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Abstract: This study attempts to improve the accuracy of wind field simulations in the Weather
Research and Forecasting (WRF) model by incorporating Doppler lidar-based wind observations over
the Osaka region of Japan. To achieve this, a Doppler lidar was deployed in Osaka city, and multi-
layer wind measurements were obtained for one month (August 2022). These measurements were
then assimilated into the WRF model using the observation nudging technique. Two simulations were
conducted: one with nudging disabled, and the other with nudging enabled with data assimilation,
while keeping all other configurations constant. The results were evaluated by comparing the
simulations with the lidar observation at the lidar location where the wind data were nudged
during the simulation, as well as with the AMeDAS station observations at other locations far from
the lidar. The results indicated that not only the wind field, but other weather variables such as
temperature, were better captured in the simulation using lidar-based nudging compared to the
simulation without nudging.
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1. Introduction

The Weather Research and Forecasting (WRF) model is a state-of-the-art atmospheric
modeling system that is widely used for atmospheric research and operational forecasting
applications. It is a mesoscale numerical weather prediction model that can simulate
various meteorological phenomena such as wind, temperature, precipitation and other
atmospheric variables with high spatial and temporal resolutions [1]. WRF has been used
in various atmospheric research studies, including the analysis of severe weather events,
air quality modeling, climate change projections, and renewable energy assessments [2–12].

WRF offers multiple options for simulating atmospheric processes at high spatial and
temporal resolutions by selecting the appropriate domain, input, physics, and dynamics.
However, due to the complexity of the atmosphere, choosing the appropriate model
configuration for a specific region or application is crucial in order to obtain accurate results.
Therefore, many studies have been conducted to evaluate the sensitivity of the WRF model
to different model configurations over the target region to find a suitable model setup with
a higher accuracy [13–18].

Li et al. [19] recently conducted a sensitivity study using the WRF model to investigate
the offshore wind profile over the Baltic Sea. The study examined the impact of different
forcing datasets on the model’s ability to reproduce accurate wind profiles. The results
showed that the selection of the forcing data played a critical role in improving the model’s
accuracy in reproducing the wind profile. This finding suggests that improving the initial
and boundary conditions can lead to better model performance in reproducing atmospheric
processes. The importance of choosing appropriate initial and boundary conditions for the
WRF model has been emphasized in several studies [14,20–22].
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Considering the improvements in the model inputs, four-dimensional data assimila-
tion techniques, such as variational methods [23–27] and nudging methods [28–33], are
commonly used in the WRF simulation. The nudging method involves merging the model
simulations toward some observations continuously, which ensures that the simulations
do not deviate from the observed data [34,35]. One of the advantages of nudging methods
is that they can incorporate various observations, including in situ and remote sensing
measurements. Observation nudging has been widely used in atmospheric modeling
for different purposes, such as modeling the path of tropical cyclones [23,36], the early
warning of extreme weather events [31,32,37], improving air quality modeling [38], and
wind energy-related studies [39].

The observations used in the assimilation process mainly come from satellites, ra-
diosondes, and Doppler lidar measurements [14,23,39,40]. However, satellite observations
lack data on the multilayer wind profile when a Doppler lidar is not available, and ra-
diosondes launched at different times do not provide sufficiently time-resolved data for
the wind profile. In contrast, the Doppler lidar emits laser light into the sky and receives
scattered light from aerosols, such as invisible dust and fine particles. By measuring the
dynamic velocity of the aerosols from the Doppler frequency shift of the scattered light, the
Doppler lidar can calculate the wind direction and speed every few seconds. Therefore,
Doppler lidar-based wind measurements are expected to provide an accurate time-resolved
wind profile.

In this study, we examined the accuracy of the wind profile in the WRF model simula-
tion over Osaka, Japan. The study involved the installation of a Doppler lidar in Osaka
city, data collection for about a month (August, 2022) as a case study, and the use of the
Doppler lidar-based observation nudging method over the region. The primary objective
of the study was to determine whether assimilating the lidar-based observed data into the
model input could produce a more accurate wind profile. By analyzing the wind profile
accuracy in the WRF model simulation over the Osaka region of Japan, the study aimed to
provide valuable insights into the potential use of Doppler lidar and ways to improve the
accuracy of wind profile predictions for future applications.

