2.5 and PM10 and daily cases
of COVID-19. The presence of atmospheric PM can serve as a means of transportation
for viruses, facilitating their spread in aerosol form and creating an environment that
is conducive to their survival. This is because PM10 and PM2.5 can be inhaled, along
with any associated microorganisms. Studies have shown that particle concentration and
dimension can have a significant impact on the composition and concentration of microbial
communities. When particles are inhaled, particularly those smaller than 2.5 microns, such
as PM2.5 and UFPs, they can penetrate deep into the lungs, allowing viruses to develop
within the respiratory tract and cause infections.

It has been proven that NO2, SO2, and CO emissions are connected to an increased
prevalence of lung and cardiovascular disease infections [62]. Nonetheless, the present
findings reflect no significant correlation between CO and SO2 and the cumulative cases of
COVID-19. Meanwhile, positive correlations were found between cumulative COVID-19
cases and NO2, aligning with research conducted in China and Italy [8,63]. Furthermore,
a study in England shows that exposure to such pollutants could prevent pulmonary
antimicrobial responses, limiting virus clearance from the lungs and increasing infectiv-
ity [54]. They also stated that 3.3% of cases and 3.1% of deaths were linked to an increase of
1 mg m−3 of NO2 concentration in 2018.

Moving on to susceptibility to diseases from air pollution exposure, demonstrated how
chronic exposure to air pollutants can cause respiratory symptoms and lead to COVID-19
infection [64]. This study revealed that the expression level of Angiotensin-Converting
Enzyme 2 (ACE-2) in the alveolar cells of the lungs is a strong determinant of the dif-
ferent categories of severity exhibited by COVID-19 patients. These could range from
being asymptomatic to mildly symptomatic to severely symptomatic if the ACE-2 in
the aforementioned location is low (↑), moderate (↑↑), or high (↑↑↑) for NO2, PM2.5,
and NOX, respectively. Exposure to these air pollutants may contribute to low host de-
fenses and immunity, increase susceptibility to diseases, and cause a high viral load of the
SARS-CoV-2 virus.

In addition, meteorological factors are considered influential determinants for viability,
transmission, and range of virus transmission [65,66]. These meteorological indicators can
also impact droplet stability in the environment or virus survival; hence, they influence
coronavirus transmission [10]. From our findings, the meteorological factors of WS, RH,
and RH were correlated with cumulative COVID-19 cases in Kuala Lumpur and Selangor.
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A study from Jordan discovered a higher infection rate with low levels of WS, RH, and SR,
thus promoting the coronavirus’s survival [67].

In this study, a moderately positive correlation was detected between the cumulative
COVID-19 cases and RH (r = 0.494, p < 0.001), indicating that the cases increased positively
with an increment in RH. Our findings are consistent with those of researchers in India [68],
who demonstrated that cumulative cases increased rapidly with RH. Similarly, previous
studies in Singapore and Thailand, which are neighboring countries of Malaysia, had shown
significant positive correlations between RH and daily COVID-19 cases [9,69]. However, a
group of researchers found a negative association between RH and daily new COVID-19
cases [70]. Based on the findings from these tropical nations, it can be concluded that high
RH supported COVID-19 spread in tropical nations, such as Malaysia, Singapore, and
Thailand, but not in colder regions, such as Europe and the United States of America, as
previously stated by Suhaimi et al. [55].

Moving on with our findings on another meteorological indicator. SR had a weak
negative correlation with COVID-19 cases in Kuala Lumpur (r = −0.368, p = 0.001) and
Selangor (r = −0.249, p = 0.030). These findings implied that the number of confirmed
cases was reduced with SR. Moreover, these outcomes may be due to our study period
because there was a monsoon season that caused the cloud to cover the sun and led to
decreasing SR concentration (Figure 4j and 5j). UV rays, especially in the summer period,
might be vital for the prevention of COVID-19 transmission given their deleterious effects
on a variety of viruses such as SARS and MERS [71].

Furthermore, a study identified that the growth of SARS-CoV-2 can be promoted by
lower UV rays [72]. In another study in Jordan, the researchers established an adverse
correlation between SR and COVID-19 cases and discovered that SR plays a crucial role
in COVID-19 outbreaks, which matched our findings [67]. Overall, meteorological factors
contributed more to SARS-CoV-2 transmission in regions and months with colder and
drier conditions and lower UV radiation than in regions and months with warmer, wetter
seasons and higher UV radiation levels, as previously claimed by [73].