2. Methods and Data
2.1. Study Region and the Doppler Lidar Setup

The present study focuses on the Osaka region (Figure 1), a city situated along the
Pacific coast in western Japan. The coastal areas in and around Osaka are predominantly
flat and overlook the Seto Inland Sea. The reason behind selecting this particular region
for the study is that Osaka and the Seto Inland Sea are enclosed by mountains, resulting in
weaker winds in comparison to regions facing expansive oceans such as the Japan Sea and
the Pacific. Additionally, the surface conditions in Osaka are complex due to the mixture of
urban–rural areas and land–water interfaces, requiring vertical wind profiling.

However, the paucity of observation data over water bodies, combined with the
inaccuracy and low resolution of heat conditions over urban areas, make numerical simula-
tions unreliable. To address this, we installed a Doppler lidar (StreamLine PRO, HALO
Photonics, Worcestershire, UK) in Osaka city at a specific location, 34.6631 N, 135.5287 E
(marked in red square in Figure 1), to obtain horizontal and vertical wind speeds and wind
directions from the laser beams directed skyward in different directions. We collected the
instantaneous wind profiles at 100 different heights above the ground level ranging from
14 m to 2839 m at approximately 30 s intervals for about one month (August 2022) using the
Vertical Profiling Lidar device (VL) mounted in the Velocity Azimuth Display (VAD) mode
of the Doppler lidar. The data availability of the Doppler lidar can vary depending on the
specific instrument used and the atmospheric conditions. It is worth noting that the data
availability may decrease in certain weather conditions, such as rain, fog, or low clouds.
These atmospheric conditions can affect the lidar’s ability to accurately measure wind
velocity and direction due to signal attenuation, scattering, and other factors. Typically,
most modern Doppler lidar systems can provide reliable wind measurements with a high
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accuracy of about 0.1 m s–1 at a 1000 m altitude range. To ensure the quality of the data, we
processed the data by taking the mean at 10 min intervals.
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2.2. Model Configuration and Experimental Design

The Advanced Research WRF model version 3.9.1.1 [1] was set up over the designated
area of interest (135.23–135.82 E and 34.45–34.93 N) with a 500 m horizontal grid resolution.
The center of the model domain was placed at the location of the Doppler lidar, as shown in
Figure 1. The model configuration consisted of 40 vertical levels and a 100 × 100 horizontal
grid points. The physics schemes incorporated into the model included the Mellor–Yamada–
Janjic (MYJ) planetary boundary layer (PBL) scheme [41], the Eta (Ferrier) microphysics
scheme [42,43], the Rapid Radiative Transfer Model for General Circulation Models for
longwave radiation (RRTMG) scheme [44], the Dudhia shortwave scheme [45], and the
Unified Noah land-surface model [46]. These details are outlined in Table 1. To simulate
PBL, numerical weather prediction models utilize various PBL schemes. These schemes
are developed based on different assumptions and formulations, and their performance
may differ based on the atmospheric conditions and the intended application. We used
the MYJ PBL scheme because the MYJ PBL scheme has been employed in numerous prior
investigations, and the comparison findings have indicated that the MYJ PBL scheme
outperforms other PBL schemes [47,48].

Two numerical simulations were conducted for approximately one month each, start-
ing at 00:00 UTC on 3 August 2022, and running until 23:00 UTC on 31 August 2022.
One simulation was performed without enabling the nudging option, referred to as no-
nudging, and the other simulation was performed by enabling the nudging option with
data assimilation, referred to as Nudging. We used the data assimilation technique of
observation nudging, which is elaborated separately in the next session (Section 2.3). No
other variational methods, such as 3D-Var, 4D-Var or other filtering techniques, were uti-
lized during our data assimilation process. All other configurations were kept the same
for both simulations. The initial and boundary conditions for the meteorological fields
were obtained from the Japan Meteorological Agency’s 2 km grid hourly Local Forecast
Model (LFM) data. To supply the model with terrain and land use data, we utilized the
ASTER Global Digital Elevation Model Version 3 (ASTGTM) from the Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer, which is available at a horizontal
resolution of approximately 30 m, as well as land use data at a resolution of 100 m from the
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Geospatial Information Authority of Japan [49,50]. The soil and ground information were
obtained from the 1-degree grid, 6-hourly final operational global analysis data from the
Global Forecasting System of National Centers for Environmental Prediction (NCEP-FNL).
The sea surface temperature was provided to the model using the 0.054-degree grid daily
Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data. For the nudging
simulation, the wind speed and direction were provided to the model at three different
heights (43, 128, and 214 m) at 10- min intervals for the entire simulation period at the
location of the Doppler lidar.

Table 1. Configuration of WRF.

Version 3.9.1.1

Integration time Start: 00:00 UTC 03 Aug 2022
End: 00:00 UTC 31 Aug 2022

Forcing Data
LFM surface and pressure data
NCEP-FNL soil and ground data
OSTIA SST

Domain size 100 × 100 (500 m horizontal grid spacing)
Vertical layer 40

Model Physics

MYJ PBL scheme [41]
Eta (Ferrier) microphysics scheme [42,43]
RRTMG longwave radiation scheme [44]
Dudhia shortwave sheme [45]
Unified Noah land-surface model [46]

FDDA option Observation nudging was enabled in one simulation
Observation nudging was disabled in one simulation

2.3. Observation Nudging

Observation nudging is a type of four-dimensional data assimilation (FDDA) that
involves assimilating data continuously at each time step [34,35]. It works by incorporating
the weighted average difference between the model and observed data into the model
tendency equations, nudging each grid point within a specific radius of influence and time
window towards the observations, e.g., [30–39]. In our nudging simulation, we applied
this method to wind speed and direction, nudging them at every grid point within a
100 km radius of influence and a 6.67 min time window towards the lidar-observed wind
speed and direction with the nudging coefficients for wind, temperature and moisture as
6.0 × 10–4 s–1. The nudging was achieved using the prognostic equation given below:

∂qµ
∂t (x, y, z, t)
= Fq(x, y, z, t)

+µGq
∑N

i=0 W2
q (i, x, y, z, t)[q0(i)− qm(xi, yi, zi, t)]

∑N
i=1 Wq(i, x, y, z, t)

(1)

where q represents the nudged quantity, µ denotes the dry hydrostatic pressure, and Fq and
Gq are the physical tendency term and the nudging strength of q, respectively. N represents
the total number of assimilated observations, while i is the index assigned to the current
observation. The spatiotemporal weighting function, Wq, is based on the distance between
the grid points and observations. A more comprehensive explanation of the observation
nudging method is described in the Observation Nudging Guide (https://www2.mmm.
ucar.edu/wrf/users/docs/ObsNudgingGuide.pdf (accessed on 15 December 2022).

2.4. Analysis Method

The study performed both spatial and temporal analyses of temperature and wind
fields for the entire simulation period. Hourly temporal analyses were conducted at
various Automated Meteorological Data Acquisition System (AMeDAS) stations, which are
marked with black squares in Figure 1. The analyses included the time series, correlation

https://www2.mmm.ucar.edu/wrf/users/docs/ObsNudgingGuide.pdf
https://www2.mmm.ucar.edu/wrf/users/docs/ObsNudgingGuide.pdf
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of determination (R2), root mean square error (RMSE), mean bias, and standard deviation
for each simulation.

To validate the results, the surface temperature and 10 m wind were compared against
the observations obtained from three different AMeDAS stations, namely Hirakata, Osaka,
and Sakai, located at altitudes of 26, 23, and 20 m, respectively. The study also validated the
model-simulated wind speed and direction at different heights using the lidar observations
at the lidar location, marked with a red square in Figure 1. In addition, the vertical wind
profile between the 10 m and 160 m height level was analyzed at each hour of the simulation
period for each observation location. The wind rose diagrams of wind at 10 m and 100 m at
each observation location were also analyzed in each simulation.

3. Results

Our study has two main focuses. First, we assessed the performance of the WRF
model in reproducing the temperature and wind field, both with and without the use of
nudging. Second, we compared the results from the two simulations to determine the
efficacy of Doppler lidar-based observation nudging.