Negative correlations were detected between the cumulative COVID-19 cases and
WS in Kuala Lumpur (r = −0.311, p = 0.006), but such an association was lacking in
Selangor. Our findings in Kuala Lumpur were in agreement with the outcomes reported by
Alkhowailed et al. [74], who reported a negative relationship between WS and the incidence
of COVID-19. They also claimed that WS influenced COVID-19 transmission in cities with
a high population, which could be due to a low WS in these areas, favoring the spread of
the SARS-COV-2 virus among persons living near congested areas as compared to areas
with a higher WS. Our findings on WS in Selangor found no significant correlation with
COVID-19 cases, although the relationship was positive, which was in line with a previous
study in Africa [75]. On days when AT was cooler, increased WS might cause people to
remain indoors, reducing the spread of COVID-19 [76].

3.4. Boosted Tree Prediction

In this study, the impact of air quality and meteorological factors on COVID-19 cases
was accessed using the machine learning method. The model’s performance is evaluated
at various leaf sizes, learners, and learning rates. As shown in Table 7, it is found that the
BT method for this investigation is best at the seven leaf size with Principal Component
Analysis (PCA) disabled, 30 learners, and a 0.2 learning rate. Figure 7 shows the response
plot of the predictors and response (COVID-19 cases) variables. The plotted response
indicates the outcomes of the regression model. By employing cross-validation, these
predictions are made on unseen data points. In simpler terms, each prediction is generated
by a model that was trained without incorporating the relevant observation. Figure 8 shows
the plot of the predicted versus actual data, followed by Figure 9, where the residual plot
is shown. The residual plot shows the difference between the predicted response and the
true response. It can be seen from the figure that the residual errors fall between 1 and
-1 and are scattered around 0. The outliers are not visible, and there are no significant
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changes between the data on the x-axis, which suggests an acceptable prediction model.
Finally, using the BT regression model, the COVID-19 cases in Selangor were forecast. The
forecasted COVID-19 cases found that the RMSE, R2, MAE, and MSE were 0.47, 0.77, 0.39,
and 0.22, respectively, as shown in Table 8. R2 has become a commonly used metric for
evaluating regression analyses in different scientific fields because of its ability to provide
accurate and informative information [77]. An R2 value higher than 0.75 is considered
substantial, indicating that the model is the best fit for predicting COVID-19 cases [78]. The
BT regression model was utilized to estimate the COVID-19 cases at Selangor Station by
considering the air quality and meteorological data of the region. Figure 9 illustrates a
comparison between the predicted cases and the actual cases recorded at Selangor Station.
The graph shows that the predicted cases follow a similar trend to the actual cases, although
the actual cases exhibit some variability not captured by the model. Nevertheless, the fact
that the predicted cases track the actual cases quite closely suggests that the BT regression
model was successful in forecasting COVID-19 cases in Selangor using air quality and
meteorological data. Overall, this study demonstrates that environmental factors can
be used to predict the spread of COVID-19 in a given region, which could be useful for
policymakers in implementing targeted interventions to control the spread of the virus.

Table 7. RMSE, R2, MAE, and MSE values at various leaf sizes, learners, and learning rates
for model training.

Leaf Size Learner Learning Rate PCA RMSE R2 MAE MSE

1 10 0.1 ON 0.54 0.71 0.44 0.29
1 10 0.1 OFF 0.84 0.30 0.68 0.70
2 20 0.2 ON 0.70 0.51 0.54 0.49
2 20 0.2 OFF 0.46 0.79 0.35 0.21
3 30 0.2 ON 0.69 0.52 0.55 0.48
3 30 0.2 OFF 0.45 0.80 0.35 0.20
4 40 0.2 ON 0.68 0.55 0.55 0.46
4 40 0.2 OFF 0.45 0.79 0.36 0.21
7 30 0.2 ON 0.65 0.58 0.51 0.42
7 30 0.2 OFF 0.44 0.81 0.35 0.19
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Figure 9. The predicted and actual COVID-19 cases in Selangor. The predicted cases were based on
air quality and meteorological data at Selangor Station using the developed BT regression model.