3.1. Performance Evaluation
3.1.1. Comparison with AMeDAS Observation

The two simulations of the surface temperature were compared at different AMeDAS
stations with and without the nudging method. The time series of the surface temperature
in both simulations exhibited close agreement with slightly higher magnitudes (Figure 2),
and no significant differences were found between the two simulations. However, upon
closer examination, it was observed that the nudging simulation performed better than the
no-nudging simulation (Figure 2a–c). These results suggest that the nudging simulation
more accurately represented the temperature compared to the no-nudging simulation.
Furthermore, the nudging method was found to improve the correlation between the
simulated and observed temperature, with correlations improving up to 3% after using
lidar-based observation nudging (Figure 2d–i).
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The time series of wind speed at three AMeDAS stations were compared between
the simulated and observed data (Figure 3). The results indicated that both simulations
closely matched the observed wind speed, suggesting that the WRF model accurately
simulated the wind speed (Figure 3a–c). However, the nudging simulation outperformed
the no-nudging simulation in terms of the correlation between the simulated wind speed
and the observed wind speed. Lidar-based observation nudging led to an improvement in
the wind speed correlation of up to 8% (Figure 3d–i). This improvement was greater than
that observed in the temperature field, which only showed an improvement of up to 3%
after using nudging. These findings suggest that incorporating lidar-based observations
in the WRF model through nudging may be effective in improving the accuracy of wind
speed predictions for wind-related applications.
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To assess the performance of the simulations, we calculated RMSE and the correlation
between the hourly datasets from the simulations and the AMeDAS observations. The
nudging simulation exhibited an improvement in the RMSE for hourly temperature, with
reductions of up to 0.2 ◦C observed at all locations (Figure 4a). Furthermore, we observed an
enhancement in the correlation between the observed and nudging-simulated temperature,
with increases of up to 3% for hourly data (Figures 2d–i and 4c). Similarly, the nudging
simulation demonstrated a decrease in the RMSE for hourly wind speeds by up to 0.4 m
s–1 (Figure 4b). Additionally, the correlation of the hourly wind speed increased by up
to 8% after incorporating lidar-based observation nudging into the simulations (Figures
3d–i and 4d). These results suggest that the nudging method is effective in enhancing the
accuracy of both temperature and wind speed simulations, thus demonstrating its potential
for improving the performance of WRF model simulations.
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3.1.2. Comparison with Lidar Observation

The results shown in Figure 5 depict the time series of the wind speed and direction at
different heights between 40 and 120 m, as observed through both the lidar and the model
simulation with nudging. The results reveal that the model was able to capture the wind
speed and direction closely at all heights compared to the lidar observations. However,
during the end week of August, some differences were noticed in the magnitudes of the
wind direction. Specifically, the model underestimated the observed magnitude of the wind
direction during that period. Nevertheless, the pattern of the wind direction in the WRF
model was consistent with the observations, suggesting that while the magnitudes may
not have been precisely accurate, the overall pattern of the wind direction was consistent
with the observations.

3.2. Analysis on the Simulated Results
3.2.1. Surface Temperature

In August, the mean temperature in the Osaka region is consistently high, with
temperatures in the Osaka plain region even warmer and up to 1–2 ◦C higher than other
parts of the study area (Figure 6). The comparison of the nudging simulation with the no-
nudging simulation showed that temperatures were higher in the nudging simulation over
land areas over 300 m above sea level. Conversely, in lower altitude regions, the nudging
simulation generally showed lower temperatures compared to the no-nudging simulation,
with a few exceptions. By incorporating observation nudging, the temperature increased
by 0.2 ◦C or more in many high-altitude regions, while it decreased by 0.1 ◦C or more in
some coastal areas (Figure 6c). These results suggest that the use of observation nudging
improved the temperature predictions in certain regions, particularly at higher altitudes.
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Table 2 shows the mean biases and standard deviations in temperature at each ob-
servation location. Both simulations showed warm bias, indicating that they consistently
overestimated the temperature in comparison to the observed values. However, the nudg-
ing simulation had a colder temperature than the no-nudging simulation, indicating an
improvement. This suggests that the use of lidar-based observation nudging resulted in
a reduction in the warm bias in the simulations. At all observation stations, the nudging
simulation showed an improvement of up to 0.2 ◦C in the mean temperature, bringing
it closer to the observed temperature than the no-nudging simulation. Furthermore, the
standard deviations of temperature in the nudging simulation were generally lower than
in the no-nudging simulation, with a reduction of up to 0.1 ◦C, approaching that in the
AMeDAS observation.

Table 2. Mean and standard deviation of the surface temperature for August 2022 at three AMeDAS
station points.

Mean (◦C)

No Nudging Nudging Observation Bias with
No Nudging

Bias with
Nudging

Osaka 30.27 30.19 29.39 −0.88 −0.80
Hirakta 30.03 30.01 28.50 −1.53 −1.50

Sakai 30.50 30.35 29.47 −1.03 −0.88

Standard deviation (◦C)

No Nudging Nudging Observation Bias with
No Nudging

Bias with
Nudging

Osaka 2.56 2.51 2.68 0.12 0.17
Hirakta 3.04 3.08 2.97 −0.07 −0.12

Sakai 2.53 2.66 2.65 0.11 −0.01

3.2.2. Wind

Figure 7 shows the wind speed distribution for August 2022 at the 10 m and 100 m
height levels for the simulations with and without nudging, along with the difference
between them. The average wind speed over the Seto Inland Sea was approximately
4 m s–1 or higher at the 10 m height level and around 6 m s–1 or higher at the 100 m
height level (Figure 7a–d). Comparing the two simulations showed that the average wind
speed in the nudging simulation was lower throughout the Osaka region compared to
the no-nudging simulation, indicating that observation nudging reduced the wind speed
(Figure 7e–f). The mean biases and standard deviations for the wind speed were calculated
for each observation location (Table 3), indicating that the WRF simulation generated
stronger winds than the actual observations, with negative wind speed biases of 0.4 m s–1

at Osaka, 1.1 m s–1 at Hirakata, and 0.7 m s–1 at Sakai for all observation locations in
the no-nudging simulation. However, the nudging simulation showed a nearly 0.1 m s–1

bias at the Osaka and Sakai stations and a 0.6 m s–1 bias at Hirakata. This indicates that
observation nudging improved the wind speed in the simulation, resulting in weaker wind
speeds than the no-nudging simulation at all observation stations. The mean improvement
in wind speed was up to 0.6 m s–1.

In addition, the nudging simulation demonstrated reduced variations in the wind
speed at the 10 m height level and better agreement with the AMeDAS observations at
all observation stations in comparison to the no-nudging simulation. The lower standard
deviation in the nudging simulation indicates that the wind speed in this case is more
consistent and closer to the observed values. Notably, the standard deviation of the wind
speed showed an improvement of up to 0.08 m s–1 in the nudging simulation. The Nudging
simulation showed a maximum wind speed of 6 m s–1 over coastal areas at a height of
100 m, which was 1 m s–1 higher than the no-nudging simulation. These differences in
wind speed at higher altitudes are crucial for applications such as aviation and wind power
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generation. Overall, the results, based on the surface comparison, suggest that using lidar-
based observation nudging in the WRF model can improve the accuracy of wind speed
predictions, which is important for planning and operating the wind related applications.
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Figure 7. Mean wind speed for August 2022 distribution from the simulations with (a–b) no nudging
and (c–d) nudging at 10 m height level (upper panel) and 100 m height level (lower panel); (e–f) the
difference between the two simulations.

Table 3. Mean and standard deviation of the wind speed for August 2022 at three AMeDAS sta-
tion points.

Mean (m s−1)

No Nudging Nudging Observation Bias with No
Nudging

Bias with
Nudging

Osaka 2.86 2.46 2.39 −0.47 −0.07
Hirakta 2.73 2.29 1.67 −1.06 −0.62

Sakai 2.82 2.26 2.12 −0.70 −0.14

Standard deviation (m s−1)

No Nudging Nudging Observation Bias with No
Nudging

Bias with
Nudging

Osaka 1.50 1.44 1.10 −0.40 −0.33
Hirakta 1.47 1.43 0.94 −0.53 −0.49

Sakai 1.46 1.38 1.06 −0.39 −0.31

3.2.3. Vertical Profile of Wind

Figure 8 shows the vertical profiles of wind at all three AMeDAS stations. It is
observed that both simulations show stronger winds, with wind speeds above 10 m s–1 at
heights ranging from 10 m to 160 m in August 2022. However, the nudging simulation
demonstrates relatively fewer days with winds speeds of 10 m s–1 or greater. To further
investigate the impact of nudging, wind rose diagrams were plotted at all observation
stations. The results indicate that the frequency of westerly and southwesterly winds with
wind speeds of 10 m s–1 or higher at the 100 m height level was lower in the nudging
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simulation compared to the no-nudging simulation. Specifically, the frequency of westerly
and southwesterly winds decreased by approximately 4% at the 10 m height level and 3%
at the 100 m height level in the nudging simulation compared to the no-nudging simulation
(Figures 9–11). These results suggest that observation nudging can influence the frequency
of strong westerly and southwesterly winds in certain regions at specific heights.
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These findings suggest that the nudging simulation may result in an underestimation
of the frequency of westerly and southwesterly winds, with wind speeds of 4 m s–1 for
10 m and 6 m s–1 for 100 m, when compared to the no-nudging simulation. However, the
nudging simulation showed better agreement with observations at the 10 m height level
(Figures 3 and 7). The vertical profile and wind rose diagrams at the 10 m height level also
indicated a decrease in the frequency of westerly and southwesterly winds at all stations.
Based on the better performance of the nudging simulation in representing surface wind
compared to the no-nudging simulation, it is reasonable to assume that the decrease in the
frequency of westerly and southwesterly winds in the nudging simulation at the 100 m
height level is more accurate than in the no-nudging simulation. However, to confirm this,
further observation data, such as Sonde data at the 100 m height level, are required.