3.5. Limitations

Despite the findings highlighted in this study, it has limitations. First, the study only
considered two major locations (Kuala Lumpur and Selangor), thereby leading to some
outcomes that were different from the real influence of meteorological factors and ambient
pollution on the transmission of the novel SARS-CoV-2 in Malaysia. Second, there was only
one station studied for the whole state. More data and relationships could be explored if
more stations were included in this study. Third, the data on air quality parameters and
meteorological factors were only studied for 11 weeks to compare when COVID-19 was
absent and when COVID-19 was present. By lengthening the study period, better results
could represent the year without COVID-19 and with COVID-19. Fourth, the ecological
study design used in this research may contain an ecological fallacy. Individual-level data
on air pollutant exposure and coexisting health conditions were not collected, resulting in
limited assumptions for group-level analysis of the available data.

These limitations need to be addressed in future studies involving cohort groups
in which factors such as gender, age, occupation, underlying conditions, and high-risk
or vulnerable groups are considered in the Malaysian context. Examples of high-risk
individuals include those with tuberculosis, cardiovascular diseases, diabetes, asthma, and
chronic obstructive pulmonary disease. Chronic exposure to polluted air can lead to a
compromised immune system; hence, the affected individuals will be more susceptible to
any kind of respiratory disease, including COVID-19. Moreover, changes in the SARS-CoV-
2 virus have been detected over time and need more study, particularly on its transmission
as it is related to the environment, such as meteorological factors.

Considering the potential effects of air pollution, it could be considered a confounding
factor in the association between close interaction among people, population density, and
eating and drinking behaviors. Air pollution can weaken the respiratory and immune
systems, which may heighten the vulnerability of individuals to infectious diseases such
as COVID-19. Additionally, people living in areas with high levels of air pollution might
be more likely to spend time indoors or in overcrowded spaces, amplifying the risk of
transmission. Therefore, when studying the relationship between close interactions between
people, it is important to consider the potential confounding effects of air pollution. This
may involve controlling for air pollution levels in the analysis or conducting stratified
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analyses based on air pollution levels. By taking into account the potential effects of air
pollution, researchers can better understand the true relationship between these factors
and develop appropriate interventions to prevent the spread of infectious diseases.

4. Conclusions

In conclusion, this study highlights the significant correlation between air pollution,
meteorological parameters, and COVID-19 cases in Malaysia. PM2.5, PM10, NO2, O3,
RH, WS, and RH were found to be significantly correlated with COVID-19 cases. The
findings also indicate that COVID-19 cases were positively correlated with O3, NO2, RH,
PM10, and PM2.5 but negatively correlated with SR and WS. The use of the BT regression
model in forecasting COVID-19 cases in Selangor was successful, with an R2 value of 0.77
indicating substantial accuracy. Although the actual cases exhibited some variability not
captured by the model, the predicted cases tracked the actual cases closely, suggesting that
the model was effective in forecasting COVID-19 cases in Selangor using air quality and
meteorological data.

This study could provide valuable insights for future research in countries with similar
climates and population densities. However, preventive measures, such as handwashing,
sanitization, and physical distancing, are still crucial during the epidemic phase. Wearing
masks and getting vaccinated against COVID-19 is also highly recommended to increase
herd immunity and prevent the severe impacts of COVID-19. The findings of this study
could benefit policymakers in developing a better systematic policy for Malaysia based
on pollution sources and mitigation measures to improve air quality. Integrated efforts to
control emissions and minimize exposure to air pollutants can improve human health in
general and alleviate the public health burden of COVID-19 specifically. The Malaysian
government’s COVID-19 mitigation measures had a significant impact on air pollutant
concentrations in the country. Reduced human activities, vehicle emissions, industrial
emissions, and coal-fired power plant emissions were the main factors that led to cleaner air
during the MCO period. This study’s results enable the government to devise systematic
policies that take into account the pollution sources and characteristics of pollutants. One
such policy could be to encourage the use of cleaner alternatives and new vehicle technology,
given the positive trend in air quality observed during the MCO period due to the reduced
number of vehicles. Local authorities can also adopt their own measures to reduce air
pollution on a smaller scale, which can be extended to a larger scale over time. In general,
this study underscores the need for ongoing efforts to reduce air pollution in Malaysia and
the potential advantages of implementing emission reduction policies over the long term.
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