4. Discussion

It was observed that the simulations conducted using the WRF model displayed
a warm bias in temperature and a negative bias in wind speed over the Osaka region.
This means that the temperature in the WRF simulation was warmer than the actual
observed temperature, and the wind speed in the WRF simulation was weaker than what
was actually observed. However, after using the lidar-based observation nudging method,
these biases in the temperature and wind speed were reduced. Our study found that the use
of observation nudging led to a reduction in the mean bias in wind speed of up to 0.6 m s–1

and an increase in the correlation of up to 8%. This improvement is consistent with findings
from previous studies conducted in other regions [28,32,39], which have also reported
improvements in simulations after using observation nudging. One possible reason for the
improved simulation results is that the nudging method helps to maintain the large-scale
circulation features that drive weather patterns, resulting in more accurate simulations.
Another reason may be the influence of observation innovations at different vertical layers
within the atmosphere [35,51]. Our nudging simulation specifically utilized lidar-based
upper air observations, which allowed for weighted averaged differences between the
model and observation not only at the lowest model level, but also extended vertically.
Overall, the use of observation nudging appears to be a valuable tool in improving the
accuracy of WRF simulations.

We also conducted an analysis of atmospheric stability using the Bulk Richardson
number (RiB) in both simulations in order to determine whether there were any changes in
the stability. The RiB at a height (z) was calculated using the equation given by Xue et al.
in [52]:

RiB =
gz(θv − θs)

θs(u2 + v2)
(2)

where g is the gravity, θs is the virtual potential temperature on the surface, θv is the virtual
potential temperature at height z, u is the u-wind at height z, and v is the v-wind at height
z. The critical value used was 0.25.

Figure 12 illustrates the RiB at a height of 10 m for both simulations with and without
nudging. The nudging simulation shows positive RiB values over many of the areas,
indicating statically stable flows over those regions. On the other hand, the difference
between the two simulations resulted in a combination of positive and negative values
over the entire domain. Further investigation and comparison with wind speed (Figure 7b)
revealed that the positive RiB values were mainly observed over many areas of land where
the nudging simulation showed a weaker wind speed. These positive RiB values indicate
an overall decrease in statically unstable flows or an increase in statically stable flows,
which is consistent with the reduced mean wind speed in the nudging simulation and a
decreased negative bias in the wind speed.
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Overall, our analysis indicates that the use of Doppler lidar-based observation nudging
results in an improved representation of wind profile information over the Osaka region in
western Japan. This improvement is reflected in a reduction in negative wind speed bias in
the simulation. Although the mean bias in the wind profile over Osaka and Sakai is reduced
to almost 0.1 m s–1 after observation nudging, a bias still remains over the Hirakata region,
although it has been reduced to a greater extent (Table 3). One possible reason for the bias
could be due to the relatively coarse grid resolution of 500 m used in our simulations. We
hypothesize that simulations with higher resolutions (e.g., 100 m) could potentially further
improve the wind information by capturing more detailed and localized features of the
atmospheric flow. This could help to better resolve the spatial variability in the wind speed
and direction.

It is worth mentioning that the results presented in this study are based on data
collected for only one month during summer in a particular region. While the findings
indicate that Doppler lidar-based observation nudging has some level of effectiveness in
this particular month, it may not be enough to conclude whether the observed effectiveness
is consistent over an extended period. Its effects may vary in different locations also. To
establish the effectiveness of Doppler lidar-based observation nudging more comprehen-
sively, it is essential to conduct further research using data from other months, seasons
and locations.

5. Conclusions

This study aimed to improve the accuracy of wind profiles in the WRF model over
the Osaka region of western Japan. To achieve this, a Doppler lidar was deployed and
lidar-based observation nudging was used. Two simulations were conducted, one with
nudging and one without nudging, and the results were compared. Both simulations
produced a cold bias in temperature and a negative bias in wind speed. However, after
using lidar-based observation nudging, the mean bias in temperature was reduced by
up to 0.2 ◦C, with an improvement in correlation of up to 3%. In addition the mean bias
in wind speed was reduced by up to 0.6 m s–1, with an improvement in correlation of
up to 8%. The nudging simulation also showed a relatively lower RMSE and standard
deviation compared to the no-nudging simulation. The overall analysis indicated that
employing Doppler lidar-based observation nudging in the WRF simulation improved
the wind information over the regions of Osaka and would be useful in wind-related
applications and operations.
